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Abstract

This paper considers model averaging as a way to select instruments for the two stage

least squares and limited information maximum likelihood estimators in the presence of many

instruments. We propose averaging across least squares predictions of the endogenous variables

obtained from many different choices of instruments and then use the average predicted value

of the endogenous variables in the estimation stage. The weights for averaging are chosen to

minimize the asymptotic mean squared error. This can be done by solving a standard quadratic

programming problem and, in some cases, closed form solutions for the optimal weights are

available. We demonstrate both theoretically and in Monte Carlo experiments that our method

nests and dominates existing number-of-instrument-selection procedures.
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1 Introduction

In this paper, we propose a new and flexible method to select the instruments for two stage least

squares (2SLS) and limited information maximum likelihood (LIML) estimators of linear models

when there are many instruments available. Donald and Newey (2001) propose a selection criterion

to select the number of instruments in a way that balances higher order bias and efficiency. The

focus of this paper is to extend the results and methods proposed in Donald and Newey (2001). We

show that the model averaging approach of Hansen (2007) can be applied to the first stage of the

2SLS estimator as well as to a modification of LIML. The benefits of model averaging mostly lie in

a more favorable trade off between bias and efficiency in the second stage of the 2SLS estimator or

an improved higher order mean squared error (MSE) of LIML. Our theoretical results show that

for certain choices of weights the model averaging 2SLS estimator (MA2SLS) eliminates higher

order bias and achieves the same higher order rates of convergence as the Nagar (1959) and LIML

estimators and thus dominates conventional 2SLS procedures. Model averaging allowing for bias

reduction requires a refined asymptotic approximation to the MSE of the 2SLS estimator. We

provide such an approximation by including terms of the next higher order than the leading bias

term in our MSE approximation. This approach provides a criterion that directly captures the

trade-off between higher order variance and bias correction. Our model averaging approach can

also be applied to non-linear procedures such as the LIML estimator. We show that an averaging

version of LIML dominates sequential instrument selection in terms of the higher order MSE,

although in this case, model averaging LIML estimator (MALIML) does not achieve a better rate

of convergence than LIML with sequentially selected instruments.

A limitation of sequential instrument selection is that the method is sensitive to the a priori

ordering of instruments. By allowing our model weights to be both positive and negative, we

establish that the MA2SLS and MALIML estimators have the ability to select arbitrary subsets

of instruments from an orthogonalized set of instruments. In other words, if there are certain

orthogonal directions in the instrument space that are particularly useful for the first stage, our

procedure is able to individually select these directions from the instrument set. Conventional

sequential instrument selection on the other hand is able to select these instruments only as part

of a possibly much larger collection of potentially less informative instruments.

An added benefit of model averaging is that, in some cases, the optimal weights are available in

closed form which lends itself to straight-forward empirical application. In Monte Carlo experiments
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we find that our refined selection criterion combined with a more flexible choice of instruments

generally performs at least as well as only selecting the number of instruments over a wide range

of models and parameter values, and performs particularly well in situations where selecting the

number of instruments tends to select too few instruments.

A few alternative methods to the selection approach of Donald and Newey (2001) have recently

been suggested. Kuersteiner (2002) shows that kernel weighting of the instrument set can be used

to reduce the 2SLS bias, an idea that was further developed by Okui (2008) and Canay (2008).

The MA2SLS estimator proposed in this paper can be interpreted as a generalization of the more

restrictive kernel weighted methods. While kernel weighting is shown to reduce bias, its effects

on the MSE of the estimator are ambiguous. The goal of this paper therefore is to develop an

instrument selection approach that is less sensitive to instrument ordering, dominates the approach

of selecting the number of instruments in terms of higher order MSE and outperforms the number-

of-instruments-selection procedure in finite sample Monte Carlo experiments.

We present the general form of the MA2SLS and MALIML estimators in Section 2.1 and

discuss various members of the class of MA2SLS and MALIML estimators in Section 3.2. The

refined higher order MSE approximation for the MA2SLS family and the MSE approximation for

MALIML are obtained in Section 3.1. Section 3.3 demonstrates that optimal members of the

MA2SLS and MALIML families dominate the pure number of instrument selection method for the

2SLS, bias corrected 2SLS and LIML respectively, in terms of relative higher order MSE. In Section

4, we establish that feasible versions of the MA2SLS and MALIML estimator maintain certain

optimality properties. Section 5 contains Monte Carlo evidence of the small sample properties of

our estimators.

2 First Stage Model Averaging Estimators

Following Donald and Newey (2001), we consider the model

yi = Y ′
i βy + x′

1iβx + ϵi = X ′
iβ + ϵi (2.1)

Xi =

 Yi

x1i

 = f(zi) + ui =

 E[Yi|zi]

x1i

 +

 ηi

0

 , i = 1, . . . , N

where yi is a scalar outcome variable, Yi is a d1 × 1 vector of endogenous variables, x1i is a vector

of included exogenous variables, zi is a vector of exogenous variables (including x1i), ϵi and ui are

unobserved random variables with second moments which do not depend on zi, and f is an unknown
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function of z. Let fi = f(zi). The set of instruments has the form Z ′
M,i ≡ (ψ1(zi), · · · , ψM (zi)),

where ψks are functions of zi such that ZM,i is a M × 1 vector of instruments. The asymptotic

variance of a
√

N -consistent regular estimator of β cannot be smaller than σ2H̄−1, where σ2 =

E[ϵ2i |zi] and H̄ = E[fif
′
i ] (Chamberlain (1987)). The lower bound is achieved by 2SLS if fi can

be written as a linear combination of the instruments. In general, we can approximate fi better

by adding more instruments, which makes the estimator more efficient. However, the estimator

might behave poorly in the presence of many instruments (Kunitomo (1980), Morimune (1983)

and Bekker (1994)). This paper develops model averaging methods to handle a large number of

instruments.

Let y = (y1, . . . , yN )′. The matrices X, ϵ, u and f are defined similarly.

2.1 Model Averaging

Let W be a weighting vector such that W = (w1,N , . . . , wM,N ) and
∑M

m=1 wm,N = 1 for some M

such that M ≤ N for any N . We note that W is a sequence of weights wm,N indexed by the sample

size N , but for notational convenience we use wm where it does not create confusion. In Sections

3.2 and 4, we discuss in more details the restrictions that need to be imposed on W and M , but

point out here that wm is allowed to take on positive and negative values. Let Zm,i be the vector

of the first m elements of ZM,i, Zm be the matrix (Zm,1, . . . , Zm,N )′ and Pm = Zm(Z ′
mZm)−1Z ′

m.

Define P (W ) =
∑M

i=1 wmPm. The model averaging two-stage least squares estimator (MA2SLS),

β̂, of β is defined as

β̂ = (X ′P (W )X)−1X ′P (W )y. (2.2)

The definition of (2.2) can be extended to the LIML estimator. Let

Λ̂m = min
β

(y − Xβ)′Pm(y − Xβ)
(y − Xβ)′(y − Xβ)

and define Λ̂ (W ) =
∑M

m=1 wmΛ̂m. The model averaging limited information maximum likelihood

estimator (MALIML), β̂L, of β then is defined as

β̂L = (X ′P (W )X − Λ̂ (W ) X ′X)−1(X ′P (W )y − Λ̂ (W ) X ′y). (2.3)

Our estimators can also be extended to a modification of LIML due to Fuller (1977). Let

Λ̌m =

(
Λ̂m − α

N−m(1 − Λ̂m))

1 − α
N−m(1 − Λ̂m)

)
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where α is a constant chosen by the econometrician.1 The model averaging Fuller estimator (MA-

Fuller) then is defined as

β̂ =
(
X ′P (W )X − Λ̌(W )X ′X

)−1 (X ′P (W )y − Λ̌(W )X ′y). (2.4)

We use the term MA2SLS or MALIML because P (W )X is the predictor of X based on Hansen’s

(2007) model averaging estimator applied to the first stage regression. The model averaging esti-

mator exploits a trade-off between specification bias and variance. In our application this trade-off

appears in the second stage of 2SLS and LIML as well. In particular, for 2SLS, more specification

bias in the reduced form leads to less estimator bias, and reduced variance in the reduced form

leads to less efficiency in the second stage. This trade off is well understood from the work of

Nagar (1959), Bekker (1994) and Donald and Newey (2001) amongst others. As Hansen (2007)

demonstrates, model averaging improves the bias-variance trade-off in conventional model selection

contexts. These advantages translate into corresponding advantages for the instrumental variables

estimators as our theoretical analysis shows. Furthermore, we generalize the work of Hansen (2007)

by allowing weights to be possibly negative while weights examined by Hansen (2007) are restricted

to be positive. Allowing negative weights is important to obtain a bias correction and robustness

with respect to the ordering of the instruments.

2.2 Advantages of Model Averaging

To give a preview of our results, we focus our attention to MA2SLS, β̂, in this subsection. We

note that under suitable conditions on the behavior of W as a function of the sample size N it can

be shown that the largest term of the higher order bias of β̂ is proportional to K ′W/
√

N , where

K = (1, 2, . . . ,M)′. When a specific first stage model with exactly m instruments is selected, this

result reduces to the well known result that the higher order bias is proportional to m/
√

N. In

other words, the first stage model selection approach of Donald and Newey (2001) can be nested

within the class of MA2SLS estimators by choosing wj = 1 for j = m and wj = 0 for j ̸= m.

To illustrate the bias reduction properties of MA2SLS, we consider an extreme case where the

higher order bias is completely eliminated. This occurs when W satisfies the additional constraint

K ′W = 0. Thus, the higher order rate of convergence of MA2SLS can be improved relative to the

rate for 2SLS by allowing wj to be both positive and negative. In fact, the Nagar estimator can

be interpreted as a special case of MA2SLS with M = N, wj = N/ (N − m) for j = m, some m,

1Popular choices are α = 1 or α = 4. See for example Hahn, Hausman and Kuersteiner (2004).
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wN = −m/ (N − m) and wj = 0 otherwise.2 As we demonstrate later, MA2SLS defines a much

wider class of estimators with desirable MSE properties even when K ′W = 0 does not hold and

dominates the Nagar estimator when K ′W = 0 is imposed.

Kuersteiner (2002) proposed a kernel weighted form of the 2SLS estimator in the context of time

series models and showed that kernel weighting reduces the bias of 2SLS. Let k = diag (k1, ..., kM )

where kj = k ((j − 1) /M) are kernel functions k(·) evaluated at j/M with k(0) = 1. The kernel

weighted 2SLS estimator then is defined as in (2.2) with P (W ) replaced by ZMk(Z ′
MZM )−1kZ ′

M .

For expositional purposes and to relate kernel weighting to model averaging, we consider a special

case in which instruments are mutually orthogonal so that Z ′
MZM is a diagonal matrix, but note

that similar results hold in the general case.3 Let Z̃j be the j-th column of ZM such that ZM =

(Z̃1, . . . , Z̃M ) and P̃j = Z̃j(Z̃ ′
jZ̃j)−1Z̃ ′

j . For a given set of kernel weights k, there exist weights W

such that for wj = k2
j − k2

j+1 and wM = k2
M the relationship

M∑
m=1

wmPm =
M∑

j=1

k2
j P̃j = ZMk(Z ′

MZM )−1kZ ′
M (2.5)

holds. In other words, the kernel weighted 2SLS estimator corresponds to model averaging with

the weights {wm}M
m=1 defined above.

Okui’s (2008) shrinkage 2SLS estimator is also a special case of the averaged estimator (2.2).

In this case, wL = s, wM = 1 − s, s ∈ [0, 1], wj = 0 for j ̸= L, M , where L(< M) is fixed. Okui’s

procedure can be interpreted in terms of kernel weighted 2SLS. Letting the kernel function k(x) = 1

for x ≤ L/M, k(x) =
√

s for L/M < x ≤ 1 and k(x) = 0 otherwise implies that the kernel weighted

2SLS estimator formulated on the orthogonalized instruments is equivalent to Okui’s procedure.

The common feature of kernel weighted 2SLS estimators is that they shrink the first stage

estimators towards zero. Shrinkage of the first stage reduces bias in the second stage at the cost of

reduced efficiency. While kernel weighting has been shown to reduce bias, conventional kernels with

monotonically decaying ’tails’ can not completely eliminate bias. The calculations in Kuersteiner

(2002) also show that the distortion introduced from using the weight matrix k(Z ′
MZM )−1k rather

than (Z ′
MZM )−1 asymptotically dominates the higher order variance of β̂ for conventional choices

2The approximate higher order MSE for the Nagar estimator is covered by Corollary 7.3 in Section 7, see Remark

4.
3In other words, we ortho-normalize the instruments prior to kernel weighting. Thus, that Z′

MZM is a diagonal

matrix is not really a restriction in practice. When kernel weighting is applied to the instruments that are not

ortho-normalized, the model averaging weights corresponding to some particular kernel become data dependent and

have a more complicated formula.
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of k(·). This later problem was recently addressed by Canay (2008) through the use of top-flat

kernels (see, e.g., Politis and Romano (1995), Politis (2001) and Politis (2007)).

Despite these advances, conventional kernel based methods have significant limitations due to

the fact that once a kernel function is chosen, the weighting scheme is not flexible. The fully

flexible weights employed by MA2SLS guarantee that the net effect of bias reduction at the cost of

decreased efficiency always results in a net reduction of the approximate MSE of the second stage

estimator. As we show in Section 3.3, this result holds even in cases where the bias is not fully

eliminated and thus K ′W = 0 does not hold.

A second advantage of model averaging is its ability to pick models from a wider class than

sequential instrument selection can. Imagine a situation where the first m (< M) instruments

in ZM are redundant. In this case a sequential procedure will need to include the uninformative

instruments while the model averaging procedure can in principle set weights wM = 1 and wm = −1

such that P (W ) = PM − Pm is the projection on the orthogonalized set of the last M − m

instruments in ZM . To be more specific, let zi be the i-th column of ZM when i ≤ M and define

z̃2 = (I −P1)z2, z̃3 = (I − P2) z3, ..., z̃M = (I − PM−1) zM such that z1, z̃2, ...z̃M are orthogonal and

span ZM . Then, PM =
∑M

i=1 P̃i where P̃i = z̃i(z̃′iz̃i)−1z̃′i for i > 1 and P1 = z1 (z′1z1)
−1 z′1. It follows

that
∑M

m=1 wmPm =
∑M

j=1 w̃jP̃j for w̃j =
∑M

m=j wm. If D is an M × M matrix with elements

dij = 1 {j ≥ i} and W̃ = (w̃1, ..., w̃M )′, then W = D−1W̃ . The only constraint we impose on W̃ is

w̃1 = 1. Since W̃ is otherwise unconstrained, one can set w̃j = 0 for any 1 < j ≤ M . In addition,

an arbitrarily small but positive weight can be assigned to the first coordinate by choosing w̃j large

for j ̸= 1. The use of negative weights thus allows MA2SLS to pick out relevant instruments from

a set of instruments that contains redundant instruments.

3 Higher Order Theory

3.1 Asymptotic Mean Square Error

The choice of model weights W is based on an approximation to the higher order MSE of β̂. The

derivations parallel those of Donald and Newey (2001). However, because of the possibility of bias

elimination by setting K ′W = 0, we need to consider an expansion that contains additional higher

order terms for the 2SLS case. We show the asymptotic properties of the MA2SLS and LIML under

the following assumptions.

Assumption 1 {yi, Xi, zi} are i.i.d., E[ϵ2i |zi] = σ2
ϵ > 0, and E[||ηi||4|zi] and E[|ϵi|4|zi] are bounded.
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Assumption 2 (i) H̄ ≡ E[fif
′
i ] exists and is nonsingular. (ii) for some α > 1/2,

sup
m≤M

m2α

(
sup

λ′λ=1
λ′f (I − Pm) fλ/N

)
= Op (1) .

(iii) Let N+ be the set of positive integers. There exists a subset J̄ ⊂ N+ with a finite number of

elements such that for all m /∈ J̄ it follows that

inf
m/∈J̄ ,m≤M

m2α+1

(
sup

λ′λ=1
λ′f (Pm − Pm+1) fλ/N

)
> 0 wpa1

Assumption 3 (i) Let uia be the a-th element of ui. Then E[ϵr
i u

s
ia|zi] are constant for all a and

r, s ≥ 0 and r + s ≤ 5. Let σuϵ = E[uiϵi|zi], Σu = E[uiu
′
i|zi]. (ii) Z ′

MZM are nonsingular wpa1.

(iii) maxi≤N PM,ii →p 0, where PM,ii signifies the (i, i)-th element of PM . (iv) fi is bounded.

Assumption 4 Let W+ = (|w1,N |, . . . , |wM,N |)′. The following conditions hold: 1′
MW = 1; W ∈

l1 for all N where l1 = {x = (x1, ...) |
∑∞

i=1 |xi| ≤ Cl1 < ∞} for some constant Cl1, M ≤ N ; and,

as N → ∞ and M → ∞, K ′W+ =
∑M

m=1 |wm|m → ∞. For some sequence L ≤ M such

that L → ∞ as N → ∞ and L /∈ J̄ , where J̄ is defined in Assumption 2(iii), it follows that

supj /∈J̄ ,j≤L

∣∣∣∑j
m=1 wm

∣∣∣ = O(1/
√

N) as N → ∞.

Assumption 5 It holds either that i) K ′W+/
√

N =
∑M

m=1 |wm|m/
√

N → 0 or ii) K ′W+/N =∑M
m=1 |wm|m/N → 0 and M/N → 0.

Assumption 6 The eigenvalues of E
[
Zk,iZ

′
k,i

]
are bounded away from zero uniformly in k. Let

H̄k = E [fiZk,i]
(
E

[
Zk,iZ

′
k,i

])−1
E

[
fiZ

′
k,i

]′
and H̄ = E [fif

′
i ]. Then,

∥∥H̄k − H̄
∥∥ = O

(
k−2α

)
for

k → ∞.

Assumption 7 β ∈ Θ where Θ is a compact subset of Rd.

Remark 1 The second part of Assumption 2 allows for redundant instruments where f ′(Pm −

Pm+1)f/N = 0 for some m, as long as the number of such cases is small relative to M .

Assumptions 1-3 are similar to those imposed in Donald and Newey (2001). The set J̄ cor-

responds to the set of redundant. We need to explicitly consider this set because it turns out

that the optimal weight on a redundant instrument has some specific feature (see Section 7.5).

Assumption 4 collects the conditions that weights must satisfy and is related to the conditions

imposed by Donald and Newey (2001) on the number of instruments. The condition K ′W+ → ∞

may be understood as the number of instruments tending to infinity. This assumption is needed
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to achieve the semiparametric efficiency bound and to obtain the asymptotic MSE whose leading

terms depend on K ′W . The condition K ′W+/
√

N → 0 limits the rate at which the number of

instruments is allowed to increase, which guarantees standard first-order asymptotic properties of

the MA2SLS estimator. For the LIML estimator, this condition can be weakened to K ′W+/N → 0.

The condition supj /∈J̄ ,j≤L |
∑j

m=1 wm| = O(1/
√

N) guarantees that small models receive asymptot-

ically negligible weight and is needed to guarantee first order asymptotic efficiency of the MA2SLS

and MALIML estimators. We also restrict W to lie in the space of absolutely summable sequences

l1. The fact that the sequences in l1 have infinitely many elements creates no problems since one

can always extend W to l1 by setting wj = 0 for all j > M .

The notion of asymptotic MSE employed here is similar to the Nagar-type asymptotic expansion

(Nagar (1959)). Following Donald and Newey (2001), we approximate the MSE conditional on the

exogenous variable z, E[(β̂ − β0)(β̂ − β0)′|z], by σ2
ϵ H

−1 + S(W ), where

N(β̂ − β0)(β̂ − β0)′ = Q̂(W ) + r̂(W ), E[Q̂(W )|z] = σ2
ϵ H

−1 + S(W ) + T (W ),

H = f ′f/N and (r̂(W ) + T (W ))/tr(S(W )) = op(1) as N → ∞.

Formal theorems and explicit expressions for S(W ) are reported in Theorem 7.1 and Corollaries

7.1, 7.2 and 7.3. In this section, we briefly discuss the main findings. Under additional constraints

on higher order moments such that Cum [ϵi, ϵi, ui, u
′
i] = 0 and E[ϵ2i ui] = 0,4 we show in Corollary

7.1 that for MA2SLS

S (W ) = H−1

(
aσ

(K ′W )2

N
+ bσ

(W ′ΓW )
N

− K ′W

N
BN + σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
H−1,

(3.1)

where aσ = σuϵσ
′
uϵ, bσ = (σ2

ϵ Σu + σuϵσ
′
uϵ),

BN = 2

(
σ2

ϵ Σu + dim(β)σuϵσ
′
uϵ +

1
N

N∑
i=1

fiσ
′
uϵH

−1σuϵf
′
i +

1
N

N∑
i=1

(
fiσ

′
uϵH

−1fiσ
′
uϵ + σuϵf

′
iH

−1σuϵf
′
i

))
,

and Γ is the M ×M matrix whose (i, j)-th element is min(i, j). In Section 7, we also derive results

for the more general case when Cum[ϵi, ϵi, ui, u
′
i] ̸= 0 and E[ϵ2i ui] ̸= 0. Because these formulas are

substantially more complicated, we focus our discussion on the simpler case.5 The first term in

(3.1) represents the square of the bias, and the fourth term represents the goodness-of-fit of the first

4“Cum” signifies the fourth order cumulant so that Cum [ϵi, ϵi, ui, u
′
i] = E[ϵ2i uiu

′
i] − σ2

ϵ Σu − 2σuϵσ
′
uϵ.

5As was noted in Donald and Newey (2001), it is possible to use the more general criterion that allows

Cum[ϵi, ϵi, ui, u
′
i] ̸= 0 and E[ϵ2i ui] ̸= 0 because the additional nuisance parameters for this case can be estimated. We

note that in practice this seems to be rarely done.
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stage regression. These two terms appear in the existing results of the asymptotic expansions of the

2SLS estimator. The second term represents a variance inflation by including many instruments.

A similar term appears in the MSE results for LIML and bias-corrected 2SLS estimators by Donald

and Newey (2001). As shown in Theorem 7.1, BN in the third term is positive definite. This shows

that the first term aσ(K ′W )2/N over-estimates the bias of including more instruments. We need to

include the second and third terms because K ′W → ∞ may not hold as a result of allowing negative

weights. In fact, when the weights are all positive, we have K ′W → ∞ (because K ′W = K ′W+ in

this case) and the second and third term then are of lower order as established in expression (7.4)

of Corollary 7.2.

For the MALIML estimator the approximate MSE when Cum[ϵi, ϵi, vi, v
′
i] = 0 and E[ϵ2i vi] = 0

with vi = ui − (σuϵ/σ2
ϵ )ϵi is found as

S(W ) = H−1
(
σ2

ϵ Σv
W ′ΓW

N
+ σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
H−1. (3.2)

where Σv = E [viv
′
i]. Higher order unbiasedness of MALIML is reflected in the absence of terms

involving K ′W and parallels results for the sequential instrument selection case in Donald and

Newey (2001).

3.2 Estimator Classes

We choose W to minimize the approximate MSE of λ′β̂ for some fixed λ ∈ Rd. For this purpose

define σλϵ = λ′H−1σuϵ and σ2
λ = λ′H−1ΣuH−1λ. Then, the optimal weight, denoted W ∗, is the

solution to minW∈Ω Sλ (W ) where Sλ (W ) = λ′S (W ) λ and Ω is some set.

We consider several versions of Ω which lead to different estimators. The MA2SLS esti-

mator is unconstrained if Ω = ΩU = {W ∈ l1|W ′1M = 1}. More restricted versions can be

constructed by considering the sets ΩB = {W ∈ l1|W ′1M = 1,K ′W = 0} which leads to unbi-

ased estimators. From a finite sample point of view, it may be useful to further constrain the

weights W to lie in a compact set. This is achieved in the following definitions of restricted

model averaging classes defined as ΩC = {W ∈ l1|W ′1M = 1; wm ∈ [−1, 1] ,∀m ≤ M} , and ΩP =

{W ∈ l1|W ′1M = 1; wm ∈ [0, 1] ,∀m ≤ M}.

For the MALIML estimator we only consider cases where W is contained in ΩU , ΩC and ΩP

because MALIML is higher order unbiased without the constraint K ′W = 0.

When Ω is equal to ΩU or ΩB, a closed form solution for W ∗ is available. Let um
λ = (I −

Pm)fH−1λ and define the matrix U = (u1
λ, . . . , uM

λ )′(u1
λ, . . . , uM

λ ). It now follows that λ′H−1f ′(I −

10



P (W ))(I − P (W ))fH−1λ = W ′UW such that S (W ) is affine in W . It then is easy to show that

the optimal unconstrained weights for MA2SLS are

W ∗
U = arg min

W∈ΩU

Sλ(W ) =
1
2
A−1

(
Kλ′H−1BNH−1λ +

2 − 1′
MA−1Kλ′H−1BNH−1λ

1′
MA−11M

1M

)
, (3.3)

where A = σ2
λϵKK ′ +

(
σ2

ϵ σ
2
λ + σ2

λϵ

)
Γ + σ2

ϵ U . As we show in Corollary 7.3 the approximate MSE of

MA2SLS simplifies when the constraint K ′W = 0 is imposed. In this case, weights are chosen such

as to eliminate the highest order bias term. We therefore find the following closed form solution

for W ∗
B.

W ∗
B = arg min

W∈ΩB

Sλ(W ) = A−1
B R

(
R′A−1

B R
)−1

b, (3.4)

where AB =
(
σ2

ϵ σ
2
λ + σ2

λϵ

)
Γ + σ2

ϵ U , b = (0, 1)′ and R = (K,1M ). It is clear that ΩB ⊂ ΩU such

that minW∈ΩU
Sλ(W ) ≤ minW∈ΩB

Sλ(W ). Since the Nagar estimator is contained in ΩB, it follows

by construction that MA2SLS based on W ∗
U weakly dominates the Nagar estimator in terms of

asymptotic MSE. In Section 3.3 we show that MA2SLS strictly dominates the Nagar estimator.

When the optimal weights are restricted to lie in the sets ΩC or ΩP , no closed form solution exists.

Finding the optimal weights minimizing Sλ(W ) over a constrained set is a classical quadratic

programming problem for which there are readily available numerical algorithms.6 We note that

for ΩP , it follows from Corollary 7.2 that the criterion can be simplified to (7.4).

The optimal weights in ΩU for MALIML have the same form as (3.4) except that now AL =(
σ2

ϵ σ
2
λ − σ2

λϵ

)
Γ + σ2

ϵ U replaces AB, R = 1M and b = 1 such that the optimal weights are

W ∗
U,LIML = A−1

L 1M

(
1′

MA−1
L 1M

)−1
.

3.3 Relative Higher Order Risk

It is easily seen that Donald and Newey’s (2001) procedure can be viewed as a special case of model

averaging where the weights are chosen from the set ΩDN ≡ {W ∈ l1|wm = 1 for some m and wj =

0 for j ̸= m} to minimize Sλ (W ). Note that when W ∈ ΩDN , it follows that K ′W = m and

(I − P (W ))(I − P (W )) = (I − Pm). Hence, S (W ) with W restricted to W ∈ ΩDN reduces to

H−1

(
aσ

m2

N
+

m

N
(bσ − BN ) + σ2

ϵ

f ′(I − Pm)f
N

)
H−1

for m ≤ M. Because m/N = o(m2/N) as m → ∞, the expression for S (W ) with W ∈ ΩDN reduces

to the result of Donald and Newey (2001, Proposition 1). We note that all sets Ω = ΩU ,ΩB, ...,ΩP

6The Gauss programming language has the procedure QPROG, and the Ox programming language has the

procedure SolveQP.
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contain the procedure of Donald and Newey (2001) as a subset (i.e., ΩDN ⊂ Ω). This guarantees

that MA2SLS weakly dominates the number of instrument selection procedure such that Sλ (W ∗) ≤

minW∈ΩDN
Sλ (W ). In fact, as the argument in the proof of Lemma 7.8 shows, there are simple

sequences in ΩU and ΩB that strongly dominate arg minW∈ΩDN
Sλ (W ) in the sense of achieving

higher rates of convergence.

A stronger result is the following theorem which shows that, under some regularity conditions

on the population goodness-of-fit of the first stage regression, MA2SLS and MALIML dominate

corresponding estimators based on sequential moment selection.

Theorem 3.1 Assume that Assumptions 1-5 hold. Let γm = λ′H−1f ′(I −Pm)fH−1λ/N. Assume

that there exists a non-stochastic function C(a) such that supa∈[−ε,ε] γm(1+a)/γm = C (a) wpa1 as

N,m → ∞ for some ε > 0. Assume that C (a) = (1 + a)−2α + o
(
|a|2α

)
.

i) For Sλ (W ) given by (3.1), it follows that

minW∈ΩP
Sλ(W )

minW∈ΩDN
Sλ (W )

< 1 wpa1.

Letting WN be the weights with wm = N/ (N − m) , wN = −m/ (N − m) and wj = 0 for j ̸= m

where m is chosen to minimize Sλ (W ), it follows that

minW∈ΩB
Sλ(W )

Sλ (WN )
< 1 wpa1.

ii) For Sλ (W ) given by (3.2), it follows that

minW∈ΩP
Sλ(W )

minW∈ΩDN
Sλ (W )

< 1 wpa1.

Remark 2 The additional conditions on γm imposed in Theorem 3.1 are satisfied if γm = δm−2α,

but are also satisfied for more general specifications. For example, if γm = δ (m) m−2α + op

(
m−2α

)
as m → ∞, where the function δ (m) satisfies δ (m (1 + a)) /δ (m) = 1 + o

(
|a|2α

)
wpa1, then the

condition holds.

The first part of the theorem indicates that all MA2SLS estimators considered here dominate

the simple number-of-instruments-selection procedure in terms of higher order MSE. Likewise, the

second part implies that the MA2SLS estimators obtained from choosing W over the sets ΩU and

ΩB dominate the Nagar estimator in terms of higher order MSE. The third part of the result shows

that MALIML dominates LIML with sequential instrument selection for W ∈ ΩU , ΩC and ΩP .

We contrast the optimality properties of MA2SLS with kernel weighted GMM. For illustration,

consider the model weights wm = 1/M for m ≤ M and wm = 0 otherwise, which correspond to the

12



kernel weighted GMM with kernel function k(x) =
√

max(1 − x, 0) (see (2.5)). Because the weights

are always between 0 and 1, the MSE is given in (7.4). As a function of the kernel bandwidth M ,

the MSE approximation is

Sλ(M) = σ2
λϵ

(M + 1)2

4N
+ σ2

ϵ

1′
MU1M

M2N
.

The form of Sλ in this case illustrates the fact that kernel weighting generally reduces the higher

order bias of 2SLS, here in this case by a factor 1/2, but that this comes at the cost of increased

higher order variance. It is easily seen that 1′
MU1M ≥ M2uM ′

λ uM
λ . Since the difference between

1′
MU1M and M2uM ′

λ uM
λ is data-dependent, it can not be established in general that kernel weighting

reduces the MSE. This example illustrates that kernels do not have enough free parameters to

guarantee that bias reduction sufficiently off-sets the increase in W ′UW.

4 Implementation

Fully data dependent implementation of the estimator classes defined in Section 3.2 requires a

data-dependent criterion Ŝλ (W ). The non-trivial part of estimating the criterion concerns f ′(I −

P (W ))(I − P (W ))f/N . Donald and Newey (2001) show that the Mallows (1973) criterion can

be used to estimate the term f ′(I − Pm)f/N . This approach fits naturally in our framework of

model averaging for the first stage. Hansen (2007) proposes to use the Mallows criterion ũ′ũ/N +

2σ2
λK ′W/N , where ũ = (I − P (W )) XH−1λ to choose the weights W for the first stage regression.

The use of Mallows criterion is motivated by the fact that

E
[
ũ′ũ/N |z

]
= λ′H−1f ′(I − P (W ))(I − P (W ))fH−1λ/N + σ2

λ

(
W ′ΓW − 2K ′W

)
/N + σ2

λ

such that E
[
ũ′ũ/N + 2σ2

λK ′W/N |z
]

= E[∥(f − P (W )X)H−1λ∥2|z]/N + σ2
λ. We note that, in the

context of instrument selection, the relevant criterion is E
[
∥(I − P (W ))fH−1λ∥2|z

]
rather than

E
[
∥(f −P (W )X)H−1λ∥2|z

]
such that the criterion needs to be adjusted to ũ′ũ/N +σ2

λ(2K ′W/N −

W ′ΓW/N). We also note that, when W ∈ ΩDN , it holds that W ′ΓW = K ′W = m. Therefore, the

correctly adjusted Mallows criterion in this special case is ũ′
mũm/N + σ2

λm/N which leads to the

formulation used in Donald and Newey (2001, p. 1165).

We propose a slightly different criterion which is based on the difference between the residuals

ûλ = (PM − P (W ))XH−1λ

13



where M is a sequence increasing with N that is chosen by the statistician. In practice, M is the

largest number of instruments considered for estimation. This number often is directly implied by

the available data-set or determined by considerations of computational and practical feasibility.

Note that PM → I, as M → N , which leads to the conventional Mallows criterion. Including PM

rather than I serves two purposes. On the one hand it reduces the bias of the criterion function

when W puts most weight on large models. This can be seen by considering the criterion bias:

E
[∥∥(PM − P (W ))uH−1λ

∥∥2 |z
]

= σ2
λ

(
M − 2K ′W + W ′ΓW

)
.

When W ∈ ΩDN , it follows that K ′W = m and σ2
λ (M − 2K ′W + W ′ΓW ) = σ2

λ (M − m) which

tends to zero as m reaches the upper bound M . Similarly, as our theoretical analysis shows, the

variability of the criterion function can be reduced by using the criterion based on PM .

Let β̃ denote some preliminary estimator of β, and define the residuals ϵ̃ = y−Xβ̃. As pointed

out in Donald and Newey (2001), it is important that β̃ does not depend on the weight matrix

W . We use the 2SLS estimator with the number of instruments selected by the first stage Mallows

criterion in simulations for MA2SLS and the corresponding LIML estimator for MALIML. Let Ĥ

be some estimator of H. Let ũ be some preliminary residual vector of the first stage regression.

Let ũλ = ũĤ−1λ.7 Define,

σ̂2
ϵ = ϵ̃′ϵ̃/N, σ̂2

λ = ũ′
λũλ/N, σ̂λϵ = ũ′

λϵ̃/N.

Let ûm
λ = (PM−Pm)XĤ−1λ and Û = (û1

λ, . . . , ûM
λ )′(û1

λ, . . . , ûM
λ ). The criterion Ŝλ (W ) for choosing

the weights is

Ŝλ (W ) =

(
âλ

(K ′W )2

N
+ b̂λ

(W ′ΓW )
N

− K ′W

N
B̂λ,N + σ̂2

ϵ

(
W ′ÛW − σ̂2

λ (M − 2K ′W + W ′ΓW )
N

))
(4.1)

with âλ = σ̂2
λϵ, b̂λ = σ̂2

ϵ σ̂
2
λ + σ̂2

λϵ and B̂λ,N = λ′Ĥ−1B̂NĤ−1λ, where B̂N is some estimator of B̂N .8

When the weights are only allowed to be positive, Corollary 7.2 suggests the simpler criterion

Ŝλ (W ) =

(
âλ

(K ′W )2

N
+ σ̂2

ϵ

(
W ′ÛW − σ̂2

λ (M − 2K ′W + W ′ΓW )
N

))
. (4.2)

For MALIML we choose W based on the following criterion

Ŝλ(W ) = (σ̂2
ϵ σ̂

2
λ − σ̂2

λϵ)
W ′ΓW

N
+ σ̂2

ϵ

(
W ′ÛW − σ̂2

λ(M − 2K ′W + W ′ΓW )
N

)
. (4.3)

7Note that ũ is the residual vector. On the other hand, ûm
λ s are the vectors of the differences of the residuals.

8When dim(β) = 1, we have BN = 2(σ2
ϵ Σu + 4σ2

uϵ) and we may use B̂λ,N = 2(σ̂2
ϵ σ2

λ + 4σ̂2
λϵ).
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In order to show that Ŵ , which is found by minimizing Ŝλ (W ) , has certain optimality proper-

ties, we need to impose the following additional technical conditions.

Assumption 8 For some α, supm≤M m2α+1 (supλ′λ=1 λ′f (Pm − Pm+1) fλ/N) = Op (1).

Assumption 9 Ĥ − H = op (1), σ̂2
ϵ − σ2

ϵ = op(1), σ̂2
λ − σ2

λ = op(1), σ̂λϵ − σλϵ = op(1) and

B̂N − BN = op (1).

Assumption 10 Let α be as defined in Assumption 8. For some 0 < ε < min(1/ (2α) , 1), and δ

such that 2αε > δ > 0, it holds that M = O
(
N (1+δ)/(2α+1)

)
. For some ϑ > (1 + δ) / (1 − 2αε), it

holds that E
(
|ui|2ϑ

)
< ∞ . Further assume that σ̂2

λ − σ2
λ = op

(
N−δ/(2α+1)

)
.

Assumption 8 supplements Assumption 2 and controls the strength of the instruments. As-

sumption 9 assumes the consistency of the estimators of the parameters in the criterion function.

Assumption 10 restricts the order of the number of instruments and assumes the existence of the

moments of ui. It also imposes a condition on the rate of the consistency of σ̂2
λ. For example, when

α = 3/4, M = O(N3/5), E[∥ui∥16] < ∞ and σ̂2
λ − σ2

λ = op

(
N−1/5

)
, Assumption 10 is satisfied by

taking ε = 1/2, δ = 1/2 and ϑ = 8. We note that σ̂2
λ − σ2

λ = op

(
N−1/5

)
is achievable.

The following result generalizes a result established by Li (1987) to the case of the MA2SLS

estimator.

Theorem 4.1 Let Assumptions 1-10 hold. For Ω = ΩU , ΩB, ΩC , or ΩP and Ŵ = arg minW∈Ω Ŝλ (W )

where Ŝλ (W ) is defined in either (4.1) or (4.3) it follows that

Ŝλ

(
Ŵ

)
infW∈Ω Sλ (W )

→p 1. (4.4)

Theorem 4.1 complements the result in Hansen (2007). Apart from the fact that Ŝλ (W ) is

different from the criterion in Hansen (2007), there are more technical differences between our

result and Hansen’s (2007). Hansen (2007) shows (4.4) only for a restricted set Ω where Ω has

a countable number of elements. We are able to remove the countability restriction and allow

for more general W . However, in turn we need to impose an upper bound M on the maximal

complexity of the models considered.
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5 Monte Carlo

This section reports the results of our Monte Carlo experiments,9 where we investigate the finite

sample properties of the model averaging estimators. In particular, we examine the performance

of the model averaging estimators compared with Donald and Newey’s (2001) instrument selection

procedure, possible gains from considering additional higher order terms in the asymptotic MSE,

and potential benefits we obtain by allowing negative weights.

5.1 Design

We use the same experimental design as Donald and Newey (2001) to ease comparability of our

results with theirs. Our data-generating process is the model:

yi = βYi + ϵi, Yi = π′Zi + ui,

for i = 1, . . . , N , where Yi is a scalar, β is the scalar parameter of interest, Zi ∼iid.N(0, IM ) and

(ϵi, ui) is iid. jointly normal with variances 1 and covariance c. The integer M is the total number

of instruments considered in each experiment. We fix the true value of β at 0.1, and we examine

how well each procedure estimates β.

In this framework, each experiment is indexed by the vector of specifications: (N,M, c, {π}),

where N represents the sample size. We set N = 100, 1000. The number of instruments is M = 20

when N = 100 and M = 30 when N = 1000. The degree of endogeneity is controlled by the

covariance c and set to c = 0.1, 0.5, 0.9. We consider the following three specifications for π.

Model (a): πm =

√√√√ R2
f

K̄(1 − R2
f )

, ∀m.

This design is considered by Hahn and Hausman (2002) and Donald and Newey (2001). In this

model, all the instruments are equally weak.

Model (b): πm = c(M)
(

1 − m

M + 1

)4

, ∀m.

This design is considered by Donald and Newey (2001). The strength of the instruments decreases

gradually in this specification.

Model (c):πm = 0 for m ≤ M/2; πm = c(M)
(

1 − m − M/2
M/2 + 1

)4

for m > M/2,

9This Monte Carlo simulation was conducted with Ox 5.10 (Doornik (2007)) for Windows.
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The first M/2 instruments are completely irrelevant. Other instruments are relevant and the

strength of them decreases gradually as in Model (b). We use this model to investigate potential

benefits of allowing for negative weights which makes the procedure more robust with respect to

the ordering of instruments. For each model, c(M) is set so that π satisfies π′π = R2
f/(1 − R2

f ),

where R2
f is the theoretical value of R2 and we set R2

f = π′π/(π′π + 1) = 0.1, 0.01. The number of

replications is 1000.

5.2 MA2SLS

We first examine the performances of 2SLS-type estimators.

5.2.1 Estimators

We compare the performances of the following seven estimators. Three of them are existing proce-

dures and the other four procedures are the MA2SLS estimators developed in this paper. First, we

consider the 2SLS estimator with all available instruments (2SLS-All in the tables). Second, the

2SLS estimator with the number of instruments chosen by Donald and Newey’s (2001) procedure

is examined (2SLS-DN). We use the criterion function (4.2) for DN. The optimal number of instru-

ments is obtained by a grid search. The kernel weighted GMM of Kuersteiner (2002) is also exam-

ined (KGMM). Let ΩKGMM = {W ∈ l1 : wm = L−1 if m ≤ L and 0 otherwise for some L ≤ M}.

Then, the MA2SLS estimator with W ∈ ΩKGMM corresponds to the kernel weighted 2SLS estima-

tor with kernel k(x) =
√

max(1 − x, 0). Because the weights are always positive with ΩKGMM , we

use the criterion function (4.2) for KGMM. We use a grid search to find the L that minimizes the cri-

terion. The procedure “2SLS-U” is the MA2SLS estimator with Ω = ΩU = {W ∈ l1 : W ′1M = 1}.

The MA2SLS estimator with Ω = ΩC = {W ∈ l1 : W ′1M = 1; wm ∈ [−1, 1],∀m ≤ M} is de-

noted “2SLS-C”. The procedure “2SLS-P” uses the set Ω = ΩP = {W ∈ l1 : W ′1M = 1; wm ∈

[0, 1],∀m ≤ M}. The criterion for 2SLS-U, 2SLS-C and 2SLS-P is formula (4.1). The procedure

“2SLS-Ps” also uses the same set ΩP , but the criterion for computing weights is (4.2). For these

MA2SLS estimators, we use the procedure SolveQP in Ox to minimize the criteria (see Doornik

(2007)). We use the 2SLS estimator with the number of instruments that minimizes the first-stage

Mallows criterion as a first stage estimator β̃ to estimate the parameters of the criterion function

Sλ (W ) .

For each estimator, we compute the median bias (“bias” in the tables), the inter-quantile range

(“IQR”), the median absolute deviation (“MAD”) and the median absolute deviation relative to
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that of DN (“RMAD”).10 We also compute the following two measures. The measure “KW+” is the

value of
∑M

m=1 mmax(wm, 0). For 2SLS, this measure is merely the total number of instruments.

For 2SLS-DN, it is the number of instruments chosen by the procedure. The measure “KW-”

is the value of
∑M

m=1 m|min(wm, 0)|. This measure is zero for the procedures that allow only

positive weights. For 2SLS-U or 2SLS-C, it may not be zero because of possibly negative weights.

A comparison of KW+ and KW- offers some insight into the importance of bias reduction and

instrument selection for the 2SLS-U and 2SLS-C procedures.

5.2.2 Results

Tables 1-3 summarize the results of our simulation experiment. 2SLS-All performs well when the

degree of endogeneity is small (c = 0.1). However, when c = 0.5 or 0.9, 2SLS-All exhibits large

bias and some method to alleviate this problem is called for. The selection method of 2SLS-DN

achieves this goal only partially. In Model (b) with c = 0.5 and c = 0.9, where the rank ordering

of instruments is appropriate and bias reduction is an important issue, it reduces the bias of the

estimator by using a small number of instruments. However, 2SLS-DN tends to use too small a

number of instruments and the improvement of the performance does not occur in general. Even in

Model (b), 2SLS-DN uses too small a number of instruments when c = 0.1 and thus unnecessarily

inflates the variability of the estimator. In Models (a) and (c), 2SLS-DN seldom outperforms 2SLS-

All. In particular, in Model (c), the number of instruments selected by 2SLS-DN tends to be far less

than M/2, which means that 2SLS-DN often employs only the instruments that are uncorrelated

with the endogenous regressor. KGMM typically outperforms 2SLS-DN, which demonstrates the

advantage of kernel weighting. However, the problem observed for DN also applies to KGMM.

KGMM does not improve over 2SLS-All in Models (a) and (c).

All model averaging estimators perform well. 2SLS-Ps, which may be considered a natural appli-

cation of Hansen’s (2007) model averaging to IV estimation, outperforms 2SLS-DN and KGMM in

most cases. 2SLS-P further improves over 2SLS-Ps in Models (a) and (c) substantially, which shows

the benefit of taking additional higher order terms into account when choosing optimal weights.

The good performance of 2SLS-P is mainly due to its low variability measured by IQR. On the other

hand, in Model (b), 2SLS-P is outperformed by 2SLS-DN when c = 0.9. Nevertheless, the RMAD

measure is never above 1.3 which is significantly lower than the RMAD measure for 2SLS-All. This

result may be due partly to a trade-off between additional terms in the approximation of the MSE

10We use these robust measures because of concerns about the existence of moments of estimators.
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and a more complicated form of the optimal weights: It provides a more precise approximation of

the MSE on a theoretical level; however it also complicates estimation of the criterion Sλ (W ) which

may result in larger estimation errors in the estimated criterion function. 2SLS-U and 2SLS-C also

perform well. Their performance is particularly remarkable when c = 0.1 and n = 100 in Models

(a) and (b) and when c = 0.9 and n = 1000 in Model (c). We note that the performance of 2SLS-C

and that of 2SLS-U are similar. In general, the performances of 2SLS-C and 2SLS-U are similar

to 2SLS-P. However, the performance of 2SLS-U or 2SLS-C in Model (b) is not as good as that of

DN when c = 0.9 with a RMAD measure reaching values of around 1.69. Nevertheless, 2SLS-U

and 2SLS-C perform better than 2SLS-All even in these cases. Their relatively poor performance

in Model (b) may be due to having too large a choice set for W . Note also that the values of

“KW+” and “KW-” for 2SLS-U and 2SLS-C indicate that they do not try to eliminate the bias

completely.11 The median biases of these estimators are similar to other MA2SLS estimators.

In summary, 2SLS-Ps displays the most robust performance of all procedures considered. It

almost never falls behind DN in terms of MAD and often outperforms it significantly. 2SLS-U,

2SLS-C and 2SLS-P show some problems in Model (b) when the degree of endogeneity is moderate

to high. On the other hand, those estimators achieve even more significant improvements in terms

of MAD over 2SLS-DN in Models (a) and especially (c) where DN does not perform very well.

5.3 MALIML

Next, we consider the performances of LIML-type estimators.

5.3.1 Estimators

We compare the performances of the following five estimators. First, we consider the LIML estima-

tor with all available instruments (LIML-All in the tables). Second, the LIML estimator with the

number of instruments chosen by Donald and Newey’s (2001) procedure is examined (LIML-DN).

We use the criterion function (4.3) for LIML-DN. The optimal number of instruments is obtained

by a grid search. The procedures “LIML-U”, “LIML-C” and “LIML-P are the MALIML estimators

with Ω = ΩU = {W ∈ l1 : W ′1M = 1}, Ω = ΩC = {W ∈ l1 : W ′1M = 1; wm ∈ [−1, 1],∀m ≤ M}

and Ω = ΩP = {W ∈ l1 : W ′1M = 1;wm ∈ [0, 1],∀m ≤ M}, respectively. For these MALIML esti-

mators, we minimize the criterion (4.3) to obtain optimal weights. We use the procedure SolveQP

11The higher order bias is eliminated when K′W = 0, which is equivalent to the case where “KW+” and “KW-”

are equal.
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in Ox to minimize the criterion (see Doornik (2007)). We use the LIML estimator with the number

of instruments that minimizes the first-stage Mallows criterion as a first stage estimator, β̃, to

estimate the parameters of the criterion function Sλ (W ).

As in the previous subsection, we compute the same six quantities to evaluate the performances

of the estimators. We note that a comparison of KW+ and KW- does not provide an insight

into the bias reduction because the estimators considered here do not exhibit a second-order bias.

Negative weights might be present in LIML-U or LIML-C solely when the criterion indicates the

existence of redundant instruments.

5.3.2 Results

Tables 4-6 summarize the results of our simulation experiment. LIML-All has a small bias in many

cases as the theory indicates. Nonetheless, it is severely biased when the instruments are weak

(R2
f = 0.01) and the sample size is small (n = 100) (see Hahn, Hausman and Kuersteiner (2004)).

Compared with 2SLS-All, the MAD of LIML-All is high when c = 0.1 and low when c = 0.9. In

contrast to the case of 2SLS, the instrument selection works well for LIML in all the specifications.

LIML-DN outperforms LIML-All in most of cases, in particular when c = 0.1. When c = 0.9, they

behave similarly.

All model averaging estimators perform well. They improve LIML-All and LIML-DN in many

cases. It is interesting to note that the model averaging estimators perform particularly well when

LIML-DN improves over LIML-All. For example, they perform better than LIML-DN when c = 0.1

and the improvement may be substantial. In Model (b), and c = .5 LIML-U and LIML-C perform

somewhat less well than LIML-DN but better than LIML-All. Comparing LIML-C (or LIML-U)

and LIML-P, we see that LIML-C improves over LIML-P when c = 0.1, but the performance of

LIML-P is more stable so that the performance of LIML-P is the best among the model averaging

estimators when they cannot perform well. We note that the good performance of the model

averaging estimators appears to be due to its ability to reduce the variability (measured by IQR).

In summary, model averaging can outperform instrument selection. In particular, the improve-

ment is substantial when instrument selection is important. Allowing negative weights can further

improve the performance in those cases, while it also makes the estimator slightly less stable. From

the experiment, we recommend LIML-P in particular because it can improve the estimator sub-

stantially when it works but its performance is relatively stable even when model averaging does

not work well.
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5.4 MAFuller

Next, we consider the performances of Fuller-type estimators.

5.4.1 Estimators

Similarly to the experiments for the LIML-type estimators, we compare the performances of the

following five estimators. First, we consider the Fuller estimator with all available instruments

(Fuller-All in the tables). Second, the Fuller estimator with the number of instruments chosen by

Donald and Newey’s (2001) procedure is examined (Fuller-DN). We use the criterion function (4.3)

(the criterion is the same as that for LIML) for Fuller-DN. The optimal number of instruments is

obtained by a grid search. The procedures “Fuller-U”, “Fuller-C” and “Fuller-P are the MAFuller

estimators with Ω = ΩU , Ω = ΩC and Ω = ΩP , respectively. For these MAFuller estimators,

we minimize the criterion (4.3) to obtain optimal weights. We use the procedure SolveQP in Ox

to minimize the criterion (see Doornik (2007)). We use the Fuller estimator with the number of

instruments that minimizes the first-stage Mallows criterion as a first stage estimator, β̃, to estimate

the parameters of the criterion function Sλ (W ).

As in the previous subsection, we compute the same six quantities to evaluate the performances

of the estimators.

5.4.2 Results

Tables 7-9 summarize the results of our simulation experiment. The performances of Fuller-DN

and the model averaging estimators compared with Fuller-All are similar to what we observe in the

experiment for LIML-type estimators. Among the Fuller-type estimators, we recommend Fuller-P

by the same reason that we recommend LIML-P among the LIML-type estimators (i.e., it can

improve the estimator substantially when it works but its performance is relatively stable even

when model averaging does not work well.)

Fuller-All has a smaller MAD than that of LIML-All. This good performance of the Fuller

estimator comes from that it has small variability (as measured by IQR). This result may be related

to the well-known fact that the Fuller estimator has finite moments, but the LIML estimator does

not. However, once instrument selection or model averaging is introduced, the Fuller estimator

does not necessary outperform the LIML estimator. For example, when n = 1000 and R2
f = 0.01 in

Model (a), Fuller-All has a smaller MAD than that of LIML-All, but other Fuller-type estimators
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are dominated by the corresponding LIML-type estimators.

5.5 MAB2SLS

Lastly, we consider the bias-corrected 2SLS estimator (B2SLS) and the model averaging version of

B2SLS. B2SLS is defined as

β̂b2sls =
(
X ′PmX − m

N
X ′X

)−1 (
X ′Pmy − m

N
X ′y

)
,

when we use the first m instruments. The model averaging B2SLS estimator (MAB2SLS) is

β̂mab2sls =
(

X ′P (W )X − K ′W

N
X ′X

)−1 (
X ′P (W )y − K ′W

N
X ′y

)
.

5.5.1 Estimators

We compare the performances of the following five estimators. First, we consider the B2SLS

estimator with all available instruments (B2SLS-All in the tables). Second, the B2SLS estimator

with the number of instruments chosen by Donald and Newey’s (2001) procedure is examined

(B2SLS-DN). The procedures “B2SLS-U”, “B2SLS-C” and “B2SLS-P are the MAB2SLS estimators

with Ω = ΩU , Ω = ΩC and Ω = ΩP , respectively. The criterion used to compute optimal weights is

Ŝλ(W ) = b̂λ
W ′ΓW

N
+ σ̂2

ϵ

(
W ′ÛW − σ̂2

λ(M − 2K ′W + W ′ΓW )
N

)
.

For B2SLS-DN, the optimal number of instruments is obtained by a grid search. For the MAB2SLS

estimators, we use the procedure SolveQP in Ox to minimize the criterion (see Doornik (2007)).

We use the B2SLS estimator with the number of instruments that minimizes the first-stage Mallows

criterion as a first stage estimator β̃ to estimate the parameters of the criterion function Sλ (W ).

As in the previous subsection, we compute the same six quantities to evaluate the performances

of the estimators.

5.5.2 Results

Tables 10-12 summarize the results of our simulation experiment. B2SLS-All eliminates bias effec-

tively when R2
f = 0.1, however, it exhibits large bias when R2

f = 0.01. The diversity of B2SLS-All

with all the instruments (measured by IQR) is smaller than that of LIML-All when c = 0.1 but

the difference is small. On the other hand, when c = 0.9, LIML-All has small diversity and the

difference is substantial. In general, we may recommend LIML over B2SLS when we use all the

22



instruments. DN improves All in many cases and the improvement can be substantial. This result

is similar to what we have observed in the case of LIML. However, B2SLS-DN perform substantially

worse than B2SLS-All does when c = 0.5, 0.9 and n = 1000 in Models (a) and (c).

B2SLS-P typically improves B2SLS-DN. The performances of B2SLS-U and B2SLS-C are similar

to each other and their performance is very unstable. When c = 0.9, B2SLS-U and B2SLS-C exhibit

non-negligible bias and their MAD is substantially larger than that of B2SLS-DN. On the other

hand, when c = 0.1, their improvement can be substantial. For example, when c = 0.1, n = 100 and

R2
f = 0.1 in Model (a), the MAD of B2SLS-U is the smallest among the estimators considered in the

experiments (including 2SLS and LIML-type estimators). We note that the good performance of

the model averaging estimators appears to be due to its ability to reduce the variability (measured

by IQR).

In summary, B2SLS-P demonstrates most stable performance. B2SLS-U and B2SLS-C improve

B2SLS-All substantially in some case but there are also cases in which B2SLS-U and B2SLS-C

do not work well. Thus, we recommend B2SLS-P when we apply model averaging to the B2SLS

estimator. On the other hand, we recommend to avoid using B2SLS-type estimators. The LIML

estimator has better bias property and the 2SLS estimator shows less diversity. Model averaging

can improve the performances of LIML and 2SLS estimators in a more stable way than that of

B2SLS.

6 Conclusions

For models with many overidentifying moment conditions, we show that model averaging of the

first stage regression can be done in a way that reduces the higher order MSE of the 2SLS es-

timator relative to procedures that are based on a single first stage model. The procedures we

propose are easy to implement numerically and in some cases have closed form expressions. Monte

Carlo experiments document that the MA2SLS estimators perform at least as well as conventional

moment selection approaches and perform particularly well when the degree of endogeneity is low

to moderate and when the instrument set contains uninformative instruments.

7 Formal Results and Proofs

This section presents the formal theorems and their proofs. In the proofs, C denotes a generic constant

whose exact value depends on the context.
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Theorem 7.1 Suppose that Assumptions 1-3 are satisfied. Define µi(W ) = E[ϵ2i ui]Pii(W ) and µ(W ) =

(µ1(W ), ..., µN (W ))′. If W satisfies Assumption 4 and 5(i) then, for β̂ defined in (2.2), the decomposition

given by (7.7) holds with

S(W ) = H−1

(
Cum [ϵi, ϵi, ui, u

′
i]

∑
i(Pii(W ))2

N
+ σuϵσ

′
uϵ

(K ′W )2

N
+ (σ2

ϵ Σu + σuϵσ
′
uϵ)

(W ′ΓW )
N

−K ′W

N
BN + E[ϵ21u

′
1]

∑
i fiPii(W )

N
+

∑
i f ′

iPii(W )
N

E[ϵ21u1]

+f ′(I − P (W ))µ (W ) /N + µ (W )′ (I − P (W ))f/N + σ2
ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
H−1

where d = dim(β), and

BN = 2

(
σ2

ϵ Σu + dσuϵσ
′
uϵ +

1
N

N∑
i=1

fiσ
′
uϵH

−1σuϵf
′
i +

1
N

N∑
i=1

(
fiσ

′
uϵH

−1fiσ
′
uϵ + σuϵf

′
iH

−1σuϵf
′
i

))
(7.1)

Remark 3 When d = 1, BN = 2(σ2
ϵ Σu + 4σ2

uϵ).

Note that the term BN is positive semi-definite. This implies that usual higher order formula that

neglects the term K′W
N BN overestimates the effect on the bias of including more instruments. A number of

special cases lead to simplifications of the above result. If Cum[ϵi, ϵi, ui, u
′
i] = 0 and E[ϵ2i ui] = 0 as would be

the case if ϵi and ui were jointly Gaussian, then the following result is obtained:

Corollary 7.1 Suppose that the same conditions as in Theorem 7.1 hold and that in addition Cum[ϵi, ϵi, ui, u
′
i] =

0 and E[ϵ2i ui] = 0. Then, for β̂ defined in (2.2), the decomposition given by (7.7) holds with:

S(W ) = H−1

(
σuϵσ

′
uϵ

(K ′W )2

N
+ (σ2

ϵ Σu + σuϵσ
′
uϵ)

(W ′ΓW )
N

− K ′W

N
BN +σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
H−1

(7.2)

where BN is as defined before.

Another interesting case arises when W is constrained such that wm ∈ [0, 1]. We have the following

result.

Corollary 7.2 Suppose that the same conditions as in Theorem 7.1 hold and that in addition wm ∈ [0, 1]

for all m. Then, for β̂ defined in (2.2), the decomposition given by (7.7) holds with:

S(W ) = H−1

(
σuϵσ

′
uϵ

(K ′W )2

N
+ (σ2

ϵ Σu + σuϵσ
′
uϵ)

(W ′ΓW )
N

− K ′W

N
BN (7.3)

+E[ϵ21u
′
1]

∑
i fiPii(W )

N
+

∑
i f ′

iPii(W )
N

E[ϵ21u1] + σ2
ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
H−1

where Bn is as defined before. Moreover, ignoring terms of order Op(K ′W ) (= op((K ′W )2)), to first order

S(W ) = H−1

(
σuϵσ

′
uϵ

(K ′W )2

N
+ σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
H−1. (7.4)
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A last special case arises when the constraint K ′W = 0 is imposed on the weights. This constraint requires

that wm can be positive and negative. The expansion to higher orders than Donald and Newey is necessary

to capture the relevant trade-off between more efficiency and distortions due to additional instruments. For

simplicity we also assume that Cum[ϵi, ϵi, ui, u
′
i] = 0 and E[ϵ2i ui] = 0. Without these additional constraints

the terms involving
∑

i(Pii(W ))2/N ,
∑

i fiPii(W )/N and f ′(I − P (W ))µ (W ) /N potentially matter and

need to be included.

Corollary 7.3 Suppose that the same conditions as in Theorem 7.1 hold and that in addition Cum[ϵi, ϵi, ui, u
′
i] =

0 and E[ϵ2i ui] = 0. Furthermore, impose K ′W = 0. Then, for β̂, the decomposition given by (7.7) holds with

S(W ) = H−1

(
(σ2

ϵ Σu + σuϵσ
′
uϵ)

(W ′ΓW )
N

+ σ2
ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
H−1. (7.5)

Remark 4 We note that this result covers the Nagar estimator, where M = N, wm = N/ (N − k) for k =

m, wN = −k/ (N − k) and wm = 0 otherwise for some k such that k → ∞ and k/
√

N → 0. First, we verify

that all the conditions of the Corollary are satisfied, where
∑M

m=1 |wm| = (N +k)/(N −k) which is uniformly

bounded if k = o(N), K ′W = 1, 1′
MW = 1,

∑M
m=1 |wm|m = 2Nk/(N − k) → ∞,

∑M
m=1 |wm|m/

√
N =

2
√

Nk/(N − k) → 0. Further, supj /∈J̄,j≤L |
∑j

m=1 wm| = 0 by taking L ≤ k. Next, note that W ′ΓW =

k/ (1 − k/N)2 − k2/N (1 − k/N)2 and f ′(I − P (W ))(I − P (W ))f = f ′(I − Pk)f/ (1 − k/N)2 noting that

PN = I. If we use WN to denote the Nagar weights, then S (WN ) = H−1((σ2
ϵ Σu + σuϵσ

′
uϵ)k/N + σ2

ϵ f ′(I −

Pk)f/N)H−1 + o (S (WN )). The lead term is the same as the result in Proposition 3 of Donald and Newey

(2001).

The next theorem gives the approximate MSE of the MALIML and MAFuller estimators.

Theorem 7.2 Suppose that Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied. Let vi = ui − (σuϵ/σ2
ϵ )ϵi.

Define Σv = Σu − σuεσ
′
uε, µv(W ) = (µv,1(W ), . . . , µv,N (W ))′, µv,1(W ) = E[ϵ2i vi]Pii(W ). If W satisfies

Assumption 4 then, for β̂ defined in (2.3) (MALIML) and β̂ defined in (2.4) (MAFuller), the decomposition

given by (7.7) holds with

S(W ) = H−1
(
σ2

ϵ Σv
W ′ΓW

N
+ σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

+ Cum[ϵi, ϵi, vi, v
′
i]

∑
i(Pii(W ))2

N

+ζ̂ + ζ̂ ′ − f(I − P (W ))µv(W )
N

− µv(W )′(I − P (W ))f
N

)
H−1,

where

ζ̂ =
N∑

i=1

fiPii(W )E[ϵ2i vi]/N − K ′W

N

N∑
i=1

fiE[ϵ2i vi]/N.

When Cum[ϵi, ϵi, vi, v
′
i] = 0 and E[ϵ2i vi] = 0, we have

S(W ) = H−1
(
σ2

ϵ Σv
W ′ΓW

N
+ σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
H−1. (7.6)

25



Theorem 7.3 Assume that Assumptions 1-5 hold. Suppose that dim(β) = 1. Let

R̃2 =
(X ′P (W )X)2

X ′P (W )P (W )X · X ′X
.

If
∑L

j=1 |wj | = o(1) and E(Xi) = 0, then

R̃2 →p
E(f2

i )
E(f2

i ) + σ2
u

.

7.1 Lemmas

The MA2SLS estimator has the form of
√

N(β̂ − β) = Ĥ−1ĥ. We define h = f ′ϵ/
√

N and H = f ′f/N . The

following lemma is the key device to compute the Nagar-type MSE of MA2SLS. This lemma is similar to

Lemma A.1 in Donald and Newey (2001), but with the important difference that the expansion is valid to

higher order and covers the case of higher order unbiased estimators.

Lemma 7.1 If there is a decomposition ĥ = h + Th + Zh, h̃ = h + Th, Ĥ = H + TH + ZH ,

h̃h̃′ − h̃h̃′H−1TH′ − THH−1h̃h̃′ = Â(W ) + ZA(W ),

such that Th = op(1), h = Op(1), H = Op(1), the determinant of H is bounded away from zero with

probability 1, ρW,N = tr(S (W )) and ρW,N = op(1),

||TH ||2 = op(ρW,N ), ||Zh|| = op(ρW,N ), ||ZH || = op(ρW,N ),

ZA(W ) = op(ρW,N ), E[Â(W )|z] = σ2H + HS(W )H + op(ρW,N ),

then

N(β̂ − β0)(β̂ − β0)′ = Q̂(W ) + r̂(W ),

E[Q̂(W )|z] = σ2
ϵ H−1 + S(W ) + T (W ), (7.7)

(r̂(W ) + T (W ))/tr(S(W )) = op(1), as K ′W+ → ∞, N → ∞.

Remark 5 The technical difference between our lemma and that of Donald and Newey is that we consider

the interaction between Th and TH in the expansion and we do not require that ||Th|| · ||TH || is small.

Proof. The proof follows steps taken by Donald and Newey (2001). We observe that

Ĥ−1ĥ = H−1ĥ − H−1(Ĥ − H)H−1ĥ + H−1(Ĥ − H)H−1(Ĥ − H)Ĥĥ.

Noting that Ĥ − H = TH + ZH , ||TH ||2 = op(ρW,N ), ||ZH || = op(ρW,N ) and ĥ = h̃ + Zh = h̃ + op(ρW,N ),

we have

Ĥ−1ĥ = H−1h̃ − H−1THH−1h̃ + op(ρW,N ).
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Let τ̃ = h̃ − THH−1h̃. Then,

τ̃ τ̃ ′ = Â(W ) + ZA(W ) + THH−1h̃h̃′H−1TH = Â(W ) + op(ρW,N ),

by ZA(W ) = op(ρW,N ) and ||TH || = op(ρW,N ). It follows that

N(β̂ − β)(β̂ − β)′ = H−1(Â(W ) + op(ρW,N ))H−1 + op(ρW,N ) = H−1Â(W )H−1 + op(ρW,N ).

Therefore, we get the desired result.

Lemma 7.2 Let Γ be the N × N matrix where Γij = min(i, j). Then Γ is positive definite.

Proof. Define the vectors bj,N = (0′
j ,1

′
N−j)

′, where 1j is the j × 1 vector of 1′s and 0j is defined

similarly. Then

Γ =
N−1∑
j=0

bj,Nb′j,N ,

and for any y ∈ RN it follows that y′Γy =
∑N−1

j=0 (y′bj,N )2 ≥ 0 and the equality holds if and only if y = 0.

This shows that Γ is positive definite.

Lemma 7.3 Let Γ be defined as in Lemma 7.2. If, for some sequence L ≤ M , L → ∞, L /∈ J̄ for J̄ defined

in Assumption 2(iii), supj /∈J̄,j≤L |
∑j

m=1 wm| = Op(1/
√

N) as M → ∞ and W ′1M = 1 for any M , then it

follows that W ′ΓW → ∞ as M → ∞.

Proof. For L ≤ M and L → ∞ it follows by the assumption that

1 =

∣∣∣∣∣
M∑

m=1

wm

∣∣∣∣∣ ≤ inf
j /∈J̄,j≤L

∣∣∣∣∣∣
M∑

m=j+1

wm

∣∣∣∣∣∣ +

∣∣∣∣∣
j∑

m=1

wm

∣∣∣∣∣
 ≤ inf

j /∈J̄,j≤L

∣∣∣∣∣∣
M∑

m=j+1

wm

∣∣∣∣∣∣ + sup
j /∈J̄,j≤L

∣∣∣∣∣
j∑

m=1

wm

∣∣∣∣∣
such that infj /∈J̄,j≤L

∣∣∣∑M
m=j+1 wm

∣∣∣ ≥ 1 − Op

(
1/

√
N

)
. Now let CJ̄ be the number of elements in J̄ such

that

W ′ΓW =
M−1∑
j=0

 M∑
m=j+1

wm

2

≥
∑

j /∈J̄,j≤L

 M∑
m=j+1

wm

2

≥ (L − CJ̄)
(
1 − Op

(
1/

√
N

))2

.

Since L → ∞ and CJ̄ is bounded and does not depend on L or N , the result follows.

Lemma 7.4 If, for some sequence L ≤ M , L → ∞ and for J̄ defined in Assumption 2(iii) L /∈ J̄ , and

supj /∈J̄,j≤L |
∑j

m=1 wm| = O(1/
√

N) as M → ∞, then
∑M

m=1,m/∈J̄ (
∑m

s=1 wm)2 m−2α → 0.

Proof. Note that
M∑

m=1,m/∈J̄

(
m∑

s=1

wm

)2

m−2α =
L∑

m=1,m/∈J̄

(
m∑

s=1

wm

)2

m−2α +
M∑

m=L+1,m/∈J̄

(
m∑

s=1

wm

)2

m−2α

≤

(
sup

j /∈J̄,j≤L

∣∣∣∣∣
j∑

s=1

wm

∣∣∣∣∣
)2

L∑
m=1

m−2α +
M∑

m=L+1,m/∈J̄

(
m∑

s=1

|wm|

)2

m−2α

≤ O (1/N)
L∑

m=1

m−2α + Cl1

M∑
m=L+1

m−2α → 0,

27



where the last inequality follows from the fact that
∑m

s=1 |wm| ≤ Cl1 < ∞ uniformly in N by Assumption

4. Then,
∑M

m=L+1 m−2α → 0 because L → ∞ and
∑M

m=1 m−2α < ∞ uniformly in M .

Lemma 7.5 Suppose that Assumptions 1-3 are satisfied. Then we have

1. tr(P (W )) =
∑M

m=1 wmm = K ′W (Hansen (2007) Lemma 1.1),

2.
∑

i(Pii(W ))2 = op(K ′W+),

3.
∑

i̸=j Pii(W )Pjj(W ) = (K ′W )2 + op(K ′W+),

4.
∑

i̸=j Pij(W )Pij(W ) =
∑M

m=1

∑M
l=1 wmwl min(l,m) + op(K ′W ) = W ′ΓW + op(K ′W ),

5.
∑

i̸=j Pij(W ) = Op (N − K ′W ),

6. h = f ′ϵ/
√

N = Op(1) and H = f ′f/N = Op(1) (Donald and Newey (2001) Lemma A.2 (v)).

Proof. We do not provide the proofs of parts 1 and 6, as the proofs are available in Hansen (2007) and

Donald and Newey (2001). For part 2, first we note that Aii ≤ Bii if A ≤ B, which implies that Pl,ii ≤ PM,ii

for l ≤ M . Then, Assumption 3 and Lemma 7.5(1) imply

∑
i

(Pii(W ))2 =
N∑

i=1

M∑
m,l=1

wmwlPl,iiPm,ii ≤
N∑

i=1

M∑
m,l=1

|wm| |wl|Pl,iiPm,ii

≤ max
i

(PM,ii)

(
M∑

m=1

|wl|

)
N∑

i=1

M∑
m=1

|wm|Pm,ii ≤ C max
i

(PM,ii)trP
(
W+

)
= op(1)(K ′W+) = op(K ′W+)

where
∑M

m=1 |wl| ≤ Cl1 for some Cl1 < ∞ was used and the bound holds uniformly for all N by Assumption

4. Also these results imply∑
i ̸=j

Pii(W )Pjj(W ) =
∑

i

Pii(W )
∑

j

Pjj(W ) −
∑

i

(Pii(W ))2 = (K ′W )2 + op(K ′W+),

which shows part 3.

To show part 4, first we observe that∑
i ̸=j

Pij(W )Pij(W ) = tr(P (W )P (W )) −
∑

i

(Pii(W ))2.

Now tr(P (W )P (W )) =
∑M

m=1

∑M
l=1 wmwl min(l,m) by Lemma 1.2 of Hansen (2007). Thus, combining this

result with part 2 of this lemma,

∑
i ̸=j

Pij(W )Pij(W ) =
M∑

m=1

M∑
l=1

wmwl min(l,m) + op(K ′W+).

For part 5, note that ∑
i ̸=j

Pij(W ) = 1′
NP (W )1N − tr(P (W ))
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where 1′
NPm1N ≤ 1′

N1N = N by the fact that Pm is an idempotent matrix. Then note that

1′
NP (W )1N − tr(P (W )) = |1′

NP (W )1N | − tr(P (W )) ≤
M∑

m=1

|wm||1′
NPm1N | − tr(P (W ))

≤ CN − K ′W

such that
∑

i ̸=j Pij(W ) = Op (N − K ′W ) = Op (N).

Let ef (W ) = f ′(I − P (W ))(I − P (W ))f/N and ∆(W ) = tr(ef (W )).

Lemma 7.6 Suppose that Assumptions 1-3, 4 and 5(i) are satisfied. Then

1. ∆(W ) = op(1),

2. f ′(I − P (W ))ϵ/
√

N = Op(∆(W )1/2),

3. E[u′P (W )ϵ|z] = σuϵK
′W ,

4. E[u′P (W )ϵϵ′P (W )u|z] = σuϵσ
′
uϵ(K

′W )2 + (σ2
ϵ Σu + σuϵσ

′
uϵ)(W

′ΓW ) + Cum[ϵi, ϵi, ui, u
′
i]

∑
i(Pii(W ))2,

5. E[f ′ϵϵ′P (W )u|z] =
∑

i fiPii(W )E[ϵ2i u
′
i] = Op(K ′W+),

6. Let g (W ) : W → R with g(W ) > 0 be a function of W such that g(W ) → ∞ as N → ∞. Then√
g(W )∆(W )/

√
N = Op(g(W )/N + ∆(W )),

7. E[hh′H−1u′f/N |z] =
∑

i fif
′
iH

−1E[ϵ2i ui]f ′
i/N

2 = Op(1/N) (Donald and Newey (2001) Lemma A.3

(vii)),

8. E[f ′ (I − P (W )) ϵϵ′P (W )u/N |z] = f ′(I − P (W ))µ (W ) /N = op ((K ′W+)/N + ∆(W )),

9. E[f ′ϵϵ′fH−1u′P (W )u|z]/N2 = Op(1/N) + σ2
ϵ ΣuK ′W/N ,

10. E[f ′ϵϵ′P (W )uH−1 (u′f + f ′u) |z]/N2 = Op(1/N)+(K ′W/N)(
∑

i fiσ
′
uϵH

−1σuϵfi/N+
∑

i fiσ
′
uϵH

−1fiσ
′
uϵ/N),

11. E
[
u′P (W )ϵϵ′fH−1 (u′f + f ′u) |z

]
/N2 = Op (1/N) + (K ′W/N)

(
dσuϵσ

′
uϵ + σuϵ

∑
i f ′

iH
−1σuϵf

′
i/N

)
,

12. W ′ΓW ≤ CK ′W+.

Proof. Let γ̃m = tr(f ′(I − Pm)f)/N . By construction γ̃m ≥ 0. Write

tr(f ′(I − P (W ))(I − P (W ))f)/N = W ′AW

where

A =


γ̃1 γ̃2 · · ·

γ̃2 γ̃2

...
. . .

 .

It follows that

W ′AW =

M−1∑
m=1

(
m∑

s=1

ws

)2

(γ̃m − γ̃m+1)

 + γ̃M (7.8)

=

 M−1∑
m=1,m/∈J̄

(
m∑

s=1

ws

)2

(γ̃m − γ̃m+1)

 + γ̃M + op (1)
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where the second equality holds by Assumption 2(ii) such that

W ′AW ≤
M−1∑

m=1,m/∈J̄

(
m∑

s=1

ws

)2

γ̃m + op (1) =
M−1∑

m=1,m/∈J̄

(
m∑

s=1

ws

)2
γ̃m

m−2α
m−2α

≤ sup
m≤M

(
m2αγ̃m

) M−1∑
m=1,m/∈J̄

(
m∑

s=1

ws

)2

m−2α,

where supm≤M

(
m2αγ̃m

)
= Op (1) by Assumption 2(ii). For a sequence L ≤ M, L → ∞ and L/N ≤

M/N → 0 satisfying Assumption 4(ii) it follows that
∑M

m=1,m/∈J̄ (
∑m

s=1 ws)
2
m−2α = o (1) by Lemma 7.4.

This implies that tr(f ′(I − P (W ))(I − P (W ))f)/N = ∆(W ) = op(1).

Next, we observe that E[f ′(I − P (W ))ϵ/
√

N ] = 0 and

E

[
f ′(I − P (W ))ϵ√

N

ϵ′(I − P (W ))f√
N

∣∣∣z]
= σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

= σ2
ϵ ef (W ).

Therefore f ′(I − P (W ))ϵ/
√

N = Op(∆(W )1/2) by the Chebyshev inequality. This shows part 2.

For part 3,

E[u′P (W )ϵ|z] =
N∑

i=1

Pii (W )E[uiεi] = σuϵtr(P (W )) = σuϵK
′W.

To give part 4, observe that E[uiPij(W )ϵjϵkPkl(W )u′
l] = 0 if one of (i, j, k, l) is different from all the

rest. Also E[ϵ2i uiu
′
i] is bounded by Assumption 1. Therefore we have

E[u′P (W )ϵϵ′P (W )u|z]

=
∑

i

(Pii(W ))2E[ϵ2i uiu
′
i] +

∑
i ̸=j

E[uiPii(W )ϵiϵjPjj(W )u′
j |z]

+
∑
i ̸=j

E[uiPij(W )ϵjϵiPij(W )u′
j |z] +

∑
i ̸=j

E[uiPij(W )ϵ2jPji(W )u′
i|z]

= E[ϵ2i uiu
′
i]

∑
i

(Pii(W ))2 + σuϵσ
′
uϵ

∑
i̸=j

Pii(W )Pjj(W ) + (σϵΣu + σuϵσ
′
uϵ)

∑
i̸=j

Pij(W )Pij(W )

= Cum[ϵi, ϵi, ui, u
′
i]

∑
i

(Pii(W ))2 + σuϵσ
′
uϵ(K

′W )2 + (σ2
ϵ Σu + σuϵσ

′
uϵ)(W

′ΓW ),

by Lemmas 7.5(3) and 7.5(4) and noting that Cum[ϵi, ϵi, ui, u
′
i] = E[ϵ2i uiu

′
i] − σ2

ϵ Σu − 2σuϵσ
′
uϵ.

Assumption 1 also implies

E[f ′ϵϵ′P (W )u|z] =
∑
i,j,k

fiPjk(W )E[ϵiϵju
′
k] =

∑
i

fiPii(W )E[ϵ2i u
′
i].

and furthermore together with Assumption 3,∥∥∥∥∥∑
i

fiPii(W )E[ϵ2i u
′
i]

∥∥∥∥∥ ≤
∑

i

|Pii(W )| · ||fi|| · ||E[ϵ2i u
′
i]|| = Op(K ′W+),

which gives part 5.
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To prove part 6, first we consider the function of a: g(W )/a+a or a ∈ R which is convex and the minimum

value of which is 2
√

g(W ) with the minimizer a =
√

g(W ). If ∆(W ) = 0, then
(√

∆(W )/N
)

/(g(W )/N +

∆(W )) = 0 and for ∆(W ) ̸= 0,√
∆(W )/N

g (W ) /N + ∆(W )
=

(
g (W )√
∆(W )N

+
√

∆(W )N

)−1

≤ 1
2
√

g(W )
→ 0 (7.9)

as g (W ) → ∞.

For part 8, let Q (W ) = I −P (W ) and for some a and b let fi,a = fa(zi) and µi,b (W ) = E[ϵ2i uib]Pii(W ).

Now the (a, b)-th element of E [f ′(I − P (W ))ϵϵ′P (W )u|z] satisfies∣∣∣∣∣∣E
 ∑

i,j,k,l

fi,aQijϵjϵkPkl(W )ulb

∣∣∣z
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i,j

fi,aQijE[ϵ2jujb]Pjj(W )

∣∣∣∣∣∣
= |f ′

aQ (W )µb (W ) | ≤ |f ′
aQQfa|1/2|µ′

b(W )µb(W )|1/2,

where the inequality is the Cauchy-Schwartz inequality. Now |f ′
aQQfa|1/2 = Op((N∆(W ))1/2) by the

definition of ∆(W ). |µ′
b(W )µb(W )| ≤ C

∑
i(Pii(W ))2 for some constant C by Assumption 1 and applying

Lemma 2(2) we have |µ′
b(W )µb(W )| = op(K ′W+). Therefore we have

E [f ′(I − P (W ))ϵϵ′P (W )u/N |z] = Op((N∆(W ))1/2)op(
√

K ′W+)Op(1/N)

= op(∆(W )1/2
√

K ′W+/
√

N) = op

(
(K ′W+)/N + ∆(W )

)
,

where the last equality follows from the fact that

∆(W )1/2
√

K ′W+/
√

N ≤ ((K ′W+)/N + ∆(W ))/2

by (7.9). In addition if we define µi (W ) = E[ϵ2i ui]Pii(W ) and µ (W ) =
(
µ1 (W )′ , ..., µn (W )′

)′
then

E [f ′(I − P (W ))ϵϵ′P (W )u/N |z] = f ′(I − P (W ))µ (W ) /N.

For part 9, we have the following decomposition:

E
[
f ′ϵϵ′fH−1u′P (W )u|Z

]
/N2 =

∑
i

fif
′
iH

−1E[ϵ2i uiu
′
i]Pii(W )/N2

+2
∑
i ̸=j

fif
′
jH

−1E[ϵiui]E[ϵju
′
j ]Pij(W )/N2

+
∑
i ̸=j

fif
′
iH

−1E[ϵ2i ]E[uju
′
j ]Pjj(W )/N2.

The boundedness of f ′
ifiH

−1Pii(W ) implies that∑
i

fif
′
iH

−1E[ϵ2i uiu
′
i]Pii(W )/N2 = Op(1/N).
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Let fa,i be the ath element of fi. Then, we have∣∣∣∣∣∣
∑
i,j

fa,ifa,jPij(W )/N2

∣∣∣∣∣∣ ≤
∑
m=1

|wm|(f ′
aPmfa)/N2 ≤

∑
m=1

|wm|(f ′
afa)/N2 = Op(1/N).

This implies that ∑
i ̸=j

fif
′
jH

−1E[ϵiui]E[ϵju
′
j ]Pij(W )/N2

=
∑
i,j

fif
′
jH

−1E[ϵiui]E[ϵju
′
j ]Pij(W )/N2 −

∑
i

fif
′
iH

−1E[ϵiui]E[ϵiu
′
i]Pii(W )/N2

= Op(1/N).

Lastly, we have ∑
i ̸=j

fif
′
iH

−1E[ϵ2i ]E[uju
′
j ]Pjj(W )/N2

=

(∑
i

fif
′
i

)
H−1σ2

ϵ Σu

∑
j

Pjj(W )

 /N2 −
∑

i

fif
′
iH

−1σ2
ϵ ΣuPii(W )/N2

= σ2
ϵ ΣuK ′W/N + Op(1/N).

Therefore, we have

E
[
f ′ϵϵ′fH−1u′P (W )u|Z

]
/N2 = σ2

ϵ ΣuK ′W/N + Op (1/N) .

For part 10, using again Lemma 7.5(5) as before,

E
[
f ′ϵϵ′P (W )uH−1u′f |z

]
/N2

=
∑

i

fiPii(W )E[ϵ2i u
′
iH

−1ui|z]f ′
i/N

2 +
∑
i ̸=j

fiPjj(W )E
[
ϵju

′
j

]
H−1E[uiϵi]f ′

i/N
2

+σ2
ϵ

∑
i ̸=j

fiPij(W )E
[
u′

jH
−1uj |z

]
f ′

j/N
2 + σ2

ϵ

∑
i ̸=j

fjPji(W )E
[
u′

jH
−1uj

]
f ′

i/N
2

= Op(1/N) +
∑
i ̸=j

fiPjj(W )E[ϵju
′
j ]H

−1E[uiϵi]f ′
i/N

2 = Op (1/N) + (K ′W/N)
∑

i

fiσ
′
uϵH

−1σuϵfi/N

and

E[f ′ϵϵ′P (W )uH−1f ′u|z]/N2

=
∑

i

fiPii(W )E
[
ϵ2i u

′
iH

−1fiu
′
i|z

]
/N2 +

∑
i ̸=j

fiPjj(W )E[ϵju
′
j ]H

−1fiE[u′
iϵi]/N2

+σ2
ϵ

∑
i ̸=j

fiPij(W )E
[
ujH

−1fju
′
j |z

]
/N2 + σ2

ϵ

∑
i̸=j

fjPji(W )E
[
ujH

−1fiu
′
j |z

]
/N2

= Op(1/N) +
∑
i ̸=j

fiPjj(W )E[ϵju
′
j ]H

−1fiE[u′
iϵi]/N2 = Op (1/N) + (K ′W )/N

∑
i

fiσ
′
uϵH

−1fiσ
′
uϵ/N.
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For part 11, with the same arguments, it holds that

E
[
u′P (W )ϵϵ′fH−1f ′u|z

]
/N2

=
∑

i

Pii(W )E
[
ϵ2i uifiH

−1uif
′
i |z

]
/N2 +

∑
i ̸=j

Pjj(W )E[ϵjuj ]f ′
iH

−1fiE[u′
iϵi]/N2

+σ2
ϵ

∑
i ̸=j

Pij(W )E
[
ujf

′
iH

−1fiu
′
i|z

]
/N2 +

∑
i ̸=j

Pij(W )E[ujεj ]f ′
jH

−1fiE[u′
iεi]/N2

= Op

(
1
N

)
+

K ′W

N
σuϵσ

′
uϵ

1
N

n∑
i=1

f ′
iH

−1fi

= Op

(
1
N

)
+

K ′W

N
σuϵσ

′
uϵtr

(
H−1 1

N

∑
i

fif
′
i

)
= Op

(
1
N

)
+ d

K ′W

N
σuϵσ

′
uϵ

and arguments similar to before give

E
[
u′P (W )ϵϵ′fH−1u′f ′|z

]
/N2 = Op (1/N) +

∑
i ̸=j

Pjj(W )E [ϵjuj ] f ′
iH

−1E [uiϵi] f ′
i/N

2

= Op

(
1
N

)
+

K ′W

N
σuϵ

1
N

∑
i

f ′
iH

−1σuϵf
′
i .

For part 12, note that

W ′ΓW =
M∑

m=1

 M∑
j=m

wj

2

≤
M∑

m=1

M∑
j=m

|wj |

∣∣∣∣∣∣
M∑

j=m

wj

∣∣∣∣∣∣ ≤ C
M∑

m=1

|wm|m = CK ′W+

where the second inequality follows from the condition supk≤M

∣∣∣∑M
m=k wm

∣∣∣ ≤ Cl1 < ∞ which holds uniformly

in M.

Lemma 7.7 Assume that Assumptions 1, 2, 3, and 4 hold. Let

Ξ(W ) = tr(f ′(I − P (W ))f/N). (7.10)

Let ρW,N = tr(S(W )) where S(W ) is defined in (3.2). Then, we have

(Ξ(W ))2 = op(ρW,N ).

We note that the result holds when S(W ) is defined in (3.1).

Remark 6 Considering the set J̄ in Assumption 2 is important because the optimal weighting vector has a

structure such that wj does not converge to 0 if f ′(Pm −Pm+1)f/N = 0. Thus, the optimal weighting vector

does not satisfy supj≤L

∣∣∣∑j
s=1 ws

∣∣∣ = O(1/
√

N) in general.

Proof. Let γ̃m = tr(f ′(I−Pm)f/N) and A be the M×M matrix whose (i, j)-th element is min(γ̃i, γ̃j) =

γ̃max(i,j). Let e1 be the first unit vector. We write

Ξ(W ) = W ′Ae1, ∆(W ) = W ′AW.
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Let W1 = (w1, . . . , wL, 0 . . . , 0) and W2 = (0, . . . , 0, wL+1, . . . , wM ). We have the following decomposition.

(Ξ(W ))2 = W ′
1Ae1e

′
1AW1 + 2W ′

1Ae1e
′
1AW2 + W ′

2Ae1e
′
1AW2,

∆(W ) = W ′
1AW1 + 2W ′

1AW2 + W ′
2AW2.

First, we consider

W ′
1AW1 =

L−1∑
j=1

(
j∑

s=1

ws

)2

(γ̃j − γ̃j+1) +

(
L∑

s=1

ws

)2

γ̃L

=
∑

j /∈J̄,j≤L

(
j∑

s=1

ws

)2

(γ̃j − γ̃j+1) +

(
L∑

s=1

ws

)2

γ̃L

≤ sup
j /∈J̄,j≤L

(
j∑

s=1

ws

)2
 ∑

j /∈J̄,j≤L−1

(γ̃j − γ̃j+1) + γ̃L


= sup

j /∈J̄,j≤L

(
j∑

s=1

ws

)2

γ̃1 = Op(1/N).

By Lemma 7.3, W ′ΓW → ∞ so that

W ′
1AW1 = Op(1/N) = o(W ′ΓW/N) = o(ρW,N ).

Since |W ′
1AW2| ≤ (W ′

1AW1)1/2(W ′
2AW2)1/2 by the Cauchy–Schwartz inequality, we have ∆(W ) = W ′

2AW2+

op(ρW,N ). Next, we consider

W ′
1Ae1e

′
1AW1

=

L−1∑
j=1

(
j∑

s=1

ws

)
(γ̃j − γ̃j+1) +

(
L∑

s=1

ws

)
γ̃L

2

=

 L−1∑
j=1,j /∈J̄

(
j∑

s=1

ws

)
(γ̃j − γ̃j+1) +

(
L∑

s=1

ws

)
γ̃L

2

≤ Op

 ∑
j /∈J̄,j<L

(
j∑

s=1

ws

)2

(γ̃j − γ̃j+1) +

(
L∑

s=1

ws

)2

γ̃L

 ∑
j /∈J̄,j<L

(γ̃j − γ̃j+1) + γ̃L


= Op(W ′

1AW1) = op(ρW,N ),

where the inequality is that of Cauchy-Schwartz. We examine the order of W ′
2Ae1e

′
1AW2. We observe that

W ′
2Ae1 =

M∑
j=L+1

(
j∑

s=L+1

ws

)
(γ̃j − γ̃j+1) +

(
M∑

s=L+1

ws

)
γ̃M ,

and

W ′
2AW2 =

M∑
j=L+1

(
j∑

s=L+1

ws

)2

(γ̃j − γ̃j+1) +

(
M∑

s=L+1

ws

)2

γ̃M .
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These formulas imply that

W ′
2Ae1 − W ′

2AW2

=
M∑

j=L+1

(
j∑

s=L+1

ws

)(
1 −

(
j∑

s=L+1

ws

))
(γ̃j − γ̃j+1) +

(
M∑

s=L+1

ws

)(
1 −

(
M∑

s=L+1

ws

))
γ̃M

=
M∑

j=L+1

(
j∑

s=L+1

ws

) M∑
s=j+1

ws

 (γ̃j − γ̃j+1) +
M∑

j=L+1

(
j∑

s=L+1

ws

)(
L∑

s=1

ws

)
(γ̃j − γ̃j+1)

+op(ρW,N ),

where ∣∣∣∣∣
(

M∑
s=L+1

ws

) (
1 −

(
M∑

s=L+1

ws

))∣∣∣∣∣ γ̃M ≤ Cγ̃M = op (ρW,N ) .

We observe that, by the Cauchy-Schwartz inequality, M∑
j=L+1

(
j∑

s=L+1

ws

)  M∑
s=j+1

ws

 (γ̃j − γ̃j+1)

2

≤

 M∑
j=L+1

(
j∑

s=L+1

ws

)2

(γ̃j − γ̃j+1)


 M∑

j=L+1

 M∑
s=j+1

ws

2

(γ̃j − γ̃j+1)


≤ W ′

2AW2 · C(γ̃L − γ̃M ) + op(ρW,N ) = op(ρW,N )

since W2AW2 = O(ρW,N ) and γ̃L − γ̃M = op(1). It also holds that M∑
j=L+1

(
j∑

s=L+1

ws

)(
L∑

s=1

ws

)
(γ̃j − γ̃j+1)

2

=

(
L∑

s=1

ws

)2
 M∑

j=L+1

(
j∑

s=L+1

ws

)
(γ̃j − γ̃j+1)

2

= Op

(
1
N

)
= op(ρW,N ),

by Assumption 4. It therefore follows that

(W ′
2Ae1 − W ′

2AW2)2 = op(ρW,N ).

Therefore,

W ′
2Ae1e1A

′W2 = (W ′
2AW2 + W ′

2Ae1 − W ′
2AW2)2

≤ 2(W2AW2)2 + 2(W ′
2Ae1 − W ′

2AW2)2 = op(ρW,N ).

Lastly, by the Cauchy-Schwartz inequality, we have

W ′
1Ae1e

′
1AW2 = op(ρW,N ).

To sum up, we have

(Ξ(W ))2 = W ′
1Ae1e

′
1AW1 + 2W ′

1Ae1e
′
1AW2 + W ′

2Ae1e
′
1AW2 = op(ρW,N ).
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Lemma 7.8 If Assumptions 1-8 hold, and for Ω = ΩU = {W ∈ l1|W ′1M = 1} where M satisfies the

constraints in Assumption 10 and W = (w1, ..., wM ) , it follows that

inf
W∈Ω

Sλ (W ) = Op

(
N

−2α
2α+1

)
,

where Sλ(W ) = λ′S(W )λ and S(W ) is defined in (3.1).

Proof. Consider a sequence W̃ where wM = 2, w2M = −1 and wj = 0 for j ̸= M, 2M and M =⌊
N

1
2α+1

⌋
. Clearly, 1′W̃ = 1 and W̃ ∈ l1 for all N such that W̃ ∈ Ω. We note that K ′W̃ = 0. It follows that

Sλ

(
W̃

)
= λ′H−1

(
bσ

(W̃ ′ΓW̃ )
N

+ σ2
ϵ

f ′(I − P (W̃ ))(I − P (W̃ ))f
N

)
H−1λ,

where
(W̃ ′ΓW̃ )

N
=

2M

N
= O

(
N

−2α
2α+1

)
and

tr
(
f ′(I − P (W̃ ))(I − P (W̃ ))f

)
N

= 4γ̃M − 3γ̃2M = Op

(
M−2α

)
= Op

(
N

−2α
2α+1

)
,

where γ̃m = tr(f ′(I − Pm)f/N). This argument shows that infW∈Ω Sλ (W ) ≤ CN
−2α
2α+1 .

To show that the rate is sharp, suppose that there is an ε > 0 such that

inf
W∈Ω

Sλ (W ) = Op

(
N

−2α(1+ε)
2α+1

)
.

Take any W such that, for M =
⌊
N

1+δ
2α+1

⌋
, where 0 < δ < ε/2,

tr

(
f ′(I − P (W̃ ))(I − P (W̃ ))f

N

)
=

M∑
j=1

(
j∑

i=1

wi

)2

(γ̃j − γ̃j+1) + γ̃M = Op

(
N

−2α(1+ε)
2α+1

)
, (7.11)

where we use formula (7.8). Let JM be the set of integers j such that 1 ≤ j ≤ M for which j2α+1 (γ̃j − γ̃j+1) >

0. By the assumptions of the Lemma, w.p.a 1, ♯JM = O (M) as M → ∞, where ♯JM is the cardinality of

JM . It follows that

∑
j∈JM

(
j∑

i=1

wi

)2

(γ̃j − γ̃j+1) ≥
∑

j∈JM

(
j∑

i=1

wi

)2

M−(2α+1) ≥ O
(
N

−(2α+1)(1+δ)
2α+1

) ∑
j∈JM

(
j∑

i=1

wi

)2

which together with (7.11) implies that
∑

j∈JM

(∑j
i=1 wi

)2

= O
(
N

−2α(ε−δ)+1+δ
2α+1

)
= o (M). Now, since

O (M) =
∑

j∈JM

12 =
∑

j∈JM

(
j∑

i=1

wi

)2

+ 2

(
j∑

i=1

wi

)  M∑
i=j+1

wi

 +

 M∑
i=j+1

wi

2
 (7.12)

and by the Cauchy-Schwarz inequality∣∣∣∣∣∣
∑

j∈JM

(
j∑

i=1

wi

) M∑
i=j+1

wi

∣∣∣∣∣∣ ≤

 ∑
j∈JM

(
j∑

i=1

wi

)2
1/2

 ∑
j∈JM

 M∑
i=j+1

wi

2


1/2

= o
(√

M
)  ∑

j∈JM

 M∑
i=j+1

wi

1/2

,
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it follows that (7.12) can only hold if lim infN

∑
j∈JM

(∑M
i=j+1 wi

)2

/M > 0. Then, for some η > 0 and N

large enough, it follows that

W ′ΓW =
M∑

j=0

 M∑
m=j+1

wm

2

≥ Mη = O
(
N

1+δ
2α+1

)

such that W ′ΓW/N = O
(
N

−2α+δ
2α+1

)
, which implies that Sλ (W ) = O

(
N

−2α+δ
2α+1

)
, a contradiction to the

assumption that infW∈Ω Sλ (W ) = Op

(
N

−2α(1+ε)
2α+1

)
. This argument establishes that infW∈Ω Sλ (W ) =

Op

(
N

−2α
2α+1

)
is a sharp bound.

Lemma 7.9 Let

S̃λ (W ) = λ′Ĥ−1

(
âσ

(K ′W )2

N
+ b̂σ

(W ′ΓW )
N

− K ′W

N
B̂N + σ̂2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
Ĥ−1λ.

If Assumptions 1-9 hold, then, for Ω as defined in Lemma 7.8, it follows that

sup
W∈Ω

S̃λ (W )
Sλ (W )

− 1 = op (1) ,

where Sλ(W ) = λ′S(W )λ and S(W ) is defined in (3.1).

Proof. We define the subset Ω2 = {W ∈ l1 |−∞ < lim infN K ′W ≤ lim supN K ′W < ∞}. Note that

sup
W∈Ω∩Ω2

K ′W/N

Sλ (W )
→ 0 and sup

W∈Ω∩Ω2

(K ′W )2 /N

Sλ (W )
→ 0 (7.13)

by Lemma 7.8 and the fact that {WN ∈ l1|K ′W = 0} ∈ Ω2. It now follows immediately that

λ′
(
Ĥ−1âσĤ−1 − H−1aσH−1

)
λ sup

W∈Ω∩Ω2

(K ′W )2 /N

Sλ (W )
= op(1)

with the same argument holding for the term B̂NK ′W/N. Define

Sλ,Ω2 (W ) = λ′H−1

(
bσ

(W ′ΓW )
N

+ σ2
ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
H−1λ

and note that Sλ,Ω2 (W ) ≥ λ′H−1bσH−1λ(W ′ΓW )/N as well as Sλ,Ω2 (WN ) ≥ σ2
ϵ λ′H−1f ′(I − P (W ))(I −

P (W ))fH−1λ/N. Thus, we have

sup
W∈Ω∩Ω2

(W ′ΓW )/N
Sλ (W )

≤ sup
W∈Ω∩Ω2

(W ′ΓW )/N
Sλ,Ω2(W )

sup
W∈Ω∩Ω2

Sλ,Ω2 (W )
Sλ(W )

≤ 1
λ′H−1bσH−1λ

sup
W∈Ω∩Ω2

Sλ,Ω2(W )
Sλ(W )

,

where supW∈Ω∩Ω2
Sλ,Ω2 (WN ) /Sλ (WN ) → 1 by (7.13). This implies that

λ′
(
Ĥ−1b̂σĤ−1 − H−1bσH−1

)
λ sup

W∈Ω∩Ω2

(W ′ΓW )/N
Sλ(W )

= op (1) .
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Now consider

λ′
(
Ĥ−1σ̂2

ϵ − H−1σ2
ϵ

) f ′(I − P (W ))(I − P (W ))f
N

Ĥ−1λ

+λ′H−1σ2
ϵ

f ′(I − P (W ))(I − P (W ))f
N

(
Ĥ−1 − H−1

)
λ,

where

sup
W∈Ω∩Ω2

∣∣∣λ′
(
Ĥ−1σ̂2

ϵ − H−1σ2
ϵ

)
f ′(I − P (W ))(I − P (W ))fĤ−1λ/N

∣∣∣
Sλ(W )

≤
∥∥∥Ĥ−1λ

∥∥∥∥∥∥λ′
(
Ĥ−1σ̂2

ϵ − H−1σ2
ϵ

)∥∥∥ sup
W∈Ω

∥∥∥(I − P (W )) f/
√

N
∥∥∥2

∥∥∥(I − P (W ))fH−1λ/
√

N
∥∥∥2 = op(1)

where

sup
W∈Ω

∥∥∥(I − P (W )) f/
√

N
∥∥∥2

∥∥∥(I − P (W )) fH−1λ/
√

N
∥∥∥2 = Op (1)

by Assumption 2. Together, these arguments show that

sup
W∈Ω∩Ω2

S̃λ (W )
Sλ (W )

− 1 = op (1) .

For W ∈ Ω ∩ ΩC
2 where ΩC

2 = {W ∈ l1 |lim infN |K ′W | = ∞} it follows that

sup
W∈Ω∩ΩC

2

|K ′W | /N
(K ′W )2 /N

→ 0

such that for

Sλ,ΩC
2

(WN ) = λ′H−1

[
aσ

(K ′W )2

N
+ bσ

(W ′ΓW )
N

+ σ2
ϵ

f ′(I − P (W ))(I − P (W ))f
N

]
H−1λ

it follows that

sup
W∈Ω∩ΩC

2

Sλ,ΩC
2
(W )

Sλ(W )
→ 1 as N → ∞.

Then similar arguments as before can be used to show that

sup
W∈Ω∩Ω2

S̃λ (W )
Sλ (W )

− 1 = op (1) .

Since
(
Ω2 ∪ ΩC

2

)
∩ Ω = Ω, this establishes the claimed result.

Lemma 7.10 Let Assumptions 1-10 hold. Then, it follows that

sup
W∈Ω

Ŝλ(W )
Sλ(W )

− 1 →p 0

where Sλ(W ) = λ′S(W )λ and S(W ) is defined in (3.1).
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Proof. Without loss of generality assume that fi is a scalar and λ′H−1 = 1 so that σ2
λ = σ2

u. First

consider ∥∥∥(I − P (W ))f/
√

N
∥∥∥2

− f ′(I − PM )f/N =
∥∥∥(PM − P (W )) f/

√
N

∥∥∥2

and note that

f ′ (I − PM ) f/N = Op

(
M−2α

)
by Assumption 2. Together with Lemma 7.8, this implies that

sup
W∈Ω

∥∥∥(PM − P (W ))f/
√

N
∥∥∥2

−
∥∥∥(I − P (W ))f/

√
N

∥∥∥2

Sλ(W )

≤
supW∈Ω f ′(I − PM )f/N

infW∈Ω Sλ(W )
= Op

(
M−2αN

2α
2α+1

)
= Op

(
N

−2αδ
2α+1

)
= op (1)

Combining these results with Lemma 7.9 it is then sufficient to show that

sup
W∈Ω

∣∣∣∣∥∥∥(PM − P (W ))X/
√

N
∥∥∥2

−
∥∥∥(PM − P (W )) f/

√
N

∥∥∥2

− σ2
u (M − 2K ′W + W ′ΓW ) /N

∣∣∣∣
Sλ(W )

= op(1)

We note that in this expression we replace σ̂2
uby σ2

u which is justified by the same arguments as in the proof

of Lemma 7.9 as long as σ̂2
u − σ2

u = op

(
N−δ/(2α+1)

)
because, under the assumptions of the Lemma, it then

follows that
(
σ̂2

u − σ2
u

)
M/N = op

(
N−2α/(2α+1)

)
= op (infW∈Ω Sλ(W )) and the remaining terms involving

σ2
u can be handled in the same way as in the proof of Lemma 7.9. Now note that∥∥∥(PM − P (W ))X/

√
N

∥∥∥2

−
∥∥∥(PM − P (W )) f/

√
N

∥∥∥2

=
∥∥∥(PM − P (W ))u/

√
N

∥∥∥2

+ 2u′ (PM − P (W )) (PM − P (W )) f/N.

It follows that

E [u′ (PM − P (W )) (PM − P (W ))u/N |z] = σ2
u (tr(PM ) − 2tr(P (W )) + tr (P (W )P (W ))) /N

= σ2
u (M − 2K ′W + W ′ΓW ) /N,

and

E [u′ (PM − P (W )) (PM − P (W )) f/N |z] = 0.

Moreover, we have the bound∣∣∣∥(PM − P (W ))u∥2 − σ2
u (M − 2K ′W + W ′ΓW )

∣∣∣
≤

∣∣u′PMu − σ2
uM

∣∣ + sup
j≤M

∣∣u′Pju − σ2
uj

∣∣ 2
M∑

j=1

|wj | +
M∑

j=1

M∑
l=1

|wj | |wl|


where

∑M
j=1 |wj | ≤ Cl1 uniformly in M is used. It follows for some ϑ > 1 from Whittle (1960, Theorem 2)

that for some constant C,

E
[∣∣u′Pju − σ2

uj
∣∣2ϑ |z

]
≤ CE

[
|ui|2ϑ

]2 (
tr

(
PjP

′
j

))ϑ = CE
[
|ui|2ϑ

]2

jϑ
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and thus for any η > 0 and some constant C, not necessarily the same as above,

Pr

 supW∈Ω

∣∣∣∥(PM − P (W ))u∥2 − σ2
u (M − 2K ′W + W ′ΓW )

∣∣∣ /N

infW∈Ω Sλ(W )
> η


≤ C

E
[∣∣u′PMu − σ2

uM
∣∣2ϑ |z

]
ηϑN2ϑN−4αϑ/(2α+1)

+ 3C

M∑
j=1

E
[∣∣u′Pju − σ2

uj
∣∣2ϑ |z

]
ηϑN2ϑN−4αϑ/(2α+1)

≤ C
E

[
|ui|2ϑ

]2 (
Mϑ + Mϑ+1

)
ηϑN2ϑN−4αϑ/(2α+1)

= O
(
N

1+δ−ϑ(1−δ)
2α+1

)
= o (1)

Next, consider

|u′ (PM − P (W )) (I − P (W )) f/N | =

∣∣∣∣∣∣
M∑

i,j=1

wiwju
′ (PM − Pmax(i,j)

)
f/N

∣∣∣∣∣∣
where ∣∣∣∣∣∣

M∑
i,j=1

wiwju
′ (PM − Pmax(i,j)

)
f/N

∣∣∣∣∣∣ ≤
M−1∑
i=1

 i∑
j=1

wj

2

|u′ (Pi+1 − Pi) f/N | .

Let Kn = N⌊(1−ε)/(2α+1)⌋. Then,

sup
W∈Ω

∑M−1
i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ(W )
= sup

W∈Ω

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ(W )
+ op (1)

(7.14)

because

Pr

 sup
W∈Ω

∑M−1
i=Kn+1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ(W )
> η|z


≤ Pr

 supW∈Ω

∑M−1
i=Kn+1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

infW∈Ω Sλ(W )
> η|z


≤

CE
[
|ui|2ϑ

]∑M
j=Kn+1 (f ′ (Pj+1 − Pj) f/N)ϑ

ηϑNϑN−4αϑ/(2α+1)

where the inequality follows from Markov’s inequality, Lemma 7.8, the fact that
∣∣∣∑i

j=1 wj

∣∣∣ is uniformly

bounded on Ω, and Theorem 1 of Whittle (1960) which implies that

E
[
|u′ (Pi+1 − Pi) f/N |2ϑ |z

]
≤ CE

[
|ui|2ϑ

]
N−ϑ (f ′ (Pi+1 − Pi) f/N)ϑ

. (7.15)

Now note that

CE
[
|ui|2ϑ

]∑M
j=Kn+1 (f ′ (Pj+1 − Pj) f/N)ϑ

ηϑNϑN−4αϑ/(2α+1)
≤

CE
[
|ui|2ϑ

]
(f ′ (I − PKN ) f/N)ϑ

M

ηϑNϑN−4αϑ/(2α+1)

= Op

(
K−2αϑ

n M/NϑN4αϑ/(2α+1)
)

= Op

(
N− 2(1−ε)αϑ

2α+1 −ϑ+ 1+δ
2α+1+ 4αϑ

2α+1

)
= op (1)
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which establishes (7.14). We thus turn to the lead term on the right hand side of (7.14). By the Cauchy-

Schwarz inequality we have

|u′ (Pi+1 − Pi) f/N | ≤ (f ′ (Pi+1 − Pi) f/N)1/2 (u′ (Pi+1 − Pi) u/N)1/2
.

It now follows that

Kn∑
i=1

 i∑
j=1

wj

2

|u′ (Pi+1 − Pi) f/N | (7.16)

≤

Kn∑
i=1

 i∑
j=1

wj

4

f ′ (Pi+1 − Pi) f/N


1/2 Kn∑

i=1

 i∑
j=1

wj

4

u′ (Pi+1 − Pi) u/N


1/2

≤ sup
i≤M

 i∑
j=1

wj

2
Kn∑

i=1

 i∑
j=1

wj

2

f ′ (Pi+1 − Pi) f/N


1/2 Kn∑

i=1

 i∑
j=1

wj

2

u′ (Pi+1 − Pi)u/N


1/2

where supi≤M

(∑i
j=1 wj

)2

≤ C2
l1 < ∞ uniformly in M such that

 Kn∑
i=1

 i∑
j=1

wj

2

u′ (Pi+1 − Pi)u/N


1/2

≤ sup
W

 i∑
j=1

|wj |

2 (
Kn∑
i=1

u′ (Pi+1 − Pi) u/N

)1/2

(7.17)

≤ C (u′ (PKn+1 − P1) u/N)1/2

where W ∈ l1 was used to bound supW

(∑i
j=1 |wj |

)2

. Let ΩN ⊂ Ω be the sequence of subsets of sequences

in Ω for which wi = 0 for all i > N . Clearly,

sup
W∈Ω

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ (W )
= sup

W∈ΩN

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ (W )
(7.18)

Now, fix an arbitrary ω > 0 and define the sequence of sets

Ω1,N =

W ∈ ΩN

∣∣∣∣∣∣∣
∑Kn

i=1

(∑i
j=1 wj

)2

f ′ (Pi+1 − Pi) f/N

N (−2α+ε/2)/(2α+1)
≤ ω


and let ΩC

1,N be the complement of Ω1,N in ΩN , such that ΩN = (ΩN ∩ Ω1,N )∪
(
ΩN ∩ Ωc

1,N

)
. We note that

Ω1,N depends on the realizations for the instruments z.

As was demonstrated in the proof of Lemma 7.9, as N tends to infinity, Sλ (W ) ≥ σ2
ϵ λ′H−1f ′(I −

P (W ))(I − P (W ))fH−1λ/N. Also note that

f ′(I − P (W ))(I − P (W ))f/N ≥
Kn∑
i=1

 i∑
j=1

wj

2

f ′ (Pi+1 − Pi) f/N
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Therefore, for N sufficiently large,

sup
W∈ΩN∩ΩC

1,N

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ (W )

≤ sup
W∈ΩN∩ΩC

1,N

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |∑Kn

i=1

(∑i
j=1 wj

)2

f ′ (Pi+1 − Pi) f/N

≤ C (u′ (PKn+1 − P1) u/N)1/2

infW∈ΩN∩ΩC
1,N

(∑Kn

i=1

(∑i
j=1 wj

)2

f ′ (Pi+1 − Pi) f/N

)1/2

where

inf
W∈ΩN∩ΩC

1,N

(∑
i∈JKn

(∑i
j=1 wj

)2

f ′ (Pi+1 − Pi) f/N

)1/2

N (−α+ε/4)/(2α+1)
≥

√
ω

by the construction of Ω1,N . It then follows that

sup
W∈ΩN∩ΩC

1,N

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ (W )
≤ C (u′ (PKn+1 − P1)u/N)1/2

√
ωN (−α+ε/4)/(2α+1)

. (7.19)

Secondly,

sup
W∈ΩN∩Ω1,N

Kn∑
i=1

 i∑
j=1

wj

2

f ′ (Pi+1 − Pi) f/N ≤ ωN (−2α+ε/2)/(2α+1) (7.20)

by the definition of Ω1,N such that

sup
W∈ΩN∩Ω1,N

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ (W )
(7.21)

≤
supW∈ΩN∩Ω1,N

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

infW∈Ω Sλ (W )

≤
√

ωN
−α+ε/4
2α+1

C (u′ (PKn+1 − P1) u/N)1/2

infW∈Ω Sλ (W )

It now follows for any random function gN (W ) that

sup
W∈ΩN

gN (W ) = max

(
sup

W∈ΩN∩Ω1,N

gN (W ) , sup
W∈ΩN∩ΩC

1,N

gN (W )

)
≤ sup

W∈ΩN∩Ω1,N

gN (W ) + sup
W∈ΩN∩ΩC

1,N

gN (W ) .

Thus, setting gN (W ) =
∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N | /Sλ(W ) and using (7.18), (7.19) and (7.21)

one obtains the bound

sup
W∈Ω

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ (W )
(7.22)

≤ C (u′ (PKn+1 − P1) u/N)1/2

√
ωN (−α+ε/4)/(2α+1)

+
√

ωN
−α+ε/4
2α+1

C (u′ (PKn+1 − P1) u/N)1/2

infW∈Ω Sλ (W )
.
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It then follows that for any η1 > 0,

Pr


∣∣∣∣∣∣∣ sup
W∈Ω

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ (W )

∣∣∣∣∣∣∣ > η1

∣∣∣z


≤ 1√
ω

C (E [u′ (PKn+1 − P1)u/N |z])1/2

N (−α+ε/2)/(2α+1)
+

(E [u′ (PKn+1 − P1) u/N |z])1/2

N−2α/(2α+1)
Op

(
N

−α+ε/4
2α+1

)
,

where the inequality uses Markov’s inequality, (7.22) and Lemma 7.8. Next, note that

C (E [u′ (PKn+1 − P1)u/N |z])1/2

N (−α+ε/2)/(2α+1)
=

1√
ω

C
√

(Kn+1 − 1) /N

N (−α+ε/2)/(2α+1)
= o

(
N

−ε/2−ε/2
2α+1

)
= o(1) (7.23)

and

E
[
u′PKn+1u/N |z

]1/2
Op

(
N

−α+ε/4
2α+1

)
= Op

(
K1/2

n N (−α+ε/4)/(2α+1)−1/2
)

= Op

(
N

−2α−ε/4
2α+1

)
= op

(
N

−2α
2α+1

)
such that

(E [u′ (PKn+1 − P1) u/N |z])1/2

N−2α/(2α+1)
Op

(
N

−α+ε/4
2α+1

)
= op (1) . (7.24)

Using (7.23) and (7.24) then establishes that

Pr


∣∣∣∣∣∣∣ sup
W∈Ω

∑Kn

i=1

(∑i
j=1 wj

)2

|u′ (Pi+1 − Pi) f/N |

Sλ (W )

∣∣∣∣∣∣∣ > η1

∣∣∣z
 = o (1) + op (1) .

This completes the proof of the Lemma.

7.2 Proofs of Theorems and Corollaries

Proof of Theorem 7.1. The MA2SLS estimator has the form:

√
N(β̂ − β0) = Ĥ−1ĥ, Ĥ = X ′P (W )X/N, ĥ = X ′P (W )ϵ/

√
N.

Also Ĥ and ĥ are decomposed as

ĥ = h + Th
1 + Th

2 ,

Th
1 = −f ′(I − P (W ))ϵ/

√
N, Th

2 = u′P (W )ϵ/
√

N

Ĥ = H + TH
1 + TH

2 + TH
3 + ZH

TH
1 = −f ′(I − P (W ))f/N, TH

2 = (u′f + f ′u)/N, TH
3 = u′P (W )u/N

ZH = (u′(I − P (W ))f + f ′(I − P (W ))u)/N.

We show that the conditions of Lemma 7.1 are satisfied and S(W ) has the form given in the theorem. Let

ρW,N = tr(S(W )). Differently from Donald and Newey (2001), we extend the MA2SLS to order K ′W/N.
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It is important to point out that since W can contain negative weights, it is possible that (K ′W )2/N is

not the dominating term in S(W ). For example, K ′W = 0 is allowed. However, K ′W/N = O(S(W )) by

construction.

Now h = Op(1) and H = Op(1) by Lemma 7.5(6). As

Th = Th
1 + Th

2 = −f ′(I − P (W ))ϵ/
√

N + u′P (W )ϵ/
√

N,

Lemma 7.6(2) and (3) implies that

Th
1 = Op(∆(W )1/2)

and

Th
2 = Op

max

|K ′W | ,
√

(W ′ΓW ) +
∑

i

(Pii(W ))2

 /
√

N

 , (7.25)

so

Th = Op(∆(W )1/2) + Op

max

|K ′W | ,
√

(W ′ΓW ) +
∑

i

(Pii(W ))2

 /
√

N

 ,

where ∆(W ) = op(1) by Lemma 7.6(1), K ′W/
√

N = o(1) by |K ′W |/
√

N ≤ K ′W+/
√

N = o(1),
∑

i(Pii(W ))2 =

op (K ′W+) by Lemma 7.5(2) and W ′ΓW = O (K ′W+) by Lemma 7.6(12). Therefore Th = op(1). Next, we

observe TH
1 = O(Ξ(W )) by the definition. Lemmas 7.7 and 7.6(1) imply that TH

1 = op(1). TH
2 = Op(1/

√
N)

by the CLT. A similar argument for Th
2 implies

TH
3 = Op

max

|K ′W | ,
√

(W ′ΓW ) +
∑

i

(Pii(W ))2

 /N

 . (7.26)

Now, we analyze

∥Th
1 ∥ · ∥TH

1 ∥ = Op(∆(W )1/2Ξ(W )) = op (ρW,N ) ,

by Lemma 7.7. It holds that

||Th
1 || · ||TH

2 || = Op

(
∆(W )1/2/

√
N

)
= op(ρW,N )

because by Lemma 7.6(6) one can take g(W ) = N (tr (S(W )) − ∆(W )). From Lemma 7.3, it follows that

W ′ΓW → ∞ as N → ∞. This implies that g(W ) → ∞. Then, by Lemma 7.6(6), it follows that

∆(W )1/2/
√

N = op

(
g (W )

N
+ ∆(W )

)
= op (tr (S(W ))) = op (ρW,N ) .

Next,

||Th
1 || · ||TH

3 || = Op

∆(W )1/2 max

|K ′W | ,
√

(W ′ΓW ) +
∑

i

(Pii(W ))2

 /N


= op

max

|K ′W | ,
√

(W ′ΓW ) +
∑

i

(Pii(W ))2

 /N

 = op (ρW,N )
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by Lemma 7.6(1), (7.26) and the fact (as noted before) that TH
3 = O (tr(S (W ))). Next, (7.25) and the

definition of TH
1 imply that

||Th
2 || · ||TH

1 || = Op

Ξ(W )max

|K ′W | ,
√

(W ′ΓW ) +
∑

i

(Pii(W ))2

 /
√

N


= op

∆(W )1/2 max

|K ′W | ,
√

(W ′ΓW ) +
∑

i

(Pii(W ))2

 /
√

N


by Lemma 7.7. By similar arguments as before it follows from Lemma 7.6(6), that

∆(W )1/2 |K ′W | /
√

N ≤ (K ′W )2 /N + ∆(W ) = O (ρW,N )

and ∆ (W )1/2 = op (1) such that op(∆(W )1/2K ′W/
√

N) = op (ρW,N ) as required. Lemma 7.6(6) gives

∆(W )1/2

√
(W ′ΓW ) +

∑
i

(Pii(W ))2/
√

N

= Op

(
(W ′ΓW ) +

∑
i(Pii(W ))2

N
+ ∆(W )

)
= Op (ρW,N ) .

Thus, we have ||Th
2 || · ||TH

1 || = op(ρW,N ). From (7.25) it follows that

||Th
2 || · ||TH

2 || = Op

max

|K ′W | ,
√

(W ′ΓW ) +
∑

i

(Pii(W ))2

 /N

 ,

where K ′W/N = O (tr (S (W ))) and
√

(W ′ΓW ) +
∑

i(Pii(W ))2/N = op (tr(S(W ))). By (7.25) and (7.26)

it follows that

||Th
2 || · ||TH

3 || = Op

(
max

(
|K ′W |2 ,

(
(W ′ΓW ) +

∑
i

(Pii(W ))2
))

/N3/2

)
= op (ρW,N )

because (|K ′W | /N)3/2 = o (ρW,N ) and
(
(W ′ΓW ) +

∑
i(Pii(W ))2

)
/N = Op(ρW,N ). Similarly, ||Th

2 ||2||TH
1 || =

op (ρW,N ) , ||Th
2 ||2||TH

2 || = op (ρW,N ) and ||Th
2 ||2||TH

3 || = op (ρW,N ). For
∥∥TH

∥∥2, we have

∥∥TH
1

∥∥2
= Op

(
Ξ(W )2

)
= op (ρW,N ) by Lemma 7.7,∥∥TH

2

∥∥2
= Op (1/N) = op (ρW,N ) ,

∥∥TH
3

∥∥2
= Op


max

|K ′W | ,
√

(W ′ΓW ) +
∑

i

(Pii(W ))2

 /N

2
 = op (ρW,N )

so that by the Cauchy Schwartz inequality
∥∥TH

∥∥2 = op (ρW,N ).

As ||Zh|| = 0 in our case, ||Zh|| = op(ρW,N ). The last part, which we need to show op(ρW,N ), is

||ZH ||. Now ZH = u′(I − P (W ))f/N + f ′(I − P (W ))u/N and both terms are Op(∆ (W )1/2
/
√

N) =

op(g (W ) /N + ∆(W )) = op(ρW,N ) for g(W ) = N (tr (S(W )) − ∆(W )) by Lemma 7.6(6). Therefore we have

||ZH || = op(ρW,N ).
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Note that we have shown Ĥ = H + op(1) and ĥ = h + op(1). Lemma 7.1 can now be applied, where the

discussion above indicates

ZA(W ) = −hTh′
1 H−1

 3∑
j=1

TH
j

′

−

 3∑
j=1

TH
j

 H−1Th
1 h′ − Th

1 h′H−1

 3∑
j=1

TH
j

′

−

 3∑
j=1

TH
j

 H−1hTh′
1

−hTh′
2 H−1TH′

3 − TH
3 H−1Th

2 h′ − Th
2 h′H−1TH′

3 − TH
3 H−1hTh′

2

−(Th
1 + Th

2 )(Th
1 + Th

2 )′H−1

 3∑
j=1

TH
j

′

−

 3∑
j=1

TH
j

 H−1(Th
1 + Th

2 )(Th
1 + Th

2 )′

= op(ρW,N )

and

Â(W ) = (h + Th
1 + Th

2 )(h + Th
1 + Th

2 )′ − hh′H−1

 3∑
j=1

TH
j

′

−

 3∑
j=1

TH
j

 H−1hh′

−hTh′
2 H−1(TH

1 + TH
2 )′ − (TH

1 + TH
2 )H−1Th

2 h′ − Th
2 h′H−1(TH

1 + TH
2 )′ − (TH

1 + TH
2 )H−1hTh′

2 .

Now we calculate the expectation of each term in Â(W ). First of all, E [hh′|z] = E [fϵϵ′f ′/N |z] = σ2
ϵ H. Sec-

ond, E
[
hTh′

1 |z
]

= E [−fϵϵ(I − P (W ))f ′/N |z] = −σ2
ϵ f(I − P (W ))f ′/N . Similarly E

[
Th

1 h′|z
]

= −σ2
ϵ f(I −

P (W ))f ′/N . Third,

E
[
hTh′

2 |z
]

= E [fϵϵ′P (W )u/N |z] = E
[
ϵ21u

′
1

]∑
i

fiPii(W )/N = Op

(
K ′W+/N

)
,

by Lemma 7.6(5). This implies that E
[
Th

2 h′|Z
]

= Op(K ′W/N) too. Fourth,

E
[
Th

1 Th′
1 |z

]
= E

[
f ′(I − P (W ))ϵϵ′(I − P (W ))f

N
|z

]
= σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

.

Fifth,

E
[
Th

1 Th′
2 |z

]
= −E [f ′(I − P (W ))ϵϵ′P (W )u/N |z] = −f ′(I − P (W ))µ (W ) /N

by Lemma 7.6(8). Again, we have E
[
Th

2 Th′
1 |z

]
= −µ (W )′ (I − P (W ))f/N . Sixth,

E
[
Th

2 Th′
2 |z

]
= E

[
u′P (W )ϵϵ′P (W )u

N
|z

]
= σuϵσ

′
uϵ

(K ′W )2

N
+ (σ2

ϵ Σu + σuϵσ
′
uϵ)

(W ′ΓW )
N

+ Cum[ϵi, ϵi, ui, u
′
i]

∑
i

(Pii(W ))2,

by Lemma 7.6(4). Seventh,

E
[
hh′H−1TH

1 |z
]

= −E

[
f ′ϵϵ′fH−1f ′(I − P (W ))f

N2
|z

]
= −σ2

ϵ

f ′(I − P (W ))f
N

,

also, we have E
[
TH

1 H−1hh′|Z
]

= −σ2
ϵ f ′(I − P (W ))f/N . Lemma 7.6(7) implies

E
[
hh′H−1TH

2 |z
]

= E

[
hh′H−1(u′f + f ′u)

N
|z

]
= Op

(
1
N

)
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and E
[
TH

2 H−1hh′|z
]

= OP (1/N). Also,

E
[
hh′H−1TH

3 |z
]

= E

[
f ′ϵϵ′fH−1u′P (W )u

N2
|z

]
= σ2

ϵ Σu
K ′W

N
+ Op

(
1
N

)
by Lemma 7.6(9). Next,

E
[
hTh′

2 H−1TH
1 |z

]
= −E

[
f ′ϵϵ′P (W )uH−1f ′(I − P (W ))f

N2
|z

]
=

1
N

∑
i

fiPii(W )E
[
ϵ2i u

′
i

]
H−1 f ′(I − P (W ))f

N

= Op

(
(K ′W+/N)Ξ (W )

)
= op (ρW,N )

by Lemma 7.6(5),

E
[
hTh′

2 H−1TH
2 |z

]
= E

[
f ′ϵϵ′P (W )uH−1(u′f + f ′u)

N2
|z

]
= Op

(
1
N

)
+

K ′W

N

(
1
N

∑
i

fiσ
′
uϵH

−1σuϵf
′
i +

1
N

∑
i

fiσ
′
uϵH

−1fiσ
′
uϵ

)

by Lemma 7.6(10). Similarly, it follows that

E
[
Th

2 h′H−1TH
2 |z

]
= E

[
u′P (W )ϵϵ′fH−1(u′f + f ′u)

N2
|z

]
= Op

(
1
N

)
+

K ′W

N

(
dσuϵσ

′
uϵ + σuϵ

1
N

∑
i

f ′
iH

−1σuϵf
′
i

)

Therefore, we have

E
[
Â(K)|z

]
= σ2

ϵ H − 2σ2
ϵ

f ′(I − P (W ))f
N

+ σ2
ϵ

f ′(I − P (W ))(I − P (W ))f
N

+E[ϵ21u
′
1]

∑
i

fiPii(W )/N + E[ϵ21u1]
∑

i

f ′
iPii(W )/N

+f ′(I − P (W ))µ (W ) /N + µ (W )′ (I − P (W ))f/N + σuϵσ
′
uϵ

(K ′W )2

N

+(σ2
ϵ Σu + σuϵσ

′
uϵ)

(W ′ΓW )
N

+ op

(
K ′W

N

)
+ 2σ2

ϵ

f ′(I − P (W ))f
N

+ Op

(
1
N

)
− 2σ2

ϵ Σu
K ′W

N

−K ′W

N
2

(
dσuϵσ

′
uϵ +

1
N

n∑
i=1

fiσ
′
uϵH

−1σuϵf
′
i +

1
N

n∑
i=1

(
fiσ

′
uϵH

−1fiσ
′
uϵ + σuϵf

′
iH

−1σuϵf
′
i

))
+op (ρW,N )

= σ2
ϵ H + σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

+ E[ϵ21u
′
1]

∑
i

fiPii(W )/N + E[ϵ21u1]
∑

i

f ′
iPii(W )/N

+f ′(I − P (W ))µ(W )/N + µ(W )′(I − P (W ))f/N + σuϵσ
′
uϵ

(K ′W )2

N
+ (σ2

ϵ Σu + σuϵσ
′
uϵ)

(W ′ΓW )
N

−2
K ′W

N

(
σ2

ϵ Σu + dσuϵσ
′
uϵ +

1
N

n∑
i=1

fiσ
′
uϵH

−1σuϵf
′
i +

1
N

n∑
i=1

(
fiσ

′
uϵH

−1fiσ
′
uϵ + σuϵf

′
iH

−1σuϵf
′
i

))
+op (ρW,N ) ,
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where the last equality holds because 1/N = op(ρW,N ) and op((∆(W )K ′W/N)1/2) = op(ρW,N ) by the fact

that (∆(W )K ′W/N)1/2 ≤ K ′W/N + ∆(W ).

We omit the proofs of Corollary 7.1 and 7.3 because they are trivial given Theorem 7.1.

Proof of Corollary 7.2. We note that in this case K ′W = K ′W+. Thus,
∑

i{Pii(W )}2 = op(K ′W )

by Lemma 7.5(2) and f ′Q(W )µ(W )/N = op(K ′W/N + ∆(W )) by Lemma 7.6 (8). Therefore, we have

equation (7.3).

To derive equation (7.4), we note that

W ′ΓW =
M∑
i=1

M∑
j=1

wiwj min(i, j) ≤
M∑
i=1

M∑
j=1

wiwjj =
M∑
i=1

wi

M∑
j=1

wjj = W ′1MK ′W = K ′W,

which means W ′ΓW = O(K ′W ). Moreover,
∑N

i=1 fiPii(W ) = Op(K ′W ) by Lemma 7.6(5). Therefore, we

have equation (7.4).

Proof of Theorem 3.1. The result is established by constructing a sequence in ΩP that dominates

the optimal choice in Ωsq. By Corollary 7.2, the formula of Sλ(W ) for MA2SLS when W ∈ ΩP is

A
(K ′W )2

N
+ σ2

ϵ

∞∑
j=1

∞∑
i=1

wjwiγmax(i,j)

with A =
∥∥λ′H−1σuϵ

∥∥2 (the other two terms in (3.1) can be ignored). Let Msq be the optimal number of

instruments picked by the Donald and Newey (2001) algorithm. For a ∈ (0, 1), let M1 = (1 − a)Msq and

M2 = (1 + a)Msq and choose W ∗ such that it has only two non-zero elements wM1 = wM2 = 0.5. Then,

K ′W ∗ = Msq and
∞∑

j=1

∞∑
i=1

wjwiγmax(i,j) = 0.25γM1 + 0.75γM2

Then,

minW∈ΩP
Sλ(W )

minW∈Ωsq Sλ (W )
≤ Sλ(W ∗)

Ssq(Msq)
=

A(K ′W ∗)2/N + σ2
ϵ 0.25γM1 + σ2

ϵ 0.75γM2

A(Msq)2/N + σ2
ϵ γMsq

=
A(Msq)2/(Nσ2

ϵ γMsq ) + 0.25
(
γM1/γMsq

)
+ 0.75

(
γM2/γMsq

)
A(Msq)2/(Nσ2

ϵ γMsq ) + 1

where γ = lim supN→∞ A(Msq)2/(NγMsq ) < ∞ because Msq sets the rates of the bias and the variance

equal. The above expression is bounded by 1 if

0.25
(
γM1/γMsq

)
+ 0.75

(
γM2/γMsq

)
< 1.

By assumption, for N large enough, it follows that, with probability close to one,

0.25
(
γM1/γMsq

)
+ 0.75

(
γM2/γMsq

)
= 0.25 (1 − a)−2α + 0.75 (1 + a)−2α + o

(
|a|2α

)
.

Consider the function

h (a) = 0.25 (1 − a)−2α + 0.75 (1 + a)−2α
,
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where h (0) = 1, ∂h (a) /∂a = 0.5α (1 − a)−2α−1 − 1.5α (1 + a)−2α−1 such that ∂h (0) /∂a = −1α. This

implies that for some a, possibly close to zero, h (a) < 1 and thus 0.25
(
γM1/γMsq

)
+ 0.75

(
γM2/γMsq

)
< 1.

When W ∈ ΩB , the formula of Sλ(W ) for MA2SLS is

Sλ(W ) = A
(W ′ΓW )

N
+ σ2

ϵ

∞∑
j=1

∞∑
i=1

wjwiγmax(i,j)

where A = λ′H−1(σ2
ϵ Σu + σuϵσ

′
uϵ)H−1λ while the MSE for the Nagar estimator with M instruments is

AM/ (N − M) + σ2
ϵ γM . Let MN be the choice of M that minimizes Sλ (W ) when W = WN as defined in

Remark 4. For a ∈ (0, 1) let M1 = (1− a)MN and M2 = (1 + a)MN . Define w∗ = N/ (N − MN ) and choose

W ∗ such that W ∗ has only three non-zero elements wM1 = wM2 = 1/2w∗ and wN = −MN/ (N − MN ).

For brevity write w1 and w2 instead of wM1 and wM2 . Then w1 + w2 + wN = 1 and K ′W ∗ = 0 such that

W ∗ ∈ ΩB . Note that W ′
NΓWN = ((w∗)2 + 2w∗wN )MN + w2

NN = MNN/(N − MN ) and

W ∗′ΓW ∗ = w2
1M1 + w2

2M2 + 2w1w2M1 + w2
NN + 2wN (w1M1 + w2M2)

= w2
1M1 + w2

2M2 + 2w1w2M1 + w2
NN + 2wNw∗MN

= ((w∗)2 + 2wNw∗)MN + w2
NN − (1/2)(w∗)2aMN

such that W ∗′ΓW ∗ < W ′
NΓWN . In the same way it follows that, for W ∗,

∞∑
j=1

∞∑
i=1

wjwiγmax(i,j) = w2
1γM1 +

(
w2

2 + 2w1w2

)
γM2 +

(
w2

N + 2wN (w1 + w2)
)
γN

= (w∗)2 (γM1/4 + 3γM2/4) +
(
w2

N + 2wNw∗) γN .

Since the term
(
w2

N + 2wNw∗) γN is of smaller order than Sλ (WN ) the result now follows if (γM1/4 +

3γM2/4)/γMN ≤ 1 wpa1. But this follows from the same arguments as for the proof of the first statement of

the theorem.

For MALIML, the formula of Sλ(W ) is

Sλ(W ) = A
(W ′ΓW )

N
+ σ2

ϵ

∞∑
j=1

∞∑
i=1

wjwiγmax(i,j)

where A = λ′H−1(σ2
ϵ Σu − σuϵσ

′
uϵ)H

−1λ. Let Msq be the optimal number of instruments chosen by the

DN method. The MSE of the estimator that uses Msq instruments is AMsq/N + σ2
ϵ γMsq . For a ∈ (0, 1),

let M1 = (1 − a)Msq and M2 = (1 + a)Msq and choose W ∗ such that it has only two non-zero elements

wM1 = wM2 = 0.5. The MSE of the estimator with W ∗ is

A

N
(0.75M1 + 0.25M2) + σ2

ϵ (0.25γM1 + 0.75γM2).

We note that 0.75M1 + 0.25M2 = Msq − 0.5aMsq < Msq. Moreover, we have 0.25γM1 + 0.75γM2 < γMsq

by following from the same arguments as for the proof of the first statement of the theorem. Therefore, the

desired result is shown.
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Proof of Theorem 4.1. We follow the proof of Donald and Newey (2001, Lemma A9). We first

consider the case for S(W ) defined in (3.1) and Ŝλ(W ) defined in (4.1). Note that when Ω = ΩU and

Ω = ΩB , the optimal weight, W ∗, is well-defined and has a closed form (see the discussion in Section 7.5).

When Ω = ΩC or ΩP , we note that Sλ (W ) is continuous in W and Ω is a compact set, which implies that

the optimal weight, W ∗, is well defined in this case too. Thus infW∈Ω Sλ (W ) = Sλ (W ∗) for some W ∗ ∈ Ω

holds. It then follows that

0 ≤ 1 − infW∈Ω Sλ (W )

Sλ

(
Ŵ

) ≤ 4 sup
W∈Ω

∣∣∣∣∣ Ŝλ (W )
Sλ (W )

− 1

∣∣∣∣∣ .

The result now follows from Lemma 7.10.

Next, we consider the case for S(W ) defined in (3.2) and Ŝλ(W ) defined in (4.3) (the case for MALIML).

We follow the steps taken in the above argument. First, we show that infW∈Ω Sλ(W ) = Op(N
−2α
2α+1 ). The

weighting vector, W̃ , where wM = 1 and wj = 0 for j ̸= M for M = O(N
1

2α+1 ), gives Sλ(W̃ ) = Op(N
−2α
2α+1 ).

The proof that this rate is sharp is exactly equivalent to the corresponding part of the proof of Lemma 7.8.

We then show that supW∈Ω(S̃λ(W )/Sλ(W )) − 1 = op(1), where

S̃λ(W ) = λ′Ĥ−1

(
(σ̂2

ϵ σ̂2
λ − σ̂2

λϵ)
W ′ΓW

N
+ σ̂2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

)
Ĥ−1λ.

This can be shown by following the same argument as that for the Ω2 part of the proof of Lemma 7.9.

Lastly, we show that supW∈Ω(Ŝλ(W )/Sλ(W )) − 1 = op(1). The proof of this statement is the same as that

of Lemma 7.10. We then obtain the desired result.

Proof of Theorem 7.3. Since it is easy to see that X ′X/N →p (E(f2
i ) + σ2

u), we need to show

1
N

X ′P (W )X →p E(f2
i ) (7.27)

and

1
N

X ′P (W )P (W )X →p E(f2
i ) (7.28)

to obtain the desired result.

We have the following decomposition:

1
N

X ′P (W )X =
1
N

f ′f − 1
N

f ′(I − P (W ))f +
1
N

f ′P (W )u +
1
N

u′P (W )f +
1
N

u′P (W )u.

By Lemma 7.7 and 7.6(1), it holds that

1
N

f ′(I − P (W ))f = op(1).

Since

1
N

f ′P (W )u =
1
N

f ′u − 1
N

f ′(I − P (W ))u,
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Lemma 7.5(6) and Lemma 7.6(2) (by replacing ϵ by u) imply that

1
N

f ′P (W )u = op(1).

Similarly, it follows that u′P (W )f/N = op(1). Lastly, Lemma 7.6(3) and Assumption 4 imply that

1
N

u′P (W )u = op(1).

Thus, we have shown (7.27).

We now consider (7.28). We have the following decomposition:

1
N

X ′P (W )P (W )X =
1
N

f ′f − 1
N

f ′(I − P (W )P (W ))f

+
1
N

f ′P (W )P (W )u +
1
N

u′P (W )P (W )f +
1
N

u′P (W )P (W )u.

We have that

1
N

f ′(I − P (W )P (W ))f =
M∑

s1=1

M∑
s2=1

f ′(I − Pmin(s1,s2))f =
M∑

j=1

2wj

 M∑
s=j+1

ws

 + w2
j

 γ̃j ,

where γ̃j = f ′(I − Pj)f/N . It follows that

M∑
j=1

2wj

 M∑
s=j+1

ws

 + w2
j

 γ̃j =
M∑

j=1

wj

(
2 − 2

j∑
s=1

ws + wj

)
γ̃j .

Take L such that L → ∞. We have that∣∣∣∣∣∣
M∑

j=1

wj

(
2 − 2

j∑
s=1

ws + wj

)
γ̃j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
L∑

j=1

wj

(
2 − 2

j∑
s=1

ws + wj

)
γ̃j

∣∣∣∣∣∣ +

∣∣∣∣∣∣
M∑

j=L+1

wj

(
2 − 2

j∑
s=1

ws + wj

)∣∣∣∣∣∣ γ̃L

=

∣∣∣∣∣∣
L∑

j=1

wj

(
2 − 2

j∑
s=1

ws + wj

)
γ̃j

∣∣∣∣∣∣ + op(1)

since γ̃L = op(1) and W ∈ l1 implies that |
∑M

j=L+1 wj(2 − 2
∑j

s=1 ws + wj)| is bounded. Then, since∑L
j=1 |wj | = o(1) by the assumption, we have∣∣∣∣∣∣

L∑
j=1

wj

(
2 − 2

j∑
s=1

ws + wj

)
γ̃j

∣∣∣∣∣∣ = op(1).

It follows that

1
N

f ′(I − P (W )P (W ))f = op(1).

We have that

E

(
1
N

f ′P (W )P (W )u
)

= 0
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and

E

((
1
N

f ′P (W )P (W )u
)2

)
= E

(
1

N2
f ′P (W )P (W )uu′P (W )P (W )f

)
=

1
N2

σ2
uf ′P (W )P (W )P (W )P (W )f

=
1

N2
σ2

u

M∑
s1,s2,s3,s4=1

ws1ws2ws3ws4f
′Pmin(s1,s2,s3,s4)f

≤ 1
N2

σ2
u

M∑
s1,s2,s3,s4=1

|ws1ws2ws3ws4 |f ′f = op(1)

because f ′f/N = Op(1) by Lemma 7.5(6) and W ∈ l1 by Assumption 4. It therefore follows that

1
N

f ′P (W )P (W )u = op(1).

Similarly, we have that u′P (W )P (W )f/N = op(1). Lastly, we observe that

E

(
1
N

u′P (W )P (W )u
)

= σ2
u

W ′ΓW

N

by Lemma 1.2 of Hansen (2007). Assumption 4 and the Markov inequality imply that

1
N

u′P (W )P (W )u = op(1).

Therefore, (7.28) is shown and we have obtained the desired result.

7.3 Lemmas for MALIML

As the first step, we show the consistency of MALIML and derive its asymptotic distribution. Define the

LIML estimator based on the first m instruments as

β̂L,m = arg min
β

(y − Xβ)′Pm(y − Xβ)/((y − Xβ)′(y − Xβ)).

We first establish uniform consistency supm≤M

∣∣∣β̂L,m − β0

∣∣∣ →p 0 for M/N → 0. This result is then used to

establish the uniform convergence of Λ̂ (W ) over M and W satisfying Assumption 5.

Lemma 7.11 If Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied, then

1. supm≤M ϵ′Pmϵ/N = op (1) ,

2. supm≤M f ′ (I − Pm) ϵ/N = Op

(
1/
√

N
)

,

3. supm≤M u′Pmϵ/N = op (1).

Proof. For 1. we observe that

sup
k≤M

ϵ′Pkϵ/N ≤ ϵ′PM ϵ/N
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and

E[ϵ′PM ϵ|z] = σ2
ϵ tr (PM ) = σ2

ϵ M

such that

Pr
(
supm≤M |ϵ′Pmϵ/N | > η|z

)
≤ Pr (|ϵ′PM ϵ/N | > η|z)

≤ 1
ηN

E [ϵ′PM ϵ|z] → 0.

For part 2, note that E [f ′ (I − Pm) ϵ|z] = 0 such that

M∑
m=1

trE [f ′ (I − Pm) ϵϵ (I − Pm) f/N |z] ≤ sup
m≤M

(
m2αtr (f ′ (I − Pm) f) /N

)
σ2

ϵ

M∑
m=1

m−2α

= Op (1) ,

which shows that supm≤M f ′ (I − Pm) ϵ/N = Op

(
1/
√

N
)
.

For part 3, note that E [u′Pmϵ/N |z] = E [v′Pmϵ/N |z] + σuϵ/σ2
ϵ E [ϵ′Pmϵ/N |z] = 0 + σuϵm/N and

E
[
∥u′Pmϵ/N − σuϵm/N∥2 |z

]
(7.29)

≤ M max
m≤M

E
[
tr

(
u′Pmϵϵ′Pmu − σuϵσ

′
uϵm

2
)
|z

]
N2

= M max
m≤M

 trΣutrPm

N2
+

N∑
i1,...,i4=1

tr
(
E [ui1ϵi3 ] E

[
u′

i4
ϵi2

])
Pm,i1i2Pm,i3i4

N2


+M max

m≤M

(
N∑

i=1

tr (Cum (ui, ui, ϵi, ϵi))P 2
m,ii

N2

)

≤ (trΣu + tr (Cum (ui, ui, ϵi, ϵi)))
(

M

N

)2

+ M max
m≤M

σ′
uϵσuϵ

N2

N∑
i1,i2=1

Pm,i1i2Pm,i2i1

= o (1) + M max
m≤M

(
σ′

uϵσuϵm

N2

)
= o (1)

where we used Pm,i2i1 = Pm,i1i2 and
∑n

i1,i2=1 Pm,i1i2Pm,i2i1 =
∑N

i=1 Pm,ii = m. Then,

∥u′Pmϵ/N∥ ≤ ∥u′Pmϵ/N − σuϵm/N∥ + ∥σuϵ∥m/N ≤ ∥u′Pmϵ/N − σuϵm/N∥ + ∥σuϵ∥M/N

= ∥u′Pmϵ/N − σuϵm/N∥ + o (1) ,

where the o (1) term is uniform in m ≤ M . The result now follows from (7.29).

Lemma 7.12 If Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied then supm≤M

∣∣∣β̂L,m − β0

∣∣∣ →p 0.

Proof. Define X̄ ≡ (y,X) and D0 ≡ (β0, I). X̄ can be written as X̄ = XD0 + ϵe′1, where e1 is the

first unit (column) vector. Let Âm = X̄ ′PmX̄/N and Am = D′
0H̄mD0. Let B̂ = X̄ ′X̄/N and B = E

[
X̄iX̄

′
i

]
with X̄i = (yi, Xi).

53



Let τ = (1,−β′)′ and define the augmented parameter space Θ = {1} × Θ such that τ ∈ Θ. Then,

(1,−β̂′
L,m)′ = arg minτ τ ′Âmτ/(τ ′B̂τ). Essentially the same argument as that in the beginning of the proof

of Lemma A.5 in Donald and Newey (2001) shows that (1,−β′
0)

′ = arg minτ τ ′Amτ/(τ ′Bτ). Then, letting

Ln,m (τ) = τ ′Âmτ/(τ ′B̂τ) and Lm (τ) = τ ′Amτ/(τ ′Bτ) and noting that

sup
τ∈Θ,m≤M

|Ln,m (τ) − Lm (τ)| ≤ sup
τ∈Θ,m≤M

∣∣∣∣∣∣
τ ′

(
Âm − Am

)
τ

τ ′Bτ

∣∣∣∣∣∣ sup
τ∈Θ

∣∣∣∣τ ′Bτ

τ ′B̂τ

∣∣∣∣+ sup
τ∈Θ,m≤M

∣∣∣∣τ ′Amτ

τ ′Bτ

∣∣∣∣ sup
τ∈Θ

∣∣∣∣τ ′Bτ

τ ′B̂τ
− 1

∣∣∣∣ .

(7.30)

We note that τ ′Âmτ/(τ ′B̂τ) ≤ 1 uniformly in n, m and τ . It follows that

sup
τ∈Θ,m≤M

∣∣∣∣τ ′Amτ

τ ′Bτ

∣∣∣∣ ≤ 1.

By a LLN, B̂ − B = op(1) which implies that supτ∈Θ

∣∣∣ τ ′Bτ
τ ′B̂τ

− 1
∣∣∣ = op (1). From Donald and Newey (2001,

p.1185) it follows that B is positive definite such that infτ τ ′Bτ > ε > 0 for some ε and

sup
τ∈Θ,m≤M

∣∣∣∣∣∣
τ ′

(
Âm − Am

)
τ

τ ′Bτ

∣∣∣∣∣∣ ≤
supτ∈Θ,m≤M

∣∣∣τ ′
(
Âm − Am

)
τ
∣∣∣

ε
. (7.31)

We now show that supτ∈Θ,m≤M

∣∣∣τ ′
(
Âm − Am

)
τ
∣∣∣ = op(1). For this purpose, we observe that

sup
m≤M

σ2
ϵ m

N
≤ σ2

ϵ M

N
= o (1) , (7.32)

sup
τ∈Θ,m≤M

τ ′D′
0E [u′Pmu|z]D0τ

N
= sup

τ∈Θ,m≤M

tr (PmE [uD0ττ ′D′
0u

′])
N

(7.33)

= sup
τ∈Θ,m≤M

tr (Pm) τ ′D′
0ΣuD0τ

N

≤ M

N
sup
τ∈Θ

τ ′D′
0ΣuD0τ = o (1) ,

where supτ∈Θ τ ′D′
0ΣuD0τ is bounded by Assumption 7, and

sup
τ∈Θ,m≤M

∣∣∣∣τ ′D′
0E [u′Pmϵ|z] e′1τ

N

∣∣∣∣ = sup
τ∈Θ,m≤M

∣∣∣∣ tr (PmE [ϵτ ′D′
0u

′])
N

∣∣∣∣ (7.34)

= sup
τ∈Θ,m≤M

∣∣∣∣ tr (Pm) τ ′D′
0σuϵ

N

∣∣∣∣
≤ M

N
sup
τ∈Θ

|τ ′D′
0σuϵ| = o(1),

where supτ∈Θ τ ′D′
0σuϵ is bounded by Assumption 7. The term Âm has the decomposition Âm − Am =

Âm,1 + Âm,2 + ... + Âm,9 + o (1), where the o (1) term is uniform in m ≤ M and consists of (7.32), (7.33)
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and (7.34) and

Âm,1 = D′
0

(
f ′Pmf

N
− Am

)
D0; Am,2 = D′

0

u′Pmf

N
D0; Âm,3 = D′

0

f ′Pmu

N
D0;

Âm,4 = D′
0

u′Pmu − E (u′Pmu|z)
N

D0; Âm,5 = e1
ϵ′Pmu − mσ′

uϵ

N
D0;

Âm,6 = D′
0

uPmϵ − mσuϵ

N
e′1; Âm,7 = e1

ϵ′Pmf

N
D0;

Âm,8 = D′
0

f ′Pmϵ

N
e′1; Âm,9 =

ϵ′Pmϵ − σ2
ϵ m

N
e1e

′
1.

For Âm,1 define Γ̂zz,m = Z ′
mZm/N , Γ̂fz,m = f ′Zm/N , Γzz,k = E[Zk,iZ

′
k,i] and Γfz,k = E[fiZ

′
k,i] and choose

a sequence M1 where M1 → ∞ such that M1/N
3 → 0. It then follows for m ≤ M1 that

E

[∥∥∥Γ̂fz,m − Γfz,m

∥∥∥2
]

= N−2
n∑

i,j=1

trE
[(

fiZ
′
m,i − Γfz,m

) (
fjZ

′
m,j − Γfz,m

)′]
= N−2

n∑
i=1

trE
[(

fiZ
′
m,i − Γfz,m

) (
fiZ

′
m,i − Γfz,m

)′] = O
(m

N

)
= o (1)

and

E

[∥∥∥Γ̂zz,m − Γzz,m

∥∥∥2
]

= N−2
n∑

i=1

trE
[(

Zm,iZ
′
m,i − Γzz,m

) (
Zm,iZ

′
m,i − Γzz,m

)′] = O

(
m2

N

)
.

Using the Markov inequality, one obtains

Pr
(

sup
m≤M1

∥∥∥Γ̂fz,m − Γfz,m

∥∥∥ ≥ ε

)
≤ M1

ε2
sup

m≤M1

E

[∥∥∥Γ̂fz,m − Γfz,m

∥∥∥2
]

= O
(
M2

1 /N
)

= o (1)

as well as

Pr
(

sup
m≤M1

∥∥∥Γ̂zz,m − Γzz,m

∥∥∥ ≥ ε

)
≤ M1

ε2
sup

m≤M1

E

[∥∥∥Γ̂zz,m − Γzz,m

∥∥∥2
]

= O
(
M3

1 /N
)

= o (1) . (7.35)

Let ∥C∥2
2 = sup ℓ′C ′Cℓ/ℓ′ℓ for any matrix C and note that ∥C1C2∥ ≤ ∥C1∥ ∥C2∥2 and ∥C1C2∥ ≤ ∥C2∥ ∥C1∥2

for any conforming matrices C1 and C2. Now,∥∥∥Γ̂fz,mΓ̂−1
zz,mΓ̂′

fz,m − Am

∥∥∥ ≤
∥∥∥Γ̂fz,m − Γfz,m

∥∥∥∥∥∥Γ̂−1
zz,mΓ̂′

fz,m

∥∥∥
2

+ ∥Γfz,m∥2

∥∥∥Γ̂−1
zz,m − Γ−1

zz,m

∥∥∥ ∥∥∥Γ̂fz,m

∥∥∥
2

+
∥∥Γfz,mΓ−1

zz,m

∥∥
2

∥∥∥Γ̂fz,m − Γfz,m

∥∥∥ ,

∥∥∥Γ̂−1
zz,mΓ̂′

fz,m

∥∥∥
2

≤
∥∥∥Γ̂−1

zz,mΓ̂′
fz,m − Γ−1

zz,mΓ′
fz,m

∥∥∥ +
∥∥Γ−1

zz,mΓ′
fz,m

∥∥
2

≤
∥∥∥Γ̂fz,m − Γfz,m

∥∥∥ ∥∥∥Γ̂−1
zz,m

∥∥∥
2

+ ∥Γfz,m∥2

∥∥∥Γ̂−1
zz,m − Γ−1

zz,m

∥∥∥ +
∥∥Γ−1

zz,mΓ′
fz,m

∥∥
2

and ∥∥∥Γ̂−1
zz,m − Γ−1

zz,m

∥∥∥ ≤
∥∥∥Γ̂−1

zz,m

∥∥∥
2

∥∥∥Γ̂zz,m − Γzz,m

∥∥∥ ∥∥Γ−1
zz,m

∥∥
2
.

Define F such that
∥∥Γ−1

zz,m

∥∥
2
≤ F where F is finite by Assumption 6 and let

ζm,N :=
∥∥∥Γ̂−1

zz,m − Γ−1
zz,m

∥∥∥
2
/

(
F

∥∥∥Γ̂−1
zz,m − Γ−1

zz,m

∥∥∥
2

+ F 2
)
≤

∥∥∥Γ̂zz,m − Γzz,m

∥∥∥
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such that supm≤M1
ζm,N ≤ supm≤M1

∥∥∥Γ̂zz,m − Γzz,m

∥∥∥ = op (1) by (7.35). Following Lewis and Reinsel (1985,

p. 397), ∥∥∥Γ̂−1
zz,m

∥∥∥
2

≤
∥∥Γ−1

zz,m

∥∥
2

+
∥∥∥Γ̂−1

zz,m − Γ−1
zz,m

∥∥∥
2

≤ F + F 2ζm,N/ (1 − Fζm,N )

≤ F + F 2
(
supm≤M1

ζm,N

)
/

(
1 − F supm≤M1

ζm,N

)
= Op(1).

It now follows that

sup
m≤M1

∥∥∥∥f ′Pmf

N
− Am

∥∥∥∥ = sup
m≤M1

∥∥∥Γ̂fz,mΓ̂−1
zz,mΓ̂′

fz,m − Am

∥∥∥ = op(1). (7.36)

For M1 ≤ m ≤ M it follows that Am → H̄ = E [fif
′
i ]. Then,

f ′Pmf

N
− Am = −f ′ (I − Pm)′ f/N + f ′f/N − H̄ + H̄ − Am = op (1) , (7.37)

where the op (1) term is uniform in M1 ≤ m ≤ M because

sup
τ∈Θ,M1≤m≤M

τ ′f ′ (I − Pm)′ fτ/N ≤ sup
M1≤m≤M

m2α

Mα
1

(
sup

τ
τ ′f ′ (I − Pm)′ fτ/N

)
= M−α

1 Op (1) = op (1)

by Assumption 2. By Assumption 6, and for M1 ≤ m ≤ M , H̄ − Am = O
(
m−2α

)
≤ O

(
M−2α

1

)
= o (1). By

a law of large numbers,

f ′f/N − H̄ = Op

(
1/
√

N
)

= op (1) .

Together, (7.36) and (7.37) imply that

sup
τ∈Θ,M1≤m≤M

∥∥∥Â1,m

∥∥∥ = op (1) .

Now consider, for some ε > 0, not necessarily the same as in (7.31),

Pr

(
sup

τ∈Θ,m≤M

∣∣∣τ ′
(
Âm,2 + ... + Âm,9

)
τ
∣∣∣ > ε|z

)
≤

9∑
j=2

Pr

(
sup
τ∈Θ

∥τ∥
M∑

m=1

∥∥∥Âm,j

∥∥∥ > ε|z

)
(7.38)

≤ M supτ ∥τ∥
ε

max
m≤M

9∑
j=2

√
E

[∥∥∥Âm,j

∥∥∥2

|z
]
.

To show that M maxm≤M E
[(

ϵ′Pmϵ − σ2
ϵ m

)2
/N2|z

]
→p 0, we observe that

E[(ϵ′Pmϵ − σ2
ϵ m)2|z] = σ4

ϵ (trPm)2 + 2σ4
ϵ (trPm) − σ4

ϵ m2 + Cum[ϵi, ϵi, ϵi, ϵi]
N∑

i=1

(Pm,ii)2

= 2σ4
ϵ m + Cum[ϵi, ϵi, ϵi, ϵi]

N∑
i=1

(Pm,ii)2

= O(m) + op(m)
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because
∑N

i=1(Pm,ii)2 ≤ (maxi Pm,ii)
∑N

i=1 Pm,ii = op (m) by the same calculation as the proof of Lemma

7.6(4) and Lemma 7.5(2). Therefore

M max
m

E
[(

ϵ′Pmϵ − σ2
ϵ m

)2
/N2|z

]
≤ M max

m≤M

2σ4
ϵ m + Cum[ϵi, ϵi, ϵi, ϵi]

∑N
i=1(Pm,ii)2

N2
(7.39)

≤ M maxm≤M (maxi Pm,ii) m

N2
+

2σ4
ϵ M2

N2

= Op

(
M2

N2

)
+

2σ4
ϵ M2

N2
→p 0.

Similarly, we can show that M maxm≤M E

[∥∥∥Âm,4

∥∥∥2

|z
]

→p 0, M maxm≤M E

[∥∥∥Âm,5

∥∥∥2

|z
]

→p 0 and

M maxm≤M E

[∥∥∥Âm,6

∥∥∥2

|z
]
→p 0. Next,

M max
m≤M

E
[
∥D′

0f
′PmuD0/N∥2 |z

]
≤ ∥D0∥4

M max
m≤M

E
[
∥f ′Pmu/N∥2 |z

]
= ∥D0∥4

M max
m≤M

tr (f ′PmE [uu′|z] Pmf)
N2

= ∥D0∥4 tr (Σu)M max
m≤M

tr (f ′Pmf)
N2

≤ ∥D0∥4 tr (Σu)M
tr (f ′f)

N2
= Op

(
M

N

)
= op (1) ,

where Op

(
supm≤M m2α (supλ′λ=1 λ′f (I − Pm) fλ/N)

)
= Op (1) by Assumption 2(i). Analogous calcula-

tions show that M maxm≤M E

[∥∥∥Âm,7

∥∥∥2

|z
]

= o(1) and M maxm≤M E

[∥∥∥Âm,8

∥∥∥2

|z
]

= o(1). Summing up,

we have M
ε supτ∈Θ ∥τ∥

∑9
j=1 maxm≤M E

[∥∥∥Âm,j

∥∥∥2

|z
]
→p 0. Combining (7.30), (7.31), (7.32), (7.33), (7.34)

(7.38) establishes that

sup
τ∈Θ,m≤M

|Ln,m (τ) − Lm (τ)| = op (1) . (7.40)

From (7.31) and the fact that, if ∥τ − τ0∥ ≥ ε for some ε > 0, there exists an η > 0 such that

supm≤M |Lm(τ) − Lm(τ0)| ≥ η, it follows that

Pr
(

sup
m≤M

∣∣∣β̂L,m − β0

∣∣∣ ≥ ε|z
)

≤ Pr
(

sup
m≤M

|Lm (τ̂m) − Lm (τ0)| ≥ η|z
)

with τ̂m = (1,−β̂′
L,m)′ and by standard arguments

|Lm (τ̂m) − Lm (τ0)| ≤ |Ln,m (τ̂m) − Lm (τ̂m)| + |Ln,m (τ0) − Lm (τ0)|

+ |Ln,m (τ̂m) − Ln,m (τ0)| ,

where 0 ≤ Ln,m (τ̂m) ≤ Ln,m (τ0) + op (1) = op (1) uniformly in m ≤ M by the definition of τ̂m and Lemma

7.11 such that

sup
m≤M

|Ln,m (τ̂m) − Ln,m (τ0)| ≤ 2 sup
m≤M

|Ln,m (τ0)| + op (1) = op (1)
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and

Pr
(

sup
m≤M

|Lm (τ̂m) − Lm (τ0)| ≥ η|z
)

≤ Pr
(

sup
m≤M

|Lm (τ̂m) − Lm (τ0)| ≥ η|z
)

(7.41)

≤ Pr

(
2 sup

τ∈Θ,m≤M

|Ln,m (τ) − Lm (τ)| ≥ η|z

)
→ 0

by (7.40).

Lemma 7.13 If Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied, it follows that for β̂ defined in (2.3)

(MALIML),
∣∣∣β̂ − β0

∣∣∣ →p 0.

Proof. Let Am(β) ≡ (y − Xβ)′Pm(y − Xβ)/N and B(β) ≡ (y − Xβ)′(y − Xβ)/N . Define Λm(β) ≡

Am(β)/B(β).

As supm≤M

∥∥∥β̂L,m − β0

∥∥∥ →p 0 by Lemma 7.12, it follows that that supm≤M

∣∣∣B(β̂L,m) − σ2
ϵ

∣∣∣ →p 0,

Moreover,

Am(β0) = ϵ′Pmϵ/N →p 0 (7.42)

uniformly in m ≤ M by Lemma 7.11(1) which implies that supm≤M |Am(β̃)| →p 0 and therefore supm≤M |Λm(β̂L,m)| →p

0. We also note that Λm(β) = Ln,m (τ) ≤ 1 uniformly in m ≤ N and β.

It now follows that for Λ (W ) =
∑M

m=1 wmΛm (β0)∣∣∣Λ̂ (W ) − Λ (W )
∣∣∣ ≤

M∑
m=1

|wm| |Ln,m (τ̂m) − Ln,m (τ0)|

≤ 2 sup
m,τ

|Ln,m (τ) − Lm (τ)|
M∑

m=1

|wm| + sup
m≤M

|Lm (τ̂m) − Lm (τ0)|
M∑

m=1

|wm| ,

where 2 supm,τ |Ln,m (τ) − Lm (τ)| = op (1) by Lemma 7.12, supm≤M |Lm (τ̂m) − Lm (τ0)| = op (1) by (7.41)

and
∑M

i=1 |wm| = O (1). It now follows that

β̂ − β0 = (X ′P (W )X − Λ̂ (W )X ′X)−1(X ′P (W )ϵ − Λ̂ (W ) X ′ϵ). (7.43)

We have
(
Λ̂ (W ) − Λ (W )

)
X ′X/N = op (1) and |Λ (W )| ≤

∑M
m=1 |wm| |Λm (β0)| = op (1) such that

N−1
(
X ′P (W )X − Λ̂ (W )X ′X

)
= N−1X ′P (W )X + op (1) (7.44)

and, similarly, Λ̂ (W )X ′ϵ/N = op (1) such that

β̂ − β0 = (X ′P (W )X)−1
X ′P (W )ϵ + op (1)

and the result follows from Theorem 7.1.

Lemma 7.14 Suppose that Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied. Then, for β̂ defined in (2.3)

(MALIML),
√

N(β̂ − β0) →d N(0, σ2
ϵ H̄−1).
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Proof. The result follows from (7.43), (7.44) and the fact that X ′ϵ/
√

N = Op(1) together with

Λ̂ (W ) = op(1). We then have

√
N

(
β̂ − β0

)
=

(
X ′P (W )X/

√
N

)−1 X ′P (W )ϵ√
N

+ op (1)

such that the result again follows from Theorem 7.1.

Lemma 7.15 Suppose that 1 - 4, 5(ii), 6 and 7 are satisfied. Let Λββ,m(β) be the Hessian of Λm(β). If

supm≤M

∥∥∥β̃m − β0

∥∥∥ →p 0, then

sup
m≤M

∥∥∥Λββ,m(β0) − Λββ,m(β̃m)
∥∥∥ = op (1)

and

sup
m≤M

∥∥∥∥Λββ,m(β0) −
2
σ2

ϵ

H̄m

∥∥∥∥ = op (1) .

Proof. Let Λβ,m(β) and Λββ,m(β) be the gradient and Hessian of Λm(β). Let Am(β) ≡ (y−Xβ)′Pm(y−

Xβ)/N and B(β) = (y − Xβ)′(y − Xβ)/N . Let Aβ,m(β) and Bβ(β) be the gradients of Am(β) and B(β),

respectively, and Aββ,m(β) and Bββ(β) be the Hessians of Am(β) and B(β), respectively. We have

Λβ,m(β) = B(β)−1(Aβ,m(β) − Λm(β)Bβ(β)),

Λββ,m(β) = B(β)−1(Aββ,m(β) − Λm(β)Bββ(β)) − B(β)−1(Bβ(β)Λβ,m(β)′ + Λβ,m(β)Bβ(β)′).

By assumption, supm≤M

∥∥∥β̃m − β0

∥∥∥ →p 0, which implies that supm≤M |B(β̃m)−σ2
ϵ | →p 0, supm≤M |Bβ(β̃m)−

(−2σuϵ)| →p 0. Moreover,

max
m≤M

|Am(β0)| = max
m≤M

|ϵ′Pmϵ/N | →p 0,

by Lemma 7.11(1),

max
m≤M

∥Aβ,m(β0)∥ = max
m≤M

∥X ′Pmϵ/N∥ ≤ max
m≤M

∥f ′Pmϵ/N∥ + max
m≤M

∥u′Pmϵ/N∥ = op (1) , (7.45)

where maxm≤M ∥f ′Pmϵ/N∥ = op (1) by Lemma 7.11(2) and maxm≤M ∥u′Pmϵ/N∥ = op (1) by Lemma

7.11(3).

From the proof of Lemma 7.12 and (7.40), it follows that supm≤M Λm(β̃m) →p 0. Similarly, we note

that

Aβ,m(β̃m) = X ′Pm(y − Xβ̃m)/N = X ′Pmϵ/N + X ′PmX
(
β̃m − β0

)
/N,

where ϵ′PmX/N = op (1) uniformly in m ≤ M by (7.45) and X ′PmX/N is uniformly bounded by the same

arguments as in the proof of Lemma 7.12. This shows that Aβ,m(β̃m) →p 0 and therefore Λβ,m(β̃m) →p 0.
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Now, consider

Λββ,m(β̃m) − Λββ,m(β0) =
(

1
ϵ′ϵ/N

− B(β̃m)−1

)
2(X ′PmX/N − Λm(β0)X ′X/N)

−
(

1
ϵ′ϵ/N

− B(β̃m)−1

)(
ϵ′X

N
Λβ,m(β0)′ + Λβ,m(β0)

X ′ϵ

N

)
+B(β̃m)−1

(
Λm(β0) − Λm(β̃m)

)
X ′X/N

−B(β̃)−1(Bβ(β̃m)Λβ,m(β̃m)′ − Bβ(β0)Λβ,m(β0)′)

−B(β̃m)−1
(
Λβ,m(β̃m)Bβ(β̃m)′ − Λβ,m(β0)Bβ(β0)′

)
,

where

(
1

ϵ′ϵ/N
− B(β̃m)−1

)
=

B(β̃m) − ϵ′ϵ/N

B(β̃m)ϵ′ϵ/N
=

2ϵ′X/N
(
β̃m − β0

)
+

(
β̃ − β0

)′
X ′X

(
β̃m − β0

)
/N

B(β̃m)ϵ′ϵ/N
= op (1)

uniformly in m ≤ M . Since X ′PmX/N − Λm(β0)X ′X/N = Op (1) uniformly in m ≤ M and all other terms

are of smaller order, it follows that supm≤M

∥∥∥Λββ,m(β0) − Λββ,m(β̃m)
∥∥∥ = op (1). Next, consider

Λββ,m(β0) −
2
σ2

ϵ

H̄m =
(

1
ϵ′ϵ/N

− 1
σ2

ϵ

)
2X ′PmX/N +

2
σ2

ϵ

(
X ′PmX/N − H̄m

)
− 1

ϵ′ϵ/N

(
Λm(β0)X ′X/N + 2

ϵ′X

N
Λβ,m(β0)′ + 2Λβ,m(β0)

X ′ϵ

N

)
.

Note that 2X ′PmX/N − 2H̄m →p 0 where the convergence is uniform in m ≤ M by the same arguments

as in the proof of Lemma 7.12. Also note that Bββ(β) = 2X ′X/N →p 2E(XiX
′
i). It therefore follows that

supm≤M

∥∥∥Λββ,m(β0) − 2
σ2

ϵ
H̄m

∥∥∥ = op (1) uniformly in m ≤ M .

Lemma 7.16 Suppose that Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied. Then

√
N(β̂L,m − β0) =

(
H̄−1

m + op (1)
) (

h − f ′(I − Pm)ϵ√
N

+
v′Pmϵ√

N

)
+ op (1) ,

where both op (1) terms are uniform in m ≤ M .

Proof. Let Λβ,m(β) and Λββ,m(β) be the gradient and Hessian of Λm(β), respectively. A standard

Taylor expansion shows that

√
N(β̂L,m − β0) = −Λββ,m(β̃)−1

√
NΛβ,m(β0) =

(
σ̃2

ϵ Λββ,m(β̃m)
2

)−1 (
− σ̃2

ϵ

√
NΛβ,m(β0)

2

)
,

for some mean value β̃m, where σ̃2
ϵ = ϵ′ϵ/N . As sup

∥∥∥β̂L,m − β0

∥∥∥ = op (1) by Lemma 7.12, it follows that

supm

∥∥∥β̃m − β0

∥∥∥ →p 0, such that by Lemma 7.15 it follows that

√
N(β̂L,m − β0) =

(
H̄−1

m + op (1)
)(

− σ̃2
ϵ

√
NΛβ,m(β0)

2

)
,

where the op(1) term is uniform in m ≤ M.
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Consider the gradient term. Define α̂ = X ′ϵ/ϵ′ϵ, α = σuϵ/σ2
ϵ and v = u − ϵα′. It holds that α̂ − α =

Op(1/
√

N)by the CLT. We have the following decomposition:

− σ̃2
ϵ

√
NΛβ,m(β0)

2
=

X ′Pmϵ√
N

− ϵ′PmϵX ′ϵ√
Nϵ′ϵ

= h − f ′(I − Pm)ϵ√
N

+
v′Pmϵ√

N
−
√

N(α̂ − α)
ϵ′Pmϵ

N
.

First, we have h →d N(0, σ2H̄) by the CLT. Lemma 7.11(2) implies that f ′(I−Pm)ϵ/
√

N = Op(1) uniformly

in m ≤ M . From Lemma 7.11(1) supm≤M ϵ′Pmϵ/N = op (1) such that
√

N(α̂−α)ϵ′Pmϵ/N = op(1) uniformly

in m ≤ M . In conclusion, we have

√
N(β̂L,m − β0) =

(
H̄−1

m + op (1)
) (

h − f ′(I − Pm)ϵ√
N

+
v′Pmϵ√

N

)
+ op (1) ,

where both op(1) terms are small uniformly in m ≤ M .

Lemma 7.17 Suppose that Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied. Then

Λ̂ (W ) = Λ̃ (W ) −
(

σ̃2
ϵ

σ2
ϵ

− 1
)

Λ̃ (W ) − Λq (W ) + R̂Λ

= Λ̃ (W ) + Op

(
1
N

)
+ Op

(
K ′W

N3/2

)
+ op

(
ρW,N√

N

)
,

where

Λq (W ) =
1
2

M∑
m=1

wm

(
Λβ,m (β0)

′ (Λββ,m(β0))
−1 Λβ,m (β0)

)
= Op

(
1
N

)
,

Λ̃ (W ) = ϵ′P (W )ϵ/(Nσ2
ϵ ) = K ′W/N + Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

)
,

σ̃2
ϵ = ϵ′ϵ/N ,

√
NR̂Λ = Op

(
1/
√

N
)
, R̂Λ is simply the difference between Λ̂ and the first three terms in

the expression between two equalities, Λβ,m(β) and Λββ,m(β) are the gradient and Hessian of Λm(β) and

ρW,N = tr(S(W )) for S(W ) defined in (3.2).

Proof. We note that, in the LIML case, to show op(ρW,N ), it is enough to show op(W ′ΓW/N +

K ′W/N +
∑

i(Pii(W ))2/N + ∆(W )). We use the notation developed in the proof of Lemma 7.14. We

expand Λ̂m = Λm(β̂L,m) around the true value β0. By Donald and Newey (2001, p1186),

Λm (β0) = Λ̃m −
(

σ̃2
ϵ

σ2
ϵ

− 1
)

Λ̃m +
(σ̃2

ϵ − σ2
ϵ )2

σ̃2
ϵ σ2

ϵ

Λ̃m,

where Λ̃m = ϵ′Pmϵ/(Nσ2
ϵ ) such that

M∑
m=1

wmΛm (β0) = Λ̃ (W ) −
(

σ̃2
ϵ

σ2
ϵ

− 1
)

Λ̃ (W ) +
(σ̃2

ϵ − σ2
ϵ )2

σ̃2
ϵ σ2

ϵ

Λ̃ (W ) .

By a similar argument as in Lemma 7.6(4), we have

Λ̃ (W ) =
ϵ′P (W )ϵ

Nσ2
ϵ

=
K ′W

N
+

ϵ′P (W )ϵ − σ2
ϵ K ′W

Nσ2
ϵ

(7.46)

=
K ′W

N
+ Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

)
.
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Consider

∂vec [Λββ,m(β)]′

∂β
= −B(β)−2Bβ(β)vec [(Aββ,m(β) − Λm(β)Bββ(β)) − (Bβ(β)Λβ,m(β)′ + Λβ,m(β)Bβ(β)′)]′

−B(β)−1Λβ,m(β)vec [Bββ(β))]′

−Bββ(β) [(K1,n ⊗ I) (Λβ,m(β) ⊗ I)]′ − Λββ,m(β) [(K1,n ⊗ I) (I ⊗ Bβ(β))]′

−Bββ(β) [(K1,n ⊗ I) (I ⊗ Λβ,m(β))]′ − Λββ,m(β) [(K1,n ⊗ I) (Bβ(β) ⊗ I)]′ ,

where the result follows from Magnus and Neudecker (1988, p. 185) and K1,n is the commutation matrix.

Let β̃m be some mean value between β̂L,m and β0. Then,

∂vec
[
Λββ,m(β̃m)

]′
∂β

− ∂vec [Λββ,m(β0)]
′

∂β
= op (1)

uniformly in m ≤ M and ∂vec[Λββ,m(β0)]
′

∂β is bounded uniformly over m ≤ M . A Taylor expansion then leads

to
M∑

m=1

wmΛ̂m =
M∑

m=1

wmΛm(β0) −
M∑

m=1

wm
1
2

(
β̂L,m − β0

)′
Λββ,m(β0)

(
β̂L,m − β0

)

+
M∑

m=1

wm

(
β̂L,m − β0

)′ ∂vec
[
Λββ,m(β̃m)

]′
∂β

((
β̂L,m − β0

)
⊗

(
β̂L,m − β0

)′
)

=
M∑

m=1

wmΛm(β0) −
1
2

M∑
m=1

wmΛβ,m (β0)
′ (Λββ,m(β0))

−1 Λβ,m (β0) + Op

(
1

N3/2

)
,

where Op

(
1

N3/2

)
can be established by considering∥∥∥∥∥∥∥

M∑
m=1

wm

(
β̂L,m − β0

)′ ∂vec
[
Λββ,m(β̃m)

]′
∂β

((
β̂L,m − β0

)
⊗

(
β̂L,m − β0

)′
)∥∥∥∥∥∥∥

≤ sup
m≤M

∥∥∥∥∥∥∥
∂vec

[
Λββ,m(β̃m)

]′
∂β

∥∥∥∥∥∥∥
M∑

m=1

|wm|
∥∥∥β̂L,m − β0

∥∥∥3

with

√
N

(
β̂L,m − β0

)
=

(
H̄−1

m + op (1)
) (

h − f ′(I − Pm)ϵ√
N

+
v′Pmϵ√

N

)
+ op (1)

= Op (1) +
(
H̄−1

m + op (1)
) v′Pmϵ√

N
,

where the Op(1) and op(1) terms are uniform in m ≤ M such that

M∑
m=1

|wm|
∥∥∥β̂L,m − β0

∥∥∥3

≤ Op

(
N−3/2

)
Op

(
1 +

M∑
m=1

|wm|
(∥∥H̄−1

m

∥∥3
∥∥∥v′Pmϵ/

√
N

∥∥∥3

+
∥∥H̄−1

m

∥∥2
∥∥∥v′Pmϵ/

√
N

∥∥∥2
))

+Op

(
N−3/2

)
Op

(
M∑

m=1

|wm|
∥∥H̄−1

m

∥∥ ∥∥∥v′Pmϵ/
√

N
∥∥∥)

+op

(
N−3/2

M∑
m=1

|wm|
(∥∥H̄−1

m

∥∥3
∥∥∥v′Pmϵ/

√
N

∥∥∥3
))

.
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Consider

M∑
m=1

|wm|
∥∥H̄−1

m

∥∥3
E

[∥∥∥v′Pmϵ/
√

N
∥∥∥3

|z
]
≤

M∑
m=1

|wm|
∥∥H̄−1

m

∥∥3
(

E

[∥∥∥v′Pmϵ/
√

N
∥∥∥4

|z
])3/4

with

E

[∥∥∥v′Pmϵ/
√

N
∥∥∥4

|z
]

= N−2E
[
(tr(v′Pmϵϵ′Pmv))2 |z

]
= N−2

∑
j1,j2

N∑
i1,..,i8=1

E [vj1,i1vj1,i4vj2,i5vj2,i8ϵi2ϵi3ϵi6ϵi7 ] Pm,i1i2Pm,i3i4Pm,i5i6Pm,i7i8

≤ CN−2
∑
j1,j2

∣∣∣∣∣∣
N∑

i1,..,i4=1

(Pm,i1i2Pm,i2i1Pm,i3i4Pm,i4i3 + 2Pm,i1i2Pm,i4i1Pm,i3i4Pm,i2i3)

∣∣∣∣∣∣
+CN−2

∑
j1,j2

∣∣∣∣∣∣
N∑

i1,..,i4=1

(Pm,i1i2Pm,i2i3Pm,i1i4Pm,i4i3 + 2Pm,i1i2Pm,i4i3Pm,i1i4Pm,i2i3)

∣∣∣∣∣∣
+CN−2

∑
j1,j2

∣∣∣∣∣∣
N∑

i1,..,i4=1

(Pm,i1i2Pm,i2i3Pm,i3i4Pm,i4i1 + 2Pm,i1i2Pm,i3i2Pm,i3i4Pm,i4i1)

∣∣∣∣∣∣
+lower order terms,

where C is a constant such that
∣∣∣maxi,j [Σv]i,j

∣∣∣ σ2
ϵ ≤ C and we use the fact that Pm is idempotent and

symmetric such that Pm,i1i2 = Pm,i2i1 and
∑N

i2=1 Pm,i1i2Pm,i2i3 = Pm,i1i3 . This implies for example that

N∑
i1,..,i4=1

Pm,i1i2Pm,i4i1Pm,i3i4Pm,i2i3 =
N∑

i1,..,i3=1

Pm,i1i2Pm,i2i3

N∑
i4=1

Pm,i1i4Pm,i4i3

=
N∑

i1,i3=1

Pm,i1i3

N∑
i2=1

Pm,i1i2Pm,i2i3 =
N∑

i1,i3=1

P 2
m,i1i3 = tr (PmPm) = m

and
∑N

i1,..,i4=1 Pm,i1i2Pm,i2i3Pm,i1i4Pm,i4i3 = m,
∑N

i1,..,i4=1 Pm,i1i2Pm,i4i3Pm,i1i4Pm,i2i3 = m with the re-

maining terms being of lower order. This implies that

E

[∥∥∥v′Pmϵ/
√

N
∥∥∥4

|z
]

= O
(
m/N2

)
= o (1)

uniformly in m ≤ M and by the Markov inequality and the fact that
∥∥H̄−1

m

∥∥ is bounded uniformly in m that

M∑
m=1

|wm|
(∥∥H̄−1

m

∥∥3
∥∥∥v′Pmϵ/

√
N

∥∥∥3

+
∥∥H̄−1

m

∥∥2
∥∥∥v′Pmϵ/

√
N

∥∥∥2

+
∥∥H̄−1

m

∥∥ ∥∥∥v′Pmϵ/
√

N
∥∥∥)

= op (1) .

Thus, we have shown that
∑M

m=1 |wm|
∥∥∥β̂L,m − β0

∥∥∥3

= Op

(
N−3/2

)
. To summarize, it then follows that

Λ̂ (W ) =
M∑

m=1

wmΛm(β0) − Λq (W ) + Op

(
1

N3/2

)
.
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Since Op

(
N−3/2

)
= N−1/2op (W ′ΓW/N), it follows that

√
NR̂Λ = op (ρW,N ). Now turn to Λq (W ), where

by Lemma 7.15 and

Λβ,m (β0)
′ (Λββ,m(β0))

−1 Λβ,m (β0)

=
(

h√
N

− f ′(I − Pm)ϵ
N

+
v′Pmϵ

N

)′ (
H̄−1

m + op (1)
)(

h√
N

− f ′(I − Pm)ϵ
N

+
v′Pmϵ

N

)
+ op (1)

=
h′H̄−1

m h

N
− N−3/2h′H̄−1

m f ′(I − Pm)ϵ + N−3/2h′H̄−1
m v′Pmϵ + N−3/2ϵ′(I − Pm)fH̄−1

m h

+N−2ϵ′(I − Pm)fH̄−1
m f ′(I − Pm)ϵ + N−2ϵ′(I − Pm)fH̄−1

m v′Pmϵ

+N−3/2ϵ′PmvH̄−1
m h + N−2ϵ′PmvH̄−1

m f ′(I − Pm)ϵ + N−2ϵ′PmvH̄−1
m v′Pmϵ + terms of lower order.

Next, consider

N−3/2

∥∥∥∥∥
M∑

m=1

wmh′H̄−1
m f ′(I − Pm)ϵ

∥∥∥∥∥ ≤ ∥h/N∥
M∑

m=1

|wm|
∥∥H̄−1

m

∥∥∥∥∥f ′(I − Pm)ϵ/
√

N
∥∥∥ = Op

(
N−1

)
,

where supm≤M

∥∥∥ϵ′(I − Pm)f/
√

N
∥∥∥ = Op (1) by Lemma 7.11 2). For N−3/2h′H̄−1

m v′Pmϵ, note that

E

[∥∥∥v′Pmϵ/
√

N
∥∥∥2

|z
]

= trE [v′Pmϵϵ′Pmv/N |z] (7.47)

=
mσ2

ϵ

N
trΣv +

Cum[vi, vi, ϵi, ϵi]
N

n∑
i=1

(Pm,ii)2

such that by the Markov inequality

N−3/2

∥∥∥∥∥
M∑

m=1

wmh′H̄−1
m v′Pmϵ

∥∥∥∥∥ ≤ ∥h/N∥
M∑

m=1

|wm|
∥∥H̄−1

m

∥∥ ∥∥∥v′Pmϵ/
√

N
∥∥∥

≤ Op

(
N−1

)
Op

(
M∑

m=1

|wm|
√

m/N

)
= Op

(
N−1

)
.

For N−2ϵ′(I − Pm)fH̄−1
m f ′(I − Pm)ϵ, note that

N−2

∥∥∥∥∥
M∑

m=1

wmϵ′(I − Pm)fH̄−1
m f ′(I − Pm)ϵ

∥∥∥∥∥ ≤ N−1
M∑

m=1

|wm|
∥∥H̄−1

m

∥∥ ∥∥∥f ′(I − Pm)ϵ/
√

N
∥∥∥2

= Op

(
N−1

)
.

For N−2ϵ′(I − Pm)fH̄−1
m v′Pmϵ, note that

N−2

∥∥∥∥∥
M∑

m=1

wmϵ′(I − Pm)fH̄−1
m v′Pmϵ

∥∥∥∥∥ ≤ N−1 sup
m≤M

∥∥∥ϵ′(I − Pm)f/
√

N
∥∥∥ M∑

m=1

|wm|
∥∥∥v′Pmϵ/

√
N

∥∥∥
= op

(
N−1

)
by Lemma 7.11 and (7.47). For N−3/2ϵ′PmvH̄−1

m h, it follows that

N−3/2

∥∥∥∥∥
M∑

m=1

wmϵ′PmvH̄−1
m h

∥∥∥∥∥ ≤ ∥h/N∥
M∑

m=1

|wm|
∥∥H̄−1

m

∥∥∥∥∥v′Pmϵ/
√

N
∥∥∥ = op

(
N−1

)
by (7.47) and the Markov inequality. For N−2ϵ′PmvH̄−1

m v′Pmϵ, it holds that

N−2

∥∥∥∥∥
M∑

m=1

wmϵ′PmvH̄−1
m v′Pmϵ

∥∥∥∥∥ ≤ N−1
M∑

m=1

|wm|
∥∥H̄−1

m

∥∥ ∥∥∥ϵ′Pmv/
√

N
∥∥∥2

= op

(
N−1

)
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by (7.47) and the Markov inequality. Together these results imply that

M∑
m=1

wm

(
Λβ,m (β0)

′ (Λββ,m(β0))
−1 Λβ,m (β0)

)
=

h′H̄−1 (W ) h

N
+ Op

(
N−1

)
= Op

(
N−1

)
, (7.48)

where H̄−1 (W ) =
∑M

m=1 wmH̄−1
m and

∥∥H̄−1 (W )
∥∥ ≤

∑M
m=1 |wm|

∥∥H̄−1
m

∥∥ = O (1) .

To sum up, we have

Λ̂ (W ) =
M∑

m=1

wmΛm(β0) − Λq (W ) + Op

(
1

N3/2

)
= Λ̃ (W ) −

(
σ̃2

ϵ

σ2
ϵ

− 1
)

Λ̃ (W ) +
(σ̃2

ϵ − σ2
ϵ )2

σ̃2
ϵ σ2

ϵ

Λ̃ (W ) − Λq (W ) + Op

(
1

N3/2

)
= Λ̃ (W ) −

(
σ̃2

ϵ

σ2
ϵ

− 1
)

Λ̃ (W ) − Λq (W ) + Op

(
1

N3/2

)
,

where the last equality follows by (σ̃2
ϵ − σ2

ϵ )2 = Op(1/N). This proves the first equality in the lemma.

We now consider the second equality in the lemma. We have from (7.46) that(
σ̃2

ϵ

σ2
ϵ

− 1
)

Λ̃ (W ) = Op

(
1√
N

)(
K ′W

N
+ Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

))

= Op

(
K ′W

N3/2

)
+ op

(
ρW,N√

N

)
.

We also have that

Λq (W ) = Op

(
1
N

)
form (7.48). It therefore follows that

Λ̂ (W ) = Λ̃ (W ) + Op

(
1
N

)
+ Op

(
K ′W

N3/2

)
+ op

(
ρW,N√

N

)
.

Lemma 7.18 Suppose that Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied. The the following statements

hold:

1. u′P (W )u/N − Λ̃ (W ) Σu = Op

(√
W ′ΓW +

∑
i(Pii(W ))2/N

)
,

2. E[hΛ̃ (W ) ϵ′v/
√

N |z] = (K ′W/N)
∑

i fiE(ϵ2i v
′
i)/N + Op(1/N) + Op(K ′W+/N2),

3. E[hh′H̄−1 (W )h/
√

N |z] = Op(1/N),

4.
∑M

m=1 wmE
[
hh′H̄−1

m f ′(I − Pm)ϵ/N |z
]

= Op (1/N),

5.
∑M

m=1 wmE
[
hh′H̄−1

m v′Pmϵ/N |z
]

= op (1/N),

6.
∑M

m=1 wmE
[
hϵ′(I − Pm)fH̄−1

m f ′(I − Pm)ϵ/N−3/2|z
]

= Op (1/N),

7.
∑M

m=1 wmE
[
hϵ′(I − Pm)fH̄−1

m v′Pmϵ/N−3/2|z
]

= op (1/N),

8.
∑M

m=1 wmE
[
hϵ′PmvH̄−1

m v′Pmϵ/N−3/2|z
]

= Op (1/N).
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Proof. We begin with the proof of part 1. It holds that E
[
Λ̃(W )|z

]
= tr(P (W )E [ϵϵ′])/(Nσ2

ϵ ) =

(K ′W )/N . We also have

E

[(
Λ̃(W ) − K ′W

N

)2

|z

]
=

E [ϵ′P (W )ϵϵ′P (W )ϵ|z]
N2σ4

ϵ

−
(

K ′W

N

)2

=
σ4

ϵ (K ′W )2 + 2σ4W ′ΓW + Op(
∑

i(Pii(W ))2)
N2σ4

ϵ

−
(

K ′W

N

)2

= Op

(
W ′ΓW +

∑
i(Pii(W ))2

N2

)
,

by Lemma 7.6(4) with replacing u by ϵ and Lemma 7.5(2). This gives(
Λ̃(W ) − K ′W

N

)
Σu = Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

)
.

Similarly, we have
u′P (W )u

N
− K ′W

N
Σu = Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

)
.

Thus, part 1 is proved.

For part 2, we observe

E

[
hΛ̃ (W ) ϵ′v√

N
|z

]
=

∑
i,j,k,l E[fiϵiϵjPjk(W )ϵkϵlv

′
l]

N2σ2
ϵ

=
∑

i fiPii(W )E[ϵ4i v
′
i]

N2σ2
ϵ

+ 2

∑
i ̸=j fiPij(W )E[ϵ2jv

′
j ]

N2
+

∑
i ̸=j fiPjj(W )E[ϵ2i v

′
i]

N2

= Op

(
K ′W+

N2

)
+ op

(
K ′W+

N2

)
+

∑
i,j fiPjj(W )E[ϵ2i v

′
i]

N2
−

∑
i fiPii(W )E[ϵ2i v

′
i]

N2

=
K ′W

N

∑
i fiE[ϵ2i v

′
i]

N
+ Op

(
1
N

)
+ Op

(
K ′W+

N2

)
,

where Lemma 7.6(5) implies that∑
i fiPii(W )E[ϵ4i v

′
i]

N2σ2
ϵ

= Op

(
K ′W+

N2

)
,∑

i fiPii(W )E[ϵ2i v
′
i]

N2σ2
ϵ

= Op

(
K ′W+

N2

)
and the fact for fa,i the a-th element of fi,∣∣∣∣

∑
i ̸=j fa,iPij(W )

N2

∣∣∣∣ ≤
∑M

m=1 |wm| |(f ′
aPm1N )|

N2
−

∑
i fiPii(W )

N2

≤
∑M

m=1 |wm| (f ′Pmf)1/2 (1′
N1N )1/2

N2
+ Op

(
K ′W+

N2

)
≤

(
f ′

afa

N

)1/2 ∑M
m=1 |wm|

N
+ Op

(
K ′W+

N2

)
= Op

(
1
N

)
+ Op

(
K ′W+

N2

)
,

gives ∑
i̸=j fiPij(W )E[ϵ2jv

′
j ]

N2
= Op

(
1
N

)
+ Op

(
K ′W+

N2

)
.
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Part 3 follows Lemma A.8(iii) in Donald and Newey (2001). We have

E[hh′H̄−1 (W )h/
√

N |z] =
M∑

m=1

wm

N∑
i1,...,i3=1

E
[
fi1ϵi1ϵi2f

′
i2H̄

−1
m fi3ϵi3 |z

]
/N2 (7.49)

=
M∑

m=1

wm

N∑
i=1

E
[
ϵ3i |z

]
fif

′
iH̄

−1
m fi/N

2 = Op (1/N) .

For part 4, let f̃ ′
i,m be the i-th row of f ′(I − Pm) such that

E
[
hh′H̄−1

m f ′(I − Pm)ϵ/N |z
]

=
N∑

i1,...,i3=1

E
[
fi1ϵi1ϵi2f

′
i2H̄

−1
m f̃i3,mϵi3 |z

]
/N2 = Op (1/N)

by the same argument as in (7.49).

For part 5, consider

E
[
hh′H̄−1

m v′Pmϵ/N |z
]

=
N∑

i1,...,i4=1

E
[
fi1ϵi1ϵi2f

′
i2H̄

−1
m vi3Pm,i3i4ϵi4 |z

]
/N2

=
N∑

i1,...,i4=1

fi1f
′
i2H̄

−1
m Pm,i3i4E [ϵi1ϵi2vi3ϵi4 |z] /N2

=
N∑

i=1

fif
′
iH̄

−1
m Pm,iiCum [ϵi, ϵi, vi, ϵi|z] /N2 = op

(
N−1

)
.

For part 6, let f̃ ′
i,m be the i-th row of f ′(I − Pm) such that

E
[
hϵ′(I − Pm)fH̄−1

m f ′(I − Pm)ϵ/N−3/2|z
]

=
∑N

i1,...,i3=1
E

[
fi1ϵi1ϵi2 f̃

′
i2,mH̄−1

m f̃i3,mϵi3 |z
]
/N2 = Op (1/N) .

For part 7, consider

E
[
hϵ′(I − Pm)fH̄−1

m v′Pmϵ/N−3/2|z
]

=
N∑

i1,...,i4=1

E
[
fi1ϵi1ϵi2 f̃

′
i2,mH̄−1

m vi3Pm,i3i4ϵi4 |z
]
/N2

=
N∑

i=1

fif̃
′
iH̄

−1
m Pm,iiCum [ϵi, ϵi, vi, ϵi|z] /N2 = op

(
N−1

)
.

For part 8, consider

E
[
hϵ′PmvH̄−1

m v′Pmϵ/N−3/2|z
]

(7.50)

=
N∑

i1,...,i5=1

E
[
fi1ϵi1ϵi2Pm,i2i3v

′
i3H̄

−1
m vi4Pm,i4i5ϵi5 |z

]
/N2
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=
N∑

i1,i2=1

σ2
ϵ fi1Pm,i1i2Pm,i2i2tr

(
H̄−1

m E
[
vi2v

′
i2ϵi2 |z

])
/N2

+
N∑

i1,i2=1

σ2
ϵ fi1Pm,i1i1Pm,i1i2tr

(
H̄−1

m E
[
vi1v

′
i1ϵi1 |z

])
/N2

+
N∑

i1,i2=1

σ2
ϵ fi1Pm,i2i1Pm,i1i2tr

(
H̄−1

m E
[
vi1v

′
i1ϵi1 |z

])
/N2

+
N∑

i1,i2=1

E
[
ϵ3i2 |z

]
fi1Pm,i2i1Pm,i1i2tr

(
H̄−1

m E
[
vi1v

′
i1 |z

])
/N2

+
N∑

i=1

fiP
2
m,iitr

(
H̄−1

m Cum [ϵi, ϵi, vi, v
′
i, ϵi|z]

)
/N2,

where E [viv
′
iϵi|z] does not depend on z by Assumption 3 and for the first term in (7.50) we have

N∑
i1,i2=1

fi1Pm,i1i2Pm,i2i2 =
N∑

i1,i2=1

fi1Pm,i1i2 = f ′Pm1N ≤ (f ′f)1/2 (1′
NPm1N )1/2 ≤

√
N (f ′f)1/2

such that

N∑
i1,i2=1

σ2
ϵ fi1Pm,i1i2Pm,i2i2tr

(
H̄−1

m E
[
vi2v

′
i2ϵi2 |z

])
/N2 = N−1 (f ′f/N)1/2 = Op

(
N−1

)
where a similar arguments shows that the second term in (7.50) is Op

(
N−1

)
. Next,

N∑
i1,i2=1

fi1Pm,i2i1Pm,i1i2 =
N∑

i1,i2=1

fi1Pm,i1i2Pm,i2i1 =
N∑

i=1

fiPm,ii ≤ sup
i

∥fi∥
N∑

i=1

Pm,ii = Op (m) ,

where supi ∥fi∥ = Op (1) by Assumption 3(iv) such that the third term in (7.50) is Op

(
m/N2

)
= op

(
N−1

)
and the same argument also shows that the fourth term in (7.50) is op

(
N−1

)
. Finally,

N∑
i=1

fiP
2
m,iitr

(
H̄−1

m Cum [ϵi, ϵi, vi, v
′
i, ϵi|z]

)
/N2 ≤

∣∣tr (
H̄−1

m Cum [ϵi, ϵi, vi, v
′
i, ϵi|z]

)∣∣ sup
i

∥fi∥
N∑

i=1

P 2
m,ii

= op

(
m/N2

)
= op

(
N−1

)
.

These results establish that
∑M

m=1 wmE
[
hϵ′PmvH̄−1

m v′Pmϵ/N−3/2|z
]

= Op

(
N−1

)
as desired.

7.4 Proof of Theorem 7.2

Proof. The MALIML estimator, β̂ defined in (2.3), has the form:

√
N(β̂L − β0) = Ĥ−1ĥ,

Ĥ = X ′P (W )X/N − Λ̂ (W ) X ′X/N, ĥ = X ′P (W )ϵ/
√

N − Λ̂ (W ) X ′ϵ/
√

N.
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Also Ĥ and ĥ are decomposed as

ĥ = h +
5∑

j=1

Th
j + Zh,

Th
1 = −f ′(I − P (W ))ϵ/

√
N, Th

2 = v′P (W )ϵ/
√

N,

Th
3 = −Λ̃ (W )

f ′ϵ√
N

, Th
4 = −Λ̃ (W )

v′ϵ√
N

, Th
5 =

√
NΛq (W )σuϵ,

Zh =
(
Λ̃ (W ) − Λ̂ (W ) + R̂Λ

)√
N

(
X ′ϵ

N
− σuϵ

)
− R̂Λ

X ′ϵ√
N

,

and

Ĥ = H +
3∑

j=1

TH
j + ZH ,

TH
1 = −f ′(I − P (W ))f/N, TH

2 = (u′f + f ′u)/N, TH
3 = −Λ̃ (W ) f ′f/N

ZH = u′P (W )u/N − Λ̃ (W )Σu − u′(I − P (W ))f/N − f ′(I − P (W ))u/N

+Λ̃ (W ) (H + Σu) − Λ̂ (W ) X ′X/N.

Let Th =
∑5

j=1 Th
j and TH =

∑3
j=1 TH

j . We give the order of each term. By Lemma 7.5(6), we have

h = Op(1) and H = Op(1). (7.51)

Lemma 7.6(2) gives

Th
1 = Op(∆(W )1/2). (7.52)

A similar argument to Lemma 7.6(4) (note that E[viϵi] = 0), we have

Th
2 = Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

)
. (7.53)

Lemma 7.17 and the CLT gives

Th
3 =

(
K ′W

N
+ Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

))
Op(1)

= Op

(
K ′W

N
+

√
W ′ΓW +

∑
i(Pii(W ))2

N

)
(7.54)

and

Th
4 = Op

(
K ′W

N
+

√
W ′ΓW +

∑
i(Pii(W ))2

N

)
. (7.55)

By Lemma 7.17, we have

Th
5 = Op

(
1√
N

)
. (7.56)

By definition, we have

TH
1 = Op(Ξ(W )), (7.57)
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where Ξ(W ) is defined in (7.10). By a CLT, we have

TH
2 = Op

(
1√
N

)
. (7.58)

By Lemma 7.17 and Lemma 7.5(6), it holds that

TH
3 =

(
K ′W

N
+ Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

))
Op(1)

= Op

(
K ′W

N
+

√
W ′ΓW +

∑
i(Pii(W ))2

N

)
. (7.59)

By Lemma 7.17 together with the CLT which implies that
√

N
(

X′ϵ
N − σuϵ

)
= Op (1), as well as

Λ̃ (W ) − Λ̂ (W ) + R̂Λ =
(

σ̃2
ϵ

σ2
ϵ

− 1
)

Λ̃ (W ) + Λq (W )

= Op

(
N−1/2

)
Op

(
K ′W

N
+

√
W ′ΓW +

∑
i(Pii(W ))2

N

)
+ Op

(
N−1

)
,

it follows that

Zh = Op

(
K ′W

N
+ Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

))
Op

(
1√
N

)
+Op

(
1
N

)
+ op(ρW,N )Op(1)

= Op

(
K ′W

N3/2
+

√
W ′ΓW +

∑
i(Pii(W ))2

N3/2

)
+ Op

(
1
N

)
+ op(ρW,N )

= op(ρW,N ), (7.60)

where 1/N = op(W ′ΓW/N) = op(ρW,N ). Lastly, we have

Λ̃ (W ) (H + Σu) − Λ̂ (W ) X ′X/N = Λ̃ (W ) (H + Σu − X ′X/N) −
(
Λ̂ (W ) − Λ̃ (W )

)
X ′X/N

= op(ρW,N ) + Op

(
1
N

)
+ Op

(
K ′W

N3/2

)
+ op

(
ρW,N√

N

)
= op (ρW,N ) ,

where (H + Σu − X ′X/N) = Op

(
1/
√

N
)

and Λ̂ (W ) − Λ̃ (W ) = Op

(
1
N

)
+ Op

(
K′W
N3/2

)
+ op

(
ρW,N√

N

)
from

Lemma 7.17. It then follows that

ZH = op (ρW,N ) + Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

)
+ Op

(
∆(W )1/2

√
N

)
= op(ρW,N ), (7.61)

by Lemmas 7.18(1), 7.6(2), 7.17, the CLT and the LLN.

We show below that the conditions of Lemma A.1 of Donald and Newey (2001) are satisfied and S(W )

has the form given in the theorem.
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We first have h = Op(1) and H = Op(1) by (7.51). Next, we need to show that Th = op(1). By (7.52),

(7.53), (7.54), (7.55) and (7.56), it follows that

Th
1 = Op

(
∆(W )1/2

)
+ Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

)

+Op

(
K ′W

N
+

√
W ′ΓW +

∑
i(Pii(W ))2

N

)
+ Op

(
1√
N

)
.

Now, Lemma 7.6(2) says that ∆(W ) = op(1). We have |K ′W/N | ≤ K ′W+/N → 0 by Assumption 5. By

Lemma 7.6(12) and Assumption 5, it holds that W ′ΓW/N ≤ CK ′W+/N → 0, where C is some constant.

Lemma 7.5(2) implies that
∑

i(Pii(W ))2/N = op(K ′W+/N) = op(1). Thus, Th
1 = op(1) is shown.

The next step is to show that ||TH ||2 = op(ρW,N ). We have, by (7.57), (7.58) and (7.59),

||TH ||2 = Op

(
Ξ(W )2 +

1
N

+
Ξ(W )√

N
+

(K ′W )2

N2
+

|K ′W |
N

√
W ′ΓW +

∑
i(Pii(W ))2

N

+
W ′ΓW +

∑
i(Pii(W ))2

N2
+ Ξ(W )

|K ′W |
N

+ Ξ(W )

√
W ′ΓW +

∑
i(Pii(W ))2

N

+
|K ′W |
N3/2

+

√
W ′ΓW +

∑
i(Pii(W ))2

N3/2

)
.

Since
√

W ′ΓW +
∑

i(Pii(W ))2/N = Op

((
W ′ΓW +

∑
i(Pii(W ))2

)
/N

)
= op(ρW,N ), |K ′W |/N3/2 = o(|K ′W |/N) =

op(ρW,N ), (K ′W )2/N2 = o(K ′W/N) = op(ρW,N ), 1/N = op(ρW,N ) and the observation that Ξ(W )/
√

N =

op(ρW,N ) by Lemma 7.6(6) and Ξ(W ) = Op(∆(W )1/2), we have

||TH ||2 = Op

(
(Ξ(W ))2

)
+ op(ρW,N ).

The order of (Ξ(W ))2 is op(ρW,N ) by Lemma 7.7. Next, we consider ||Th|| · ||TH ||. We have, by (7.52) -

(7.59),

||Th|| · ||TH ||

= Op

(
∆(W )1/2 +

√
W ′ΓW +

∑
i(Pii(W ))2

N
+

|K ′W |
N

+

√
W ′ΓW +

∑
i(Pii(W ))2

N
+

1
N

)

·Op

(
Ξ(W ) +

1√
N

+
|K ′W |

N
+

√
W ′ΓW +

∑
i(Pii(W ))2

N

)

= Op

(
∆(W )1/2Ξ(W ) +

∆(W )1/2

√
N

+

√
W ′ΓW +

∑
i(Pii(W ))2

N
+ Ξ(W )

√
W ′ΓW +

∑
i(Pii(W ))2

N

)
+op(ρW,N )

= Op

(
∆(W )1/2Ξ(W ) + Ξ(W )

√
W ′ΓW +

∑
i(Pii(W ))2

N

)
+ op(ρW,N ) = op(ρW,N ),

since op(1)|K ′W |/N = op(ρW,N ),
√

W ′ΓW +
∑

i(Pii(W ))2/N = op(ρW,N ), 1/N = op(ρW,N ), ∆(W )1/2/
√

N =

op(ρW,N ) by Lemma 7.6(6) and the order of Ξ(W ) is op(∆(W )1/2) by Lemma 7.7. Lastly, it holds that

Zh = op(ρW,N ) and ZH = op(ρW,N ) by (7.60) and (7.61).
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We have shown that the conditions of Lemma A.1 of Donald and Newey (2001)12 are satisfied and we

apply the lemma with

Â(W ) = (h + Th
1 + Th

2 )(h + Th
1 + Th

2 )′ + h(Th
3 + Th

4 + Th
5 )′ + (Th

3 + Th
4 + Th

5 )h′

−hh′H−1(TH
1 + TH

2 + TH
3 ) − (TH

1 + TH
2 + TH

3 )H−1hh′

and

ZA(W ) = (Th
3 + Th

4 + Th
5 )(Th

3 + Th
4 + Th

5 )′

+(Th
3 + Th

4 + Th
5 )(Th

1 + Th
2 )′ + (Th

1 + Th
2 )(Th

3 + Th
4 + Th

5 ).

We show that ZA(W ) = op(ρW,N ). By (7.54), (7.55) and the fact that
√

W ′ΓW +
∑

i(Pii(W ))2/N =

op(ρW,N ), it holds that

(Th
3 + Th

4 )(Th
3 + Th

4 )′ = Op

((
K ′W

N

)2
)

+ op(ρW,N ) = op(ρW,N ).

By (7.54), (7.55), (7.56) and the fact that
√

W ′ΓW +
∑

i(Pii(W ))2/N3/2 = op(ρW,N ), it holds that

Th
5 (Th

3 + Th
4 )′ = Op

(
K ′W

N3/2

)
+ op(ρW,N ) = op(ρW,N ).

By (7.56), we have

Th
5 (Th

5 )′ = Op

(
1
N

)
= op(ρW,N ).

By (7.52), (7.54), (7.55) and the fact that
√

W ′ΓW +
∑

i(Pii(W ))2/N = op(ρW,N ), we have

Th
1 (Th

3 + Th
4 ) = Op

(
∆(W )1/2 K ′W

N

)
+ op(ρW,N ) = op(ρW,N ),

since ∆(W )1/2 = op(1) by Lemma 7.6(2). By (7.53), (7.54), (7.55) and the fact that
√

W ′ΓW +
∑

i(Pii(W ))2/N =

op(ρW,N ), it follows that

Th
2 (Th

3 + Th
4 ) = Op

(
K ′W

N

√
W ′ΓW +

∑
i(Pii(W ))2

N

)
+ op(ρW,N ) = op(ρW,N ).

Lemma 7.6(6), (7.52) and (7.56) imply that

Th
5 (Th

1 )′ = Op

(
∆(W )1/2

√
N

)
= op(ρW,N ).

Lastly, we have

Th
5 (Th

2 )′ = Op

(√
W ′ΓW +

∑
i(Pii(W ))2

N

)
= op(ρW,N ),

12We note that here we do not need to use our Lemma 7.1, which is a modified version of Lemma A.1

Donald and Newey (2001).
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by (7.53), (7.56) and the fact that
√

W ′ΓW +
∑

i(Pii(W ))2/N = op(ρW,N ). To sum up, we have ZA(W ) =

op(ρW,N ).

Now, we calculate the expectation of each term in Â(W ). First of all, E[hh′|z] = E[fϵϵ′f ′/N |z] = σ2
ϵ H.

Second, we have

E[hTh′
1 |z] = E

[
−f ′ϵϵ′(I − P (W ))f

N
|z

]
= −σ2

ϵ

f ′(I − P (W ))f
N

.

Similarly, it holds that E[Th
1 h′|z] = −σ2

ϵ f ′(I−P (W ))f/N . Third, Lemma 7.6(5) with replacing u by v gives

E[hTh′
2 |z] =

N∑
i=1

fiPii(W )E[ϵ2i vi|z]/N,

which is Op(K ′W+/N). Fourth,

E[Th
1 Th′

1 |z] = E

[
f ′(I − P (W ))ϵϵ′(I − P (W ))f

N
|z

]
= σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

.

Fifth, by Lemma 7.6(8) with replacing u by v, we obtain

E[Th
1 Th′

2 |z] = −E

[
f ′(I − P (W ))ϵϵ′P (W )v

N
|z

]
= −f ′(I − P (W ))µv(W )

N
,

where µv(W ) = (µv,1(W ), . . . , µv,N (W )) and µv,i = Pii(W )E[ϵ2i vi]. Similarly, we have E[Th
2 Th′

1 |z] =

−µv(W )(I − P (W ))f/N . Sixth, noting that E[viϵi|z] = 0, a similar argument as Lemma 7.6(4) gives

E[Th
2 Th′

2 |z] = σ2
ϵ Σv(W ′ΓW )/N + Cum[ϵi, ϵi, vi, v

′
i]

∑
i

(Pii(W ))2/N.

Seventh, we have

E[hh′H−1TH′
1 |z] = −E

[
f ′ϵϵ′fH−1f ′(I − P (W ))f

N2
|z

]
= −σ2

ϵ

f ′(I − P (W ))f
N

.

Similarly, we have E[TH
1 H−1hh′|z] = −σ2

ϵ f ′(I − P (W ))f/N . Eighth, Lemma 7.6(7) implies that

E[hh′H−1TH′
2 |z] = E

[
hh′H−1(u′f + f ′u)

N
|z

]
= Op

(
1
N

)
= op(ρW,N )

and that E[TH
2 H−1hh′|z] = op(ρW,N ). Ninth, we have

h(Th
3 )′ − hh′H−1(TH

3 )′ = Th
3 h′ − TH

3 H−1hh′ = 0.

Tenth, we have

E[h(Th
4 )′|z] = −K ′W

N

∑N
i=1 fiE[ϵ2i ui]

N
+ Op

(
1
N

)
+ Op

(
K ′W+

N2

)
= −K ′W

N

∑N
i=1 fiE[ϵ2i ui]

N
+ op(ρW,N ),

by Lemma 7.18(2). Similarly, we have E[Th
4 h′|z] = −(K ′W/N)(

∑N
i=1 fiE[ϵ2i ui]/N) + op(ρW,N ). Lastly,

Lemma 7.18(3)-(8) implies that

E[h(Th
5 )′|z] = Op

(
1
N

)
= op(ρW,N )
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and that E[Th
5 h′|z] = op(ρW,N ).

Let

ζ̂ =
N∑

i=1

fiPii(W )E[ϵ2i vi]/N − K ′W

N

N∑
i=1

fiE[ϵ2i vi]/N.

Note that ζ̂ = 0 under the third moment condition in the Theorem. Therefore, we have

E(Â(K)) = σ2
ϵ H − σ2

ϵ

f ′(I − P (W ))f
N

− σ2
ϵ

f ′(I − P (W ))f
N

− f ′(I − P (W ))µv(W )
N

− µv(W )′(I − P (W ))f
N

+σ2
ϵ Σv

W ′ΓW

N
+ Cum[ϵi, ϵi, vi, v

′
i]

∑
i(Pii(W ))2

N
+ ζ̂ + ζ̂ ′

+σ2
ϵ

f ′(I − P (W ))(I − P (W ))f
N

+ σ2
ϵ

f ′(I − P (W ))f
N

+ σ2
ϵ

f ′(I − P (W ))f
N

+ op(ρW,N )

= σ2
ϵ H + σ2

ϵ Σv
W ′ΓW

N
+ σ2

ϵ

f ′(I − P (W ))(I − P (W ))f
N

+Cum[ϵi, ϵi, vi, v
′
i]

∑
i(Pii(W ))2

N
− f ′(I − P (W ))µv(W )

N
− µv(W )′(I − P (W ))f

N

+ζ̂ + ζ̂ ′ + op(ρW,N ).

By Lemma A.1 of Donald and Newey (2001), we have the desired result.

For the MAFuller estimator β̂ defined in (2.4) the result can be established by noting the following. By

the construction of Λ̂m, we have 0 ≤ 1 − Λ̂m≤ 1. Therefore,

0 < Λ̌m − Λ̂m =
α

N−m(1 − Λ̂m)2

1 − α
N−m(1 − Λ̂m)

=
α((1 − Λ̂m)2)

N − m − α(1 − Λ̂m)
≤ α

N − M − α
= O

(
1
N

)
uniformly over m. It therefore follows that

Λ̌(W ) = Λ̂(W ) + Op(1/N). (7.62)

Now let ρW,N= tr(S(W )). We have

X ′P (W )X
N

− Λ̌(W )
X ′X

N
=

X ′P (W )X
N

− Λ̂(W )
X ′X

N
+ Op

(
1
N

)
=

X ′P (W )X
N

− Λ̂(W )
X ′X

N
+ op (ρW,N ) ,

by (7.62), X ′X/N = Op(1) and 1/N = op(ρW,N ). Similarly, we have

X ′P (W )ϵ√
N

− Λ̌(W )
X ′ϵ√

N
=

X ′P (W )ϵ√
N

− Λ̂(W )
X ′ϵ√

N
+ Op

(
1
N

)
=

X ′P (W )ϵ√
N

− Λ̂(W )
X ′ϵ√

N
+ op (ρW,N ) .

Therefore, the higher order mean square errors of the MALIML and the MAFuller estimator are the same.
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7.5 Verification of Regularity Conditions for Unconstrained Optimal Weights

In order to demonstrate that the regularity conditions imposed are not too stringent, it is useful to consider

various optimal weights and verify that the conditions hold. We note that when Ω is equal to ΩU or ΩB , a

closed form solution for W ∗ is available. Let γ̃m = λ′H−1f ′(I − Pm)fH−1λ/N and U be the matrix whose

(i, j)-element is γ̃max(i,j) so that λ′H−1f ′(I − P (W ))(I − P (W ))fH−1λ/N = W ′UW . This implies that

Sλ (W ) is quadratic function in W and the optimal weight is given by solving the first order condition. For

the MALIML estimator with Ω = ΩU , we have

W ∗ = (1′
M (U + σ2

vΓ)−11M )−1(U + σ2
vΓ)−11M =



σ2
v

σ2
v+N(γ̃1−γ̃2)

− σ2
v

σ2
v+N(γ̃1−γ̃2)

+ σ2
v

σ2
v+N(γ̃2−γ̃3)

...

− σ2
v

σ2
v+N(γ̃M−2−γ̃M−1)

+ σ2
v

σ2
v+N(γ̃M−1−γ̃M )

− σ2
v

σ2
v+N(γ̃M−1−γ̃M ) + 1


such that

j∑
s=1

ws =
σ2

v

σ2
v + N (γ̃j − γ̃j+1)

.

It follows that for some ε > 0∣∣∣∣∣
j∑

s=1

ws

∣∣∣∣∣ ≤ j2α+1

N

σ2
v

j2α+1σ2
v/N + ε

wpa1 for j /∈ J̄

and ∣∣∣∣∣
j∑

s=1

ws

∣∣∣∣∣ ≤ L2α+1

N

σ2
v

ε
for j /∈ J̄ , j ≤ L

such that, for L = O
(
N

1
2(2α+1)

)
, it follows that

sup
j /∈J̄,j≤L

∣∣∣∣∣
j∑

s=1

ws

∣∣∣∣∣ = Op

(
1/
√

N
)

.

The case of MA2SLS with Ω = ΩU is handled next. The optimal weight is given by

W ∗
U

= arg min
W∈ΩU

Sλ(W ) =
1
2
A−1

(
Kλ′H−1BNH−1λ +

2 − 1′
MA−1Kλ′H−1BNH−1λ

1′
MA−11M

1M

)

= eM +
1
2

2(σ2
ϵ σ2

λ + σ2
λϵ + Mσ2

λϵ) − Bλ

σ2
λσ2

ϵ + σ2
λϵ + σ2

λϵ

∑M−1
j=1

σ2
λ+σ2

λϵ/σ2
ϵ

σ2
λ+σ2

λϵ/σ2
ϵ+N(γ̃j−γ̃j+1)



σ2
λ+σ2

λϵ/σ2
ϵ

σ2
λ+σ2

λϵ/σ2
ϵ+N(γ̃1−γ̃2)

− σ2
λ+σ2

λϵ/σ2
ϵ

σ2
λ+σ2

λϵ/σ2
ϵ+N(γ̃1−γ̃2)

+ σ2
λ+σ2

λϵ/σ2
ϵ

σ2
λ+σ2

λϵ/σ2
ϵ+N(γ̃2−γ̃3)

...

− σ2
λ+σ2

λϵ/σ2
ϵ

σ2
λ+σ2

λϵ/σ2
ϵ+N(γ̃M−1−γ̃M )

 .

First, consider

M−1∑
j=1

σ2
λ + σ2

λϵ/σ2
ϵ

σ2
λ + σ2

λϵ/σ2
ϵ + N(γ̃j − γ̃j+1)

≤ Op

 1
N

M−1∑
j=1

j2α+1 σ2
λ + σ2

λϵ/σ2
ϵ

j2α+1 (σ2
λ + σ2

λϵ/σ2
ϵ ) /N + ε

 = Op

(
M2α+2

N

)
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such that

2(σ2
ϵ σ2

λ + σ2
λϵ + Mσ2

λϵ) − Bλ

σ2
λσ2

ϵ + σ2
λϵ + σ2

λϵ

∑M−1
j=1

σ2
λ+σ2

λϵ/σ2
ϵ

σ2
λ+σ2

λϵ/σ2
ϵ+N(γ̃j−γ̃j+1)

=

 Op (M) if M2α+2

N = O (1) ,

Op

(
M−2α+1N

)
otherwise.

By the same argument as before we have∣∣∣∣∣
j∑

s=1

σ2
λ + σ2

λϵ/σ2
ϵ

σ2
λ + σ2

λϵ/σ2
ϵ + N(γ̃1 − γ̃2)

∣∣∣∣∣ ≤ L2α+1

N

σ2
λ + σ2

λϵ/σ2
ϵ

σ2
λ + σ2

λϵ/σ2
ϵ + ε

for j /∈ J̄ , j ≤ L

such that

sup
j /∈J̄,j≤L

∣∣∣∣∣
j∑

s=1

ws

∣∣∣∣∣ =

 Op

(
ML2α+1

N

)
if M2α+2

N = O (1) ,

Op

(
M−2α+1L2α+1

)
otherwise,

where in the first case the desired rate obtains if

L = o

((
N

M

)1/(2α+1)
)

and in the second case if

L = o
(
M

2α−1
2α+1

)
.

Note that when M = N it follows that M2α+2

N → ∞ such that the second case applies and L = o
(
N

2α−1
2α+1

)
delivers the desired result. The condition M2α+2

N = O (1) may be too restrictive in practice because the

optimal rate in the case of Donald and Newey (2001) is M = O
(
N1/(2a+2)

)
, indicating that the upper

bound M should grow faster for MA type estimators. This indicates that the second case is more relevant

in practice. The constraint on L in the second case is mild since L can go to infinity at arbitrarily slow rates

for Lemma 7.7 to hold.
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Table 4: Monte Carlo results: Model (a), LIML

LIML LIML
-All -DN -U -C -P -All -DN -U -C -P

c = 0.1 R2
f = 0.01 R2

f = 0.1
n = 100 bias 0.293 0.128 0.0958 0.0916 0.0873 0.037 0.05 0.051 0.0497 0.0337
K = 20 IQR 2 0.975 0.809 0.838 0.853 0.693 0.572 0.453 0.464 0.495

MAD 0.851 0.49 0.408 0.424 0.43 0.347 0.288 0.23 0.237 0.25
RMAD 1.74 1 0.833 0.865 0.879 1.2 1 0.801 0.825 0.868
KW+ 20 4.95 309 22.8 7.02 20 9.16 175 31.5 8.75
KW- 0 0 333 20.7 0 0 0 189 28 0

n = 1000
K = 30 bias 0.061 0.0833 0.0716 0.0665 0.0526 0.001 0.0017 0.015 0.0149 0.00371

IQR 0.826 0.633 0.492 0.505 0.578 0.147 0.146 0.147 0.144 0.146
MAD 0.409 0.323 0.251 0.258 0.292 0.074 0.0731 0.074 0.0731 0.0729

RMAD 1.27 1 0.777 0.8 0.903 1.01 1 1.01 1 0.998
KW+ 30 8.24 369 49.8 10.9 30 29.2 311 83.5 23.2
KW- 0 0 392 46.2 0 0 0 311 65.7 0

c = 0.5
n = 100 bias 0.289 0.46 0.458 0.449 0.432 0.021 0.198 0.227 0.222 0.171
K = 20 IQR 1.61 0.868 0.713 0.734 0.759 0.651 0.527 0.514 0.517 0.496

MAD 0.868 0.601 0.568 0.571 0.559 0.319 0.302 0.342 0.336 0.296
RMAD 1.45 1 0.945 0.951 0.931 1.06 1 1.13 1.11 0.979
KW+ 20 4.94 2860 22.4 7.05 20 9.36 166 25.7 8.96
KW- 0 0 3140 20.1 0 0 0 176 20.8 0

n = 1000
K = 30 bias 0.043 0.322 0.315 0.308 0.227 0.002 0.00661 0.016 0.0162 0.00984

IQR 0.769 0.572 0.548 0.552 0.553 0.142 0.141 0.146 0.146 0.142
MAD 0.384 0.396 0.409 0.402 0.348 0.071 0.0705 0.074 0.0735 0.0719

RMAD 0.971 1 1.03 1.01 0.878 1.01 1 1.04 1.04 1.02
KW+ 30 8.53 247 47.2 11.2 30 29.4 26.9 26.9 23.5
KW- 0 0 259 42.7 0 0 0 3.91 3.91 0

c = 0.9
n = 100 bias 0.139 0.708 0.793 0.79 0.777 -0.01 0.281 0.187 0.186 0.176
K = 20 IQR 9.46 0.561 0.514 0.518 0.505 0.507 0.399 0.435 0.435 0.413

MAD 0.831 0.83 0.822 0.819 0.802 0.234 0.343 0.282 0.282 0.27
RMAD 1 1 0.99 0.986 0.966 0.683 1 0.823 0.823 0.786
KW+ 20 5.61 140 20.3 7.4 20 10.8 36.5 13.4 10.3
KW- 0 0 152 17 0 0 0 29.8 4.07 0

n = 1000
K = 30 bias 0.006 0.413 0.244 0.244 0.226 0 0.00686 0.011 0.0101 0.0101

IQR 0.58 0.48 0.503 0.502 0.455 0.135 0.131 0.136 0.136 0.136
MAD 0.261 0.477 0.341 0.341 0.319 0.067 0.066 0.069 0.069 0.0689

RMAD 0.547 1 0.714 0.714 0.669 1.01 1 1.05 1.05 1.04
KW+ 30 12.3 126 23.8 13.4 30 29.6 23.9 23.9 23.9
KW- 0 0 123 12.6 0 0 0 0.008 0.008 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” =

∑M
m=1 max(wm, 0)m; “KW-” =

∑M
m=1 |min(wm, 0)|m.
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Table 5: Monte Carlo results: Model (b), LIML

LIML LIML
-All -DN -U -C -P -All -DN -U -C -P

c = 0.1 R2
f = 0.01 R2

f = 0.1
n = 100 bias 0.302 0.105 0.0949 0.0905 0.0805 0.031 0.0223 0.044 0.0413 0.0248
K = 20 IQR 2.01 0.92 0.745 0.773 0.793 0.693 0.438 0.352 0.36 0.403

MAD 0.859 0.454 0.381 0.393 0.4 0.35 0.22 0.179 0.183 0.203
RMAD 1.89 1 0.839 0.866 0.881 1.59 1 0.816 0.835 0.924
KW+ 20 4.55 152 23.6 6.64 20 5.58 406 35.8 6.13
KW- 0 0 168 22.4 0 0 0 451 38 0

n = 1000
K = 30 bias 0.073 0.0317 0.0622 0.0554 0.0342 0.002 0.00446 0.018 0.0153 0.00489

IQR 0.797 0.477 0.352 0.372 0.44 0.144 0.136 0.131 0.128 0.134
MAD 0.399 0.237 0.187 0.196 0.223 0.072 0.0681 0.067 0.065 0.0675

RMAD 1.68 1 0.789 0.828 0.942 1.05 1 0.989 0.954 0.99
KW+ 30 5.31 898 64.5 7.82 30 11.2 1390 115 11.4
KW- 0 0 959 69.1 0 0 0 1480 119 0

c = 0.5
n = 100 bias 0.292 0.375 0.419 0.417 0.391 0.015 0.11 0.134 0.132 0.0921
K = 20 IQR 1.6 0.821 0.718 0.742 0.737 0.65 0.398 0.471 0.466 0.442

MAD 0.864 0.542 0.535 0.536 0.528 0.317 0.225 0.266 0.264 0.233
RMAD 1.59 1 0.986 0.989 0.973 1.41 1 1.19 1.18 1.04
KW+ 20 4.56 132 22.6 6.72 20 5.84 189 22.4 6.89
KW- 0 0 144 21 0 0 0 207 20.3 0

n = 1000
K = 30 bias 0.053 0.152 0.17 0.17 0.12 0.001 0.0146 0.012 0.0117 0.00961

IQR 0.739 0.428 0.511 0.504 0.47 0.141 0.133 0.136 0.136 0.135
MAD 0.369 0.253 0.304 0.303 0.264 0.071 0.0682 0.07 0.0696 0.0683

RMAD 1.46 1 1.2 1.2 1.04 1.03 1 1.02 1.02 1
KW+ 30 6.14 262 40.7 9.02 30 12.2 16.4 16.4 13.1
KW- 0 0 282 39.3 0 0 0 4.78 4.78 0

c = 0.9
n = 100 bias 0.142 0.563 0.648 0.645 0.633 -0.01 0.113 0.033 0.0325 0.0323
K = 20 IQR 7.52 0.685 0.659 0.654 0.63 0.504 0.387 0.426 0.426 0.426

MAD 0.826 0.717 0.717 0.712 0.696 0.229 0.231 0.211 0.211 0.211
RMAD 1.15 1 1 0.993 0.971 0.993 1 0.917 0.917 0.915
KW+ 20 5.74 90.4 16.7 7.88 20 8.21 9.93 9.88 9.71
KW- 0 0 95.7 11.7 0 0 0 0.319 0.261 0

n = 1000
K = 30 bias 0.01 0.163 0.0425 0.0425 0.042 0.002 0.013 0.004 0.0042 0.0042

IQR 0.554 0.392 0.455 0.455 0.455 0.135 0.13 0.133 0.133 0.133
MAD 0.255 0.264 0.229 0.229 0.228 0.067 0.0665 0.066 0.0662 0.0662

RMAD 0.967 1 0.866 0.866 0.865 1 1 0.996 0.996 0.996
KW+ 30 10.9 14.1 14.1 13.9 30 16.9 16.3 16.3 16.3
KW- 0 0 0.251 0.251 0 0 0 0 0.0001 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” =

∑M
m=1 max(wm, 0)m; “KW-” =

∑M
m=1 |min(wm, 0)|m.
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Table 6: Monte Carlo results: Model (c), LIML

LIML LIML
-All -DN -U -C -P -All -DN -U -C -P

c = 0.1 R2
f = 0.01 R2

f = 0.1
n = 100 bias 0.305 0.136 0.0848 0.0883 0.0893 0.039 0.0354 0.038 0.0361 0.0299
K = 20 IQR 1.99 0.986 0.834 0.866 0.861 0.685 0.562 0.481 0.487 0.52

MAD 0.855 0.498 0.419 0.432 0.435 0.342 0.283 0.24 0.243 0.262
RMAD 1.72 1 0.842 0.867 0.874 1.21 1 0.848 0.86 0.928
KW+ 20 5.09 189 22.6 7.17 20 10.5 226 31 9.38
KW- 0 0 205 20.1 0 0 0 244 27.3 0

n = 1000
K = 30 bias 0.055 0.0953 0.0599 0.0525 0.0457 -0 470.0009 110 5870 5430.002

IQR 0.82 0.634 0.499 0.509 0.579 0.144 0.141 0.135 0.13 0.139
MAD 0.4 0.326 0.255 0.261 0.298 0.072 0.0702 0.068 0.0661 0.0693

RMAD 1.23 1 0.784 0.801 0.916 1.03 1 0.962 0.941 0.987
KW+ 30 10.3 524 48 12 30 21.8 1220 102 19.3
KW- 0 0 556 43.8 0 0 0 1310 105 0

c = 0.5
n = 100 bias 0.298 0.471 0.471 0.469 0.453 0.02 0.183 0.175 0.166 0.159
K = 20 IQR 1.63 0.883 0.736 0.759 0.766 0.653 0.515 0.499 0.492 0.482

MAD 0.882 0.605 0.565 0.575 0.561 0.322 0.295 0.297 0.292 0.282
RMAD 1.46 1 0.933 0.95 0.927 1.09 1 1.01 0.99 0.956
KW+ 20 5.05 142 22.3 7.19 20 10.6 118 24.1 9.68
KW- 0 0 157 19.8 0 0 0 124 18.4 0

n = 1000
K = 30 bias 0.037 0.311 0.255 0.241 0.215 -0 0.00909 0 0 0.00389

IQR 0.758 0.602 0.531 0.528 0.55 0.14 0.137 0.135 0.135 0.138
MAD 0.375 0.395 0.362 0.351 0.338 0.07 0.0687 0.068 0.0676 0.0693

RMAD 0.951 1 0.916 0.889 0.856 1.01 1 0.984 0.984 1.01
KW+ 30 10.6 242 44.4 12.2 30 22.3 23.4 23.4 20.9
KW- 0 0 256 39.1 0 0 0 5.32 5.32 0

c = 0.9
n = 100 bias 0.154 0.746 0.829 0.825 0.812 -0.01 3 0.246 0.21 2 0.2 1 0.203
K = 20 IQR 8.08 0.541 0.475 0.486 0.478 0.511 0.429 0.355 0.352 0.34

MAD 0.845 0.864 0.846 0.843 0.831 0.232 0.309 0.263 0.261 0.255
RMAD 0.978 1 0.979 0.976 0.961 0.749 1 0.852 0.844 0.825
KW+ 20 5.58 189 21.5 7.36 20 11.4 61.3 15.7 10.7
KW- 0 0 217 18.6 0 0 0 57.6 6.41 0

n = 1000
K = 30 bias -0 0.435 0.39 0.306 0.287 -0 0.0082 0.004 0.0036 0.00357

IQR 0.572 0.694 0.434 0.423 0.385 0.131 0.129 0.129 0.129 0.129
MAD 0.257 0.525 0.351 0.348 0.325 0.065 0.0652 0.064 0.0642 0.0643

RMAD 0.49 1 0.669 0.663 0.62 0.995 1 0.985 0.985 0.987
KW+ 30 12.2 325 33.2 13.5 30 24 22 22 21.9
KW- 0 0 337 23.8 0 0 0 0.05 0.0501 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” =

∑M
m=1 max(wm, 0)m; “KW-” =

∑M
m=1 |min(wm, 0)|m.
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Table 7: Monte Carlo results: Model (a), Fuller

Fuller Fuller
-All -DN -U -C -P -All -DN -U -C -P

c = 0.1 R2
f = 0.01 R2

f = 0.1
n = 100 bias 0.081 0.0938 0.0894 0.0824 0.0917 0.011 0.0521 0.0577 0.0579 0.0438
K = 20 IQR 1.21 0.508 0.519 0.568 0.489 0.625 0.446 0.386 0.398 0.407

MAD 0.609 0.265 0.272 0.294 0.251 0.31 0.227 0.198 0.206 0.208
RMAD 2.29 1 1.03 1.11 0.945 1.37 1 0.873 0.904 0.915
KW+ 20 3.72 785 34.6 5.13 20 8.4 310 36.5 8.05
KW- 0 0 870 38.6 0 0 0 346 35 0

n = 1000
K = 30 bias 0.02 0.0826 0.0788 0.0751 0.0594 0.002 0.00264 0.016 0.0159 0.0048

IQR 0.736 0.468 0.364 0.396 0.444 0.146 0.145 0.145 0.143 0.144
MAD 0.367 0.243 0.194 0.208 0.227 0.073 0.0721 0.0731 0.0721 0.0719

RMAD 1.51 1 0.8 0.857 0.934 1.01 1 1.01 1 0.996
KW+ 30 5.6 682 67.6 9.27 30 29.2 314 83.8 23.2
KW- 0 0 733 69.1 0 0 0 314 66 0

c = 0.5
n = 100 bias 0.397 0.489 0.479 0.473 0.47 0.067 0.261 0.284 0.275 0.226
K = 20 IQR 1.09 0.468 0.482 0.515 0.44 0.549 0.436 0.417 0.421 0.398

MAD 0.588 0.492 0.501 0.501 0.478 0.282 0.293 0.327 0.32 0.272
RMAD 1.19 1 1.02 1.02 0.97 0.962 1 1.12 1.09 0.93
KW+ 20 3.72 3870 33.8 5.14 20 8.45 254 30.3 8.23
KW- 0 0 4270 37.6 0 0 0 289 27.5 0

n = 1000
K = 30 bias 0.093 0.398 0.394 0.376 0.284 0.006 0.0107 0.0218 0.0218 0.0156

IQR 0.649 0.419 0.388 0.4 0.409 0.14 0.139 0.143 0.143 0.14
MAD 0.335 0.408 0.41 0.397 0.319 0.071 0.0705 0.0743 0.0743 0.0717

RMAD 0.822 1 1 0.975 0.782 1 1 1.05 1.05 1.02
KW+ 30 5.57 696 63.7 9.41 30 29.4 27 27 23.5
KW- 0 0 747 64.4 0 0 0 4.01 4 0

c = 0.9
n = 100 bias 0.69 0.863 0.852 0.846 0.841 0.082 0.401 0.315 0.315 0.297
K = 20 IQR 0.679 0.266 0.312 0.319 0.267 0.372 0.345 0.333 0.331 0.291

MAD 0.69 0.863 0.858 0.852 0.841 0.201 0.404 0.32 0.319 0.301
RMAD 0.799 1 0.994 0.987 0.974 0.498 1 0.791 0.789 0.746
KW+ 20 3.87 565 31 5.46 20 9.4 66.6 16 9.51
KW- 0 0 623 33.7 0 0 0 66.7 8.33 0

n = 1000
K = 30 bias 0.098 0.624 0.435 0.435 0.383 0.009 0.0149 0.0198 0.0198 0.0197

IQR 0.405 0.391 0.42 0.404 0.289 0.131 0.128 0.131 0.131 0.131
MAD 0.226 0.625 0.436 0.436 0.383 0.066 0.0654 0.0688 0.0688 0.0688

RMAD 0.362 1 0.698 0.698 0.614 1.01 1 1.05 1.05 1.05
KW+ 30 7.8 346 36.3 11.3 30 29.6 23.9 23.9 23.9
KW- 0 0 366 30.1 0 0 0 0.0084 0.0084 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN “KW+” =

∑M
m=1 max(wm, 0)m; “KW-” =

∑M
m=1 |min(wm, 0)|m.
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Table 8: Monte Carlo results: Model (b), Fuller

Fuller Fuller
-All -DN -U -C -P -All -DN -U -C -P

c = 0.1 R2
f = 0.01 R2

f = 0.1
n = 100 bias 0.072 0.0786 0.0912 0.089 0.0823 0.006 0.0284 0.0464 0.0439 0.0325
K = 20 IQR 1.18 0.53 0.508 0.539 0.489 0.617 0.393 0.323 0.33 0.361

MAD 0.601 0.269 0.267 0.285 0.25 0.31 0.198 0.169 0.171 0.182
RMAD 2.23 1 0.991 1.06 0.927 1.57 1 0.855 0.867 0.923
KW+ 20 3.54 606 33.7 5.01 20 5.44 442 38.1 5.9
KW- 0 0 730 37.8 0 0 0 491 41.2 0

n = 1000
K = 30 bias 0.033 0.0373 0.0672 0.0608 0.0417 0.003 0.00522 0.0188 0.016 0.0057

IQR 0.702 0.419 0.31 0.332 0.391 0.142 0.134 0.13 0.127 0.132
MAD 0.354 0.212 0.169 0.178 0.197 0.072 0.0678 0.0669 0.0642 0.0666

RMAD 1.67 1 0.799 0.841 0.927 1.06 1 0.987 0.948 0.983
KW+ 30 4.85 1060 71.4 7.26 30 11.2 1410 116 11.4
KW- 0 0 1130 78.2 0 0 0 1490 120 0

c = 0.5
n = 100 bias 0.398 0.44 0.442 0.437 0.434 0.064 0.144 0.17 0.169 0.131
K = 20 IQR 1.09 0.487 0.497 0.52 0.456 0.546 0.361 0.409 0.403 0.383

MAD 0.59 0.45 0.473 0.469 0.447 0.283 0.214 0.25 0.249 0.217
RMAD 1.31 1 1.05 1.04 0.992 1.32 1 1.17 1.16 1.02
KW+ 20 3.53 383 32.3 5.06 20 5.62 217 23.9 6.59
KW- 0 0 430 36.1 0 0 0 239 22.7 0

n = 1000
K = 30 bias 0.106 0.192 0.22 0.218 0.168 0.006 0.0185 0.0166 0.0166 0.0144

IQR 0.627 0.37 0.443 0.433 0.401 0.139 0.131 0.134 0.134 0.133
MAD 0.328 0.245 0.295 0.291 0.248 0.07 0.0684 0.0695 0.0695 0.0687

RMAD 1.34 1 1.2 1.18 1.01 1.03 1 1.01 1.01 1
KW+ 30 5.3 339 45.5 8.29 30 12.2 16.4 16.4 13
KW- 0 0 366 46.2 0 0 0 4.92 4.92 0

c = 0.9
n = 100 bias 0.692 0.754 0.754 0.752 0.746 0.079 0.188 0.119 0.119 0.119
K = 20 IQR 0.673 0.332 0.391 0.39 0.35 0.367 0.304 0.318 0.318 0.315

MAD 0.692 0.754 0.763 0.756 0.746 0.205 0.229 0.193 0.193 0.193
RMAD 0.918 1 1.01 1 0.99 0.897 1 0.845 0.845 0.845
KW+ 20 3.9 423 22.8 6.09 20 7.71 10.1 9.79 9.49
KW- 0 0 475 22.4 0 0 0 0.856 0.453 0

n = 1000
K = 30 bias 0.106 0.249 0.14 0.14 0.138 0.01 0.0208 0.0126 0.0126 0.0126

IQR 0.396 0.297 0.318 0.318 0.318 0.132 0.127 0.129 0.129 0.129
MAD 0.221 0.271 0.204 0.204 0.203 0.066 0.0665 0.0666 0.0666 0.0666

RMAD 0.816 1 0.753 0.753 0.748 0.998 1 1 1 1
KW+ 30 9.6 25.9 14.1 13.3 30 16.8 16.3 16.3 16.3
KW- 0 0 14.8 1.08 0 0 0 0.0002 0.0002 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” =

∑M
m=1 max(wm, 0)m; “KW-” =

∑M
m=1 |min(wm, 0)|m.
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Table 9: Monte Carlo results: Model (c), Fuller

Fuller Fuller
-All -DN -U -C -P -All -DN -U -C -P

c = 0.1 R2
f = 0.01 R2

f = 0.1
n = 100 bias 0.075 0.0961 0.0978 0.0938 0.0922 0.009 0.0483 0.0523 0.048 0.0416
K = 20 IQR 1.2 0.508 0.531 0.58 0.48 0.61 0.425 0.397 0.408 0.417

MAD 0.602 0.269 0.285 0.308 0.253 0.306 0.217 0.201 0.208 0.211
RMAD 2.24 1 1.06 1.15 0.94 1.41 1 0.927 0.958 0.97
KW+ 20 3.76 487 34.5 5.2 20 9.45 416 36.8 8.52
KW- 0 0 542 38.1 0 0 0 457 35.7 0

n = 1000
K = 30 bias 0.022 0.084 0.0673 0.0602 0.0555 0 0.00185 0.0171 0.019 0.0032

IQR 0.722 0.44 0.363 0.388 0.457 0.143 0.139 0.133 0.129 0.137
MAD 0.36 0.224 0.194 0.207 0.229 0.072 0.0694 0.0672 0.0653 0.0685

RMAD 1.61 1 0.865 0.923 1.02 1.03 1 0.968 0.941 0.987
KW+ 30 6.75 1480 69.8 9.98 30 21.8 1230 103 19.3
KW- 0 0 1580 72.1 0 0 0 1320 106 0

c = 0.5
n = 100 bias 0.392 0.498 0.491 0.489 0.48 0.066 0.258 0.244 0.228 0.218
K = 20 IQR 1.09 0.449 0.48 0.524 0.436 0.546 0.439 0.412 0.408 0.389

MAD 0.579 0.503 0.509 0.511 0.486 0.282 0.296 0.286 0.275 0.259
RMAD 1.15 1 1.01 1.01 0.965 0.955 1 0.965 0.931 0.875
KW+ 20 3.77 664 34 5.21 20 9.6 287 29.9 8.8
KW- 0 0 746 37.6 0 0 0 317 26.8 0

n = 1000
K = 30 bias 0.088 0.427 0.333 0.304 0.277 0.003 0.0135 0.0054 0.0054 0.009

IQR 0.634 0.423 0.408 0.412 0.423 0.138 0.135 0.133 0.133 0.136
MAD 0.329 0.433 0.365 0.337 0.308 0.069 0.0678 0.0668 0.0668 0.0681

RMAD 0.761 1 0.843 0.779 0.711 1.02 1 0.985 0.985 1
KW+ 30 6.77 962 64.5 10.1 30 22.3 23.4 23.4 20.9
KW- 0 0 1030 65.8 0 0 0 5.44 5.44 0

c = 0.9
n = 100 bias 0.693 0.883 0.87 0.865 0.86 0.083 0.359 0.322 0.315 0.314
K = 20 IQR 0.673 0.24 0.286 0.305 0.25 0.367 0.548 0.31 0.291 0.265

MAD 0.693 0.883 0.875 0.87 0.86 0.207 0.37 0.327 0.319 0.314
RMAD 0.784 1 0.99 0.985 0.974 0.559 1 0.883 0.862 0.848
KW+ 20 3.83 555 33.4 5.33 20 10.2 201 20.7 9.84
KW- 0 0 642 36.7 0 0 0 215 13.9 0

n = 1000
K = 30 bias 0.095 0.817 0.473 0.45 0.407 0.007 0.0164 0.0123 0.0123 0.0124

IQR 0.4 0.463 0.411 0.339 0.274 0.128 0.126 0.125 0.125 0.125
MAD 0.226 0.817 0.475 0.453 0.407 0.065 0.0647 0.0638 0.0638 0.0637

RMAD 0.277 1 0.582 0.555 0.498 1 1 0.986 0.986 0.986
KW+ 30 7.47 1350 57.1 11 30 24 22 22 21.9
KW- 0 0 1430 55.7 0 0 0 0.0525 0.0525 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” =

∑M
m=1 max(wm, 0)m; “KW-” =

∑M
m=1 |min(wm, 0)|m.
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Table 10: Monte Carlo results: Model (a), B2SLS

B2SLS B2SLS
-All -DN -U -C -P -All -DN -U -C -P

c = 0.1 R2
f = 0.01 R2

f = 0.1
n = 100 bias 0.107 0.0809 0.0965 0.0932 0.0803 0.015 0.0408 0.0809 0.067 0.0289
K = 20 IQR 1.41 0.823 0.201 0.283 1.04 0.782 0.58 0.178 0.272 0.619

MAD 0.715 0.417 0.123 0.16 0.519 0.391 0.293 0.11 0.143 0.311
RMAD 1.72 1 0.296 0.384 1.25 1.34 1 0.377 0.489 1.06
KW+ 20 3.19 1680 68.7 3.64 20 7.72 1810 70.9 6.98
KW- 0 0 1850 77 0 0 0 2000 74.7 0

n = 1000
K = 30 bias 0.0289 0.0853 0.0922 0.0863 0.0576 0.000893 0.00226 0.0428 0.0169 0.00237

IQR 0.893 0.741 0.115 0.213 0.709 0.148 0.148 0.117 0.137 0.149
MAD 0.449 0.369 0.101 0.123 0.352 0.0739 0.0734 0.0698 0.0702 0.0746

RMAD 1.22 1 0.275 0.334 0.954 1.01 1 0.951 0.958 1.02
KW+ 30 4.4 4350 158 6.95 30 29.2 3040 113 23.1
KW- 0 0 4650 169 0 0 0 3230 97.5 0

c = 0.5
n = 100 bias 0.5 0.483 0.489 0.486 0.464 0.0735 0.258 0.41 0.365 0.174
K = 20 IQR 1.2 0.723 0.177 0.257 0.916 0.823 0.55 0.171 0.255 0.591

MAD 0.778 0.592 0.489 0.486 0.648 0.416 0.368 0.41 0.365 0.348
RMAD 1.32 1 0.827 0.821 1.1 1.13 1 1.11 0.991 0.946
KW+ 20 3.21 7740 68.8 3.62 20 7.46 1650 70.4 6.87
KW- 0 0 8520 77.1 0 0 0 1810 74 0

n = 1000
K = 30 bias 0.151 0.389 0.472 0.442 0.249 -0.00223 0.0046 0.123 0.0815 0.00873

IQR 0.89 0.637 0.114 0.198 0.647 0.151 0.148 0.136 0.133 0.148
MAD 0.476 0.508 0.472 0.442 0.409 0.075 0.0746 0.126 0.0918 0.0747

RMAD 0.937 1 0.929 0.869 0.804 1.01 1 1.69 1.23 1
KW+ 30 4.28 3760 157 6.92 30 29 248 113 22.4
KW- 0 0 4000 168 0 0 0 242 97.1 0

c = 0.9
n = 100 bias 0.872 0.869 0.884 0.877 0.836 0.127 0.457 0.705 0.649 0.323
K = 20 IQR 0.692 0.42 0.0987 0.139 0.512 0.843 0.474 0.169 0.199 0.509

MAD 0.942 0.893 0.884 0.877 0.879 0.43 0.506 0.705 0.649 0.412
RMAD 1.05 1 0.989 0.982 0.984 0.85 1 1.39 1.28 0.813
KW+ 20 3.06 1700 68.4 3.57 20 6.3 643 68.5 6.47
KW- 0 0 1860 76.7 0 0 0 715 71.2 0

n = 1000
K = 30 bias 0.213 0.676 0.816 0.776 0.426 -0.00471 0.0148 0.178 0.157 0.0154

IQR 0.845 0.542 0.119 0.142 0.514 0.161 0.148 0.109 0.109 0.152
MAD 0.483 0.731 0.816 0.776 0.503 0.0787 0.0756 0.178 0.157 0.078

RMAD 0.661 1 1.12 1.06 0.688 1.04 1 2.36 2.08 1.03
KW+ 30 3.53 1920 152 6.56 30 28.3 139 109 20.3
KW- 0 0 2050 161 0 0 0 127 95.2 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” =

∑M
m=1 max(wm, 0)m; “KW-” =

∑M
m=1 |min(wm, 0)|m.
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Table 11: Monte Carlo results: Model (b), B2SLS

B2SLS B2SLS
-All -DN -U -C -P -All -DN -U -C -P

c = 0.1 R2
f = 0.01 R2

f = 0.1
n = 100 bias 0.112 0.0756 0.0976 0.0962 0.0721 0.015 0.0211 0.077 0.0619 0.0185
K = 20 IQR 1.41 0.849 0.201 0.284 1.01 0.76 0.471 0.172 0.253 0.465

MAD 0.71 0.423 0.124 0.156 0.511 0.383 0.238 0.104 0.134 0.232
RMAD 1.68 1 0.293 0.369 1.21 1.61 1 0.437 0.562 0.976
KW+ 20 3.09 1870 69.6 3.54 20 5.04 2670 73.8 5.1
KW- 0 0 2060 78.6 0 0 0 2940 82.4 0

n = 1000
K = 30 bias 0.0459 0.0308 0.0922 0.0813 0.0273 0.00189 0.00279 0.0578 0.0181 0.00384

IQR 0.883 0.541 0.0937 0.202 0.519 0.145 0.137 0.0829 0.122 0.136
MAD 0.442 0.271 0.0975 0.119 0.259 0.0727 0.0683 0.0648 0.0611 0.0677

RMAD 1.63 1 0.36 0.438 0.955 1.07 1 0.949 0.895 0.992
KW+ 30 4.31 8350 167 5.8 30 11.2 11300 166 11.2
KW- 0 0 8870 184 0 0 0 11900 173 0

c = 0.5
n = 100 bias 0.479 0.454 0.482 0.475 0.422 0.0819 0.107 0.381 0.31 0.0857
K = 20 IQR 1.22 0.768 0.178 0.253 0.925 0.806 0.475 0.184 0.234 0.464

MAD 0.777 0.58 0.482 0.475 0.614 0.411 0.259 0.381 0.311 0.245
RMAD 1.34 1 0.831 0.819 1.06 1.59 1 1.47 1.2 0.948
KW+ 20 2.99 1380 69.4 3.51 20 4.82 1890 72.5 4.97
KW- 0 0 1540 78.4 0 0 0 2070 79.9 0

n = 1000
K = 30 bias 0.158 0.144 0.455 0.398 0.128 -0.00127 0.0115 0.135 0.0807 0.0131

IQR 0.849 0.53 0.116 0.18 0.495 0.149 0.136 0.117 0.114 0.134
MAD 0.457 0.303 0.455 0.398 0.278 0.0731 0.0692 0.136 0.0876 0.0681

RMAD 1.51 1 1.5 1.31 0.919 1.06 1 1.96 1.27 0.985
KW+ 30 4.21 3110 164 5.68 30 10.6 453 159 10.7
KW- 0 0 3330 179 0 0 0 475 163 0

c = 0.9
n = 100 bias 0.873 0.793 0.874 0.857 0.736 0.118 0.173 0.59 0.534 0.148
K = 20 IQR 0.712 0.582 0.108 0.145 0.634 0.868 0.475 0.177 0.172 0.455

MAD 0.942 0.845 0.874 0.857 0.804 0.428 0.297 0.59 0.534 0.274
RMAD 1.11 1 1.03 1.01 0.952 1.44 1 1.99 1.8 0.922
KW+ 20 2.96 1040 67.4 3.42 20 4.1 142 65.1 4.5
KW- 0 0 1170 75.3 0 0 0 154 68.9 0

n = 1000
K = 30 bias 0.215 0.232 0.723 0.684 0.216 -0.00327 0.0178 0.144 0.125 0.0225

IQR 0.837 0.475 0.127 0.133 0.445 0.16 0.133 0.101 0.102 0.132
MAD 0.471 0.343 0.723 0.684 0.321 0.0786 0.0692 0.145 0.126 0.0693

RMAD 1.37 1 2.11 1.99 0.934 1.13 1 2.09 1.81 1
KW+ 30 3.38 1100 144 4.98 30 9.38 167 132 9.67
KW- 0 0 1390 152 0 0 0 168 131 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” =

∑M
m=1 max(wm, 0)m; “KW-” =

∑M
m=1 |min(wm, 0)|m.
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Table 12: Monte Carlo results: Model (c), B2SLS

B2SLS B2SLS
-All -DN -U -C -P -All -DN -U -C -P

c = 0.1 R2
f = 0.01 R2

f = 0.1
n = 100 bias 0.0977 0.0961 0.101 0.0957 0.102 0.0209 0.0439 0.0756 0.0641 0.0335
K = 20 IQR 1.42 0.822 0.206 0.288 1.04 0.787 0.543 0.174 0.263 0.622

MAD 0.726 0.419 0.127 0.159 0.531 0.395 0.273 0.109 0.139 0.31
RMAD 1.73 1 0.304 0.379 1.27 1.45 1 0.399 0.508 1.14
KW+ 20 3.28 1690 68.6 3.69 20 8.74 2420 70.3 7.42
KW- 0 0 1850 76.7 0 0 0 2660 75 0

n = 1000
K = 30 bias 0.0355 0.0854 0.0905 0.0785 0.0408 -0.00138 0.0004 0.0596 0.0156 0.00089

IQR 0.899 0.683 0.113 0.2 0.705 0.145 0.141 0.0777 0.115 0.14
MAD 0.446 0.353 0.1 0.116 0.354 0.0722 0.0705 0.0654 0.0591 0.0698

RMAD 1.26 1 0.284 0.33 1 1.02 1 0.928 0.839 0.99
KW+ 30 5.36 4110 154 7.36 30 21.7 11600 148 19.1
KW- 0 0 4440 166 0 0 0 12500 156 0

c = 0.5
n = 100 bias 0.512 0.489 0.492 0.49 0.467 0.0956 0.251 0.397 0.326 0.174
K = 20 IQR 1.22 0.717 0.176 0.25 0.934 0.819 0.53 0.171 0.241 0.613

MAD 0.785 0.595 0.492 0.49 0.66 0.417 0.354 0.397 0.326 0.348
RMAD 1.32 1 0.827 0.824 1.11 1.18 1 1.12 0.921 0.983
KW+ 20 3.21 1280 68.6 3.69 20 8.45 1510 69.9 7.31
KW- 0 0 1440 76.7 0 0 0 1670 74.5 0

n = 1000
K = 30 bias 0.146 0.439 0.454 0.397 0.234 -0.00437 0.00673 0.141 0.075 0.00678

IQR 0.887 0.659 0.125 0.192 0.684 0.153 0.144 0.117 0.112 0.144
MAD 0.472 0.523 0.454 0.397 0.422 0.0756 0.0721 0.141 0.0837 0.0718

RMAD 0.902 1 0.868 0.759 0.807 1.05 1 1.96 1.16 0.995
KW+ 30 5.1 3150 154 7.32 30 21.5 439 143 18.5
KW- 0 0 3370 165 0 0 0 469 148 0

c = 0.9
n = 100 bias 0.869 0.885 0.886 0.879 0.855 0.126 0.522 0.653 0.57 0.302
K = 20 IQR 0.679 0.381 0.0954 0.139 0.493 0.851 0.571 0.202 0.207 0.534

MAD 0.935 0.9 0.886 0.879 0.888 0.432 0.56 0.653 0.57 0.404
RMAD 1.04 1 0.984 0.976 0.986 0.772 1 1.17 1.02 0.722
KW+ 20 3.11 1320 68.8 3.63 20 7.12 1200 68.1 6.87
KW- 0 0 1490 77.1 0 0 0 1290 71.9 0

n = 1000
K = 30 bias 0.2 0.855 0.789 0.708 0.399 -0.00755 0.0105 0.141 0.116 0.0131

IQR 0.872 0.484 0.159 0.162 0.595 0.16 0.149 0.098 0.101 0.147
MAD 0.485 0.877 0.789 0.708 0.498 0.0787 0.0747 0.141 0.117 0.0747

RMAD 0.553 1 0.9 0.807 0.567 1.05 1 1.88 1.57 1
KW+ 30 3.65 3030 152 7.11 30 20.9 161 124 17.1
KW- 0 0 3260 163 0 0 0 165 124 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” =

∑M
m=1 max(wm, 0)m; “KW-” =

∑M
m=1 |min(wm, 0)|m.
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