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Abstract

This paper considers model averaging as a way to select instruments for the two stage
least squares and limited information maximum likelihood estimators in the presence of many
instruments. We propose averaging across least squares predictions of the endogenous variables
obtained from many different choices of instruments and then use the average predicted value
of the endogenous variables in the estimation stage. The weights for averaging are chosen to
minimize the asymptotic mean squared error. This can be done by solving a standard quadratic
programming problem and, in some cases, closed form solutions for the optimal weights are
available. We demonstrate both theoretically and in Monte Carlo experiments that our method
nests and dominates existing number-of-instrument-selection procedures.
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1 Introduction

In this paper, we propose a new and flexible method to select the instruments for two stage least
squares (2SLS) and limited information maximum likelihood (LIML) estimators of linear models
when there are many instruments available. Donald and Newey (2001) propose a selection criterion
to select the number of instruments in a way that balances higher order bias and efficiency. The
focus of this paper is to extend the results and methods proposed in Donald and Newey (2001). We
show that the model averaging approach of Hansen (2007) can be applied to the first stage of the
2SLS estimator as well as to a modification of LIML. The benefits of model averaging mostly lie in
a more favorable trade off between bias and efficiency in the second stage of the 2SLS estimator or
an improved higher order mean squared error (MSE) of LIML. Our theoretical results show that
for certain choices of weights the model averaging 2SLS estimator (MA2SLS) eliminates higher
order bias and achieves the same higher order rates of convergence as the Nagar (1959) and LIML
estimators and thus dominates conventional 2SLS procedures. Model averaging allowing for bias
reduction requires a refined asymptotic approximation to the MSE of the 2SLS estimator. We
provide such an approximation by including terms of the next higher order than the leading bias
term in our MSE approximation. This approach provides a criterion that directly captures the
trade-off between higher order variance and bias correction. Our model averaging approach can
also be applied to non-linear procedures such as the LIML estimator. We show that an averaging
version of LIML dominates sequential instrument selection in terms of the higher order MSE,
although in this case, model averaging LIML estimator (MALIML) does not achieve a better rate
of convergence than LIML with sequentially selected instruments.

A limitation of sequential instrument selection is that the method is sensitive to the a priori
ordering of instruments. By allowing our model weights to be both positive and negative, we
establish that the MA2SLS and MALIML estimators have the ability to select arbitrary subsets
of instruments from an orthogonalized set of instruments. In other words, if there are certain
orthogonal directions in the instrument space that are particularly useful for the first stage, our
procedure is able to individually select these directions from the instrument set. Conventional
sequential instrument selection on the other hand is able to select these instruments only as part
of a possibly much larger collection of potentially less informative instruments.

An added benefit of model averaging is that, in some cases, the optimal weights are available in

closed form which lends itself to straight-forward empirical application. In Monte Carlo experiments



we find that our refined selection criterion combined with a more flexible choice of instruments
generally performs at least as well as only selecting the number of instruments over a wide range
of models and parameter values, and performs particularly well in situations where selecting the
number of instruments tends to select too few instruments.

A few alternative methods to the selection approach of Donald and Newey (2001) have recently
been suggested. Kuersteiner (2002) shows that kernel weighting of the instrument set can be used
to reduce the 2SLS bias, an idea that was further developed by Okui (2008) and Canay (2008).
The MA2SLS estimator proposed in this paper can be interpreted as a generalization of the more
restrictive kernel weighted methods. While kernel weighting is shown to reduce bias, its effects
on the MSE of the estimator are ambiguous. The goal of this paper therefore is to develop an
instrument selection approach that is less sensitive to instrument ordering, dominates the approach
of selecting the number of instruments in terms of higher order MSE and outperforms the number-
of-instruments-selection procedure in finite sample Monte Carlo experiments.

We present the general form of the MA2SLS and MALIML estimators in Section 2.1 and
discuss various members of the class of MA2SLS and MALIML estimators in Section 3.2. The
refined higher order MSE approximation for the MA2SLS family and the MSE approximation for
MALIML are obtained in Section 3.1. Section 3.3 demonstrates that optimal members of the
MA2SLS and MALIML families dominate the pure number of instrument selection method for the
2SLS, bias corrected 2SLS and LIML respectively, in terms of relative higher order MSE. In Section
4, we establish that feasible versions of the MA2SLS and MALIML estimator maintain certain
optimality properties. Section 5 contains Monte Carlo evidence of the small sample properties of

our estimators.

2 First Stage Model Averaging Estimators

Following Donald and Newey (2001), we consider the model

yi = VB +ayfetea=X0+¢ (2.1)
Y; ElY;|z; ;

X; = ' :f(Zz)—i-Uz: [l‘ Z] + L , i=1,...,N
T1i X1 0

where y; is a scalar outcome variable, Y; is a dy x 1 vector of endogenous variables, z1; is a vector
of included exogenous variables, z; is a vector of exogenous variables (including x1;), €; and u; are

unobserved random variables with second moments which do not depend on z;, and f is an unknown



function of z. Let f; = f(z;). The set of instruments has the form waﬂ. = (V1(z), - vm(z)),
where s are functions of z; such that Zy;; is a M x 1 vector of instruments. The asymptotic
variance of a \/N-consistent regular estimator of # cannot be smaller than 02H~!, where 02 =
E[e?|2] and H = E[f;f!] (Chamberlain (1987)). The lower bound is achieved by 2SLS if f; can
be written as a linear combination of the instruments. In general, we can approximate f; better
by adding more instruments, which makes the estimator more efficient. However, the estimator
might behave poorly in the presence of many instruments (Kunitomo (1980), Morimune (1983)
and Bekker (1994)). This paper develops model averaging methods to handle a large number of

instruments.

Let y = (y1,...,yn)". The matrices X, €, u and f are defined similarly.

2.1 Model Averaging

Let W be a weighting vector such that W = (wq n,...,wp,n) and 2%21 W, N = 1 for some M
such that M < N for any N. We note that W is a sequence of weights w,, y indexed by the sample
size N, but for notational convenience we use w,, where it does not create confusion. In Sections
3.2 and 4, we discuss in more details the restrictions that need to be imposed on W and M, but
point out here that w,, is allowed to take on positive and negative values. Let Z,,; be the vector
of the first m elements of Zys;, Zy, be the matrix (Zm 1, ..., Zmn) and Py, = Zy(Z), Zm) "1 2],
Define P(W) = Zf‘i 1 W Pr. The model averaging two-stage least squares estimator (MA2SLS),
B, of 3 is defined as

3= (X'"POW)X)' X' P(W)y. (2.2)

The definition of (2.2) can be extended to the LIML estimator. Let

A . (y— XB) Pn(y — XB)

A, = min

B (y—Xp)(y—Xp)

and define A (W) = Z%Zl WAy, The model averaging limited information maximum likelihood

estimator (MALIML), 81, of 3 then is defined as
B = (X'PW)X = A (W) X'X)" (X'P(W)y — A (W) X'y). (2.3)

Our estimators can also be extended to a modification of LIML due to Fuller (1977). Let

- (Am - vl —§m>>>
1 — 5%-(1=Ap)




where « is a constant chosen by the econometrician.! The model averaging Fuller estimator (MA-

Fuller) then is defined as
A= (X'PW)X — AW)X'X) " (X' P(W)y — AW)X"y). (2.4)

We use the term MA2SLS or MALIML because P(W)X is the predictor of X based on Hansen’s
(2007) model averaging estimator applied to the first stage regression. The model averaging esti-
mator exploits a trade-off between specification bias and variance. In our application this trade-off
appears in the second stage of 2SLS and LIML as well. In particular, for 2SLS, more specification
bias in the reduced form leads to less estimator bias, and reduced variance in the reduced form
leads to less efficiency in the second stage. This trade off is well understood from the work of
Nagar (1959), Bekker (1994) and Donald and Newey (2001) amongst others. As Hansen (2007)
demonstrates, model averaging improves the bias-variance trade-off in conventional model selection
contexts. These advantages translate into corresponding advantages for the instrumental variables
estimators as our theoretical analysis shows. Furthermore, we generalize the work of Hansen (2007)
by allowing weights to be possibly negative while weights examined by Hansen (2007) are restricted
to be positive. Allowing negative weights is important to obtain a bias correction and robustness

with respect to the ordering of the instruments.

2.2 Advantages of Model Averaging

To give a preview of our results, we focus our attention to MA2SLS, B, in this subsection. We
note that under suitable conditions on the behavior of W as a function of the sample size N it can
be shown that the largest term of the higher order bias of 3 is proportional to K’ W/V/'N, where
K =(1,2,...,M)". When a specific first stage model with exactly m instruments is selected, this
result reduces to the well known result that the higher order bias is proportional to m/ VN. In
other words, the first stage model selection approach of Donald and Newey (2001) can be nested
within the class of MA2SLS estimators by choosing w; = 1 for j = m and w; = 0 for j # m.
To illustrate the bias reduction properties of MA2SLS, we consider an extreme case where the
higher order bias is completely eliminated. This occurs when W satisfies the additional constraint
K'W = 0. Thus, the higher order rate of convergence of MA2SLS can be improved relative to the
rate for 2SLS by allowing w; to be both positive and negative. In fact, the Nagar estimator can

be interpreted as a special case of MA2SLS with M = N, w; = N/ (N —m) for j = m, some m,

Popular choices are @ = 1 or a = 4. See for example Hahn, Hausman and Kuersteiner (2004).



wy = —m/ (N —m) and w; = 0 otherwise.”> As we demonstrate later, MA2SLS defines a much
wider class of estimators with desirable MSE properties even when K'W = 0 does not hold and
dominates the Nagar estimator when K'W = 0 is imposed.

Kuersteiner (2002) proposed a kernel weighted form of the 2SLS estimator in the context of time
series models and showed that kernel weighting reduces the bias of 2SLS. Let k = diag (k1, ..., kar)
where kj = k((j —1) /M) are kernel functions k(-) evaluated at j/M with k(0) = 1. The kernel
weighted 2SLS estimator then is defined as in (2.2) with P(W) replaced by Zyk(Z,Zn) 1 k2.
For expositional purposes and to relate kernel weighting to model averaging, we consider a special
case in which instruments are mutually orthogonal so that Z),Zys is a diagonal matrix, but note
that similar results hold in the general case.® Let Zj be the j-th column of Zj; such that Z; =
(Z1,...,Zy) and I-:’j = Zj(Zj’Zj)*Z}. For a given set of kernel weights k, there exist weights W

such that for w; = k? — k:]2 1 and wyy = k]QV[ the relationship

M M
> wmPm =Y kP = Zyk(Zy Zy) k2 (2.5)

m=1 j=1
holds. In other words, the kernel weighted 2SLS estimator corresponds to model averaging with
the weights {wy, }M_, defined above.

Okui’s (2008) shrinkage 2SLS estimator is also a special case of the averaged estimator (2.2).
In this case, wy, = s,wy =1 — 5,5 € [0,1],w; =0 for j # L, M, where L(< M) is fixed. Okui’s
procedure can be interpreted in terms of kernel weighted 2SLS. Letting the kernel function k(x) = 1
forx < L/M, k(x) = /s for L/M < x <1 and k(z) = 0 otherwise implies that the kernel weighted
2SLS estimator formulated on the orthogonalized instruments is equivalent to Okui’s procedure.

The common feature of kernel weighted 2SLS estimators is that they shrink the first stage
estimators towards zero. Shrinkage of the first stage reduces bias in the second stage at the cost of
reduced efficiency. While kernel weighting has been shown to reduce bias, conventional kernels with
monotonically decaying ’tails’ can not completely eliminate bias. The calculations in Kuersteiner
(2002) also show that the distortion introduced from using the weight matrix k(Z},Zy) 'k rather

than (Z),Z M)_1 asymptotically dominates the higher order variance of B for conventional choices

2The approximate higher order MSE for the Nagar estimator is covered by Corollary 7.3 in Section 7, see Remark

3In other words, we ortho-normalize the instruments prior to kernel weighting. Thus, that Z},Z is a diagonal
matrix is not really a restriction in practice. When kernel weighting is applied to the instruments that are not
ortho-normalized, the model averaging weights corresponding to some particular kernel become data dependent and

have a more complicated formula.



of k(). This later problem was recently addressed by Canay (2008) through the use of top-flat
kernels (see, e.g., Politis and Romano (1995), Politis (2001) and Politis (2007)).

Despite these advances, conventional kernel based methods have significant limitations due to
the fact that once a kernel function is chosen, the weighting scheme is not flexible. The fully
flexible weights employed by MA2SLS guarantee that the net effect of bias reduction at the cost of
decreased efficiency always results in a net reduction of the approximate MSE of the second stage
estimator. As we show in Section 3.3, this result holds even in cases where the bias is not fully
eliminated and thus KW = 0 does not hold.

A second advantage of model averaging is its ability to pick models from a wider class than
sequential instrument selection can. Imagine a situation where the first m (< M) instruments
in Zj; are redundant. In this case a sequential procedure will need to include the uninformative
instruments while the model averaging procedure can in principle set weights wy; = 1 and w,,, = —1
such that P (W) = Py — P, is the projection on the orthogonalized set of the last M — m
instruments in Zj;. To be more specific, let z; be the i-th column of Zy; when ¢ < M and define
Zo=(I—P1)zo,23 = (1 — P2) z3,.... 2ps = (I — Prr—1) 2z such that 21, 2o, ...Z) are orthogonal and
span Zy;. Then, Py = Zf\il P, where P, = Z(2lz;) 712 fori > 1and Py = (zizl)fl z1. It follows

that Z%zl Wi Py = Z]]\il ;P for w; = S M

mej Wm- If D is an M x M matrix with elements

dij =1{j > i} and W = (i1, ...,p), then W = D~'W. The only constraint we impose on W is
W, = 1. Since W is otherwise unconstrained, one can set w; = 0 for any 1 < 7 < M. In addition,
an arbitrarily small but positive weight can be assigned to the first coordinate by choosing w; large
for j # 1. The use of negative weights thus allows MA2SLS to pick out relevant instruments from

a set of instruments that contains redundant instruments.

3 Higher Order Theory

3.1 Asymptotic Mean Square Error

The choice of model weights W is based on an approximation to the higher order MSE of B The
derivations parallel those of Donald and Newey (2001). However, because of the possibility of bias
elimination by setting K'WW = 0, we need to consider an expansion that contains additional higher
order terms for the 2SLS case. We show the asymptotic properties of the MA2SLS and LIML under

the following assumptions.
Assumption 1 {y;, X;, 2z} arei.i.d., E[é?|z] = 02 > 0, and E[||n;||*|z:] and E||€;|*|2:] are bounded.
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Assumption 2 (i) H = E|[fif!] exists and is nonsingular. (i) for some o > 1/2,

sup m>® ( sup Nf (I — Pp) f)\/N> =0,(1).

m<M MA=1
(iii) Let Ny be the set of positive integers. There exists a subset J C Ny with a finite number of
elements such that for all m ¢ J it follows that

inf ~ m2etl ( sup N f (Pp — Ppy1) f)\/N) > 0 wpal
me¢J m<M MA=1

Assumption 3 (i) Let ui, be the a-th element of u;. Then Eleiu;,|z] are constant for all a and
r,s >0 and r+s < 5. Let oye = Elui€i|zi], ¥y = Eluwul|z)]. (it) Z);Zy are nonsingular wpal.

(tit) max;<n Parii —p 0, where Py signifies the (i,1)-th element of Pyr. (iv) f; is bounded.

Assumption 4 Let W = (lwinl|,...,|wmn]|). The following conditions hold: 15,W =1; W €
li for all N where l; = {x = (z1,...) | D ogoq |zi| < Cii < 0} for some constant Cpy, M < N; and,
as N — oo and M — oo, K'W+ = M |w,|m — oco. For some sequence L < M such
that L — oo as N — oo and L ¢ J, where J is defined in Assumption 2(iii), it follows that
SUpj¢ j <L ‘Zin:l wm‘ = O(1/V/'N) as N — oo.

Assumption 5 It holds either that i) K'Wt/VN = M jw,,|m/vVN — 0 or i) K'WT/N =
SSM_ g |m/N — 0 and M/N — 0.

Assumption 6 The eigenvalues of E {ZMZ,’f l] are bounded away from zero uniformly in k. Let
_ -1 / _ _ _
Hy = E[fi 7] (E [Zk,iz,gﬂ.D E [fiZ,’€7i} and H = E[fif!]. Then, |Hy - H|| = O (k=2) for

k — oo.
Assumption 7 8 € © where © is a compact subset of RY.

Remark 1 The second part of Assumption 2 allows for redundant instruments where f'(P,, —

Por+1)f/N =0 for some m, as long as the number of such cases is small relative to M.

Assumptions 1-3 are similar to those imposed in Donald and Newey (2001). The set .J cor-
responds to the set of redundant. We need to explicitly consider this set because it turns out
that the optimal weight on a redundant instrument has some specific feature (see Section 7.5).
Assumption 4 collects the conditions that weights must satisfy and is related to the conditions
imposed by Donald and Newey (2001) on the number of instruments. The condition K'W* — oo

may be understood as the number of instruments tending to infinity. This assumption is needed



to achieve the semiparametric efficiency bound and to obtain the asymptotic MSE whose leading
terms depend on K'W. The condition K’W"”/\/N — 0 limits the rate at which the number of
instruments is allowed to increase, which guarantees standard first-order asymptotic properties of
the MA2SLS estimator. For the LIML estimator, this condition can be weakened to K'W* /N — 0.
The condition sup;¢ 7 ;< | anzl wm| = O(1/+/N) guarantees that small models receive asymptot-
ically negligible weight and is needed to guarantee first order asymptotic efficiency of the MA2SLS
and MALIML estimators. We also restrict W to lie in the space of absolutely summable sequences
[1. The fact that the sequences in I; have infinitely many elements creates no problems since one
can always extend W to [y by setting w; = 0 for all j > M.

The notion of asymptotic MSE employed here is similar to the Nagar-type asymptotic expansion
(Nagar (1959)). Following Donald and Newey (2001), we approximate the MSE conditional on the
exogenous variable z, E[(3 — 50)(8 — Bo)'|2], by 02H~! 4+ S(W), where

N(B = Bo)(B = Bo)' = QW) +#(W), E[QW)|z] = oZH ™" +S(W)+T(W),

H = f'f/N and (#(W) +T(W))/tr(S(W)) = 0p(1) as N — oc.
Formal theorems and explicit expressions for S(W) are reported in Theorem 7.1 and Corollaries
7.1, 7.2 and 7.3. In this section, we briefly discuss the main findings. Under additional constraints

on higher order moments such that Cum [e;, €;, u;,u}] = 0 and Ele?u;] = 0, we show in Corollary

7.1 that for MA2SLS

SW) = H-! (aa (K'W)? , (WTW) KW 2L = PIW)(I = P(W))f> H1,

N N N N
(3.1)

— ! — (42 /
where a, = 040, by = (025 + Oucol,),

N N
, 1 _ 1 _ _
By =2 (a?zu + dim(B)oyeor, + ¥ § 1 fiol H oy fl + ¥ E 1 (fiohH  fiole + oueflH 1guef{)> ;
1= 1=

and I is the M x M matrix whose (4, j)-th element is min(, ). In Section 7, we also derive results
for the more general case when Cumle;, €;,u;, u}] # 0 and E[e?u;] # 0. Because these formulas are
substantially more complicated, we focus our discussion on the simpler case.® The first term in

(3.1) represents the square of the bias, and the fourth term represents the goodness-of-fit of the first

4“Cum” signifies the fourth order cumulant so that Cum [e;, €;, us, uj] = EleZuiul] — 028y — 20uc0h..
5As was noted in Donald and Newey (2001), it is possible to use the more general criterion that allows

Cumle;, €;, ui, ui] # 0 and E[eu;] # 0 because the additional nuisance parameters for this case can be estimated. We

note that in practice this seems to be rarely done.



stage regression. These two terms appear in the existing results of the asymptotic expansions of the
2SLS estimator. The second term represents a variance inflation by including many instruments.
A similar term appears in the MSE results for LIML and bias-corrected 2SLS estimators by Donald
and Newey (2001). As shown in Theorem 7.1, By in the third term is positive definite. This shows
that the first term a,(K'W)2/N over-estimates the bias of including more instruments. We need to
include the second and third terms because K'WW — oo may not hold as a result of allowing negative
weights. In fact, when the weights are all positive, we have K'W — oo (because K'W = K'W in
this case) and the second and third term then are of lower order as established in expression (7.4)
of Corollary 7.2.

For the MALIML estimator the approximate MSE when Cumle;, €;,v;,v!] = 0 and Ele?v;] = 0

with v; = u; — (0yc/0?)e; is found as

WTW | g2 (L= PW))U - P(W))f>H71_

_ —1 2
SW) = H <a€zv ~ >

(3.2)

where ¥, = FE [v;v}]. Higher order unbiasedness of MALIML is reflected in the absence of terms
involving K'W and parallels results for the sequential instrument selection case in Donald and

Newey (2001).

3.2 Estimator Classes

We choose W to minimize the approximate MSE of )\’B for some fixed A € R%. For this purpose
define o). = NH ', and 0/2\ = NH 'S, ,H'\. Then, the optimal weight, denoted W*, is the
solution to minyeq Sy (W) where Sy (W) = XS (W) X and 2 is some set.

We consider several versions of 2 which lead to different estimators. The MA2SLS esti-
mator is unconstrained if Q@ = Qp = {W € [;|W'1) =1}. More restricted versions can be
constructed by considering the sets Qp = {W € [1|W'1); = 1, K'W = 0} which leads to unbi-
ased estimators. From a finite sample point of view, it may be useful to further constrain the
weights W to lie in a compact set. This is achieved in the following definitions of restricted
model averaging classes defined as Q¢ = {W € [}|W'ly = Lwy, € [-1,1],Vm < M}, and Qp =
{W e LW|W'ly = L;wy, €0,1],Vm < M}.

For the MALIML estimator we only consider cases where W is contained in Qy, Q¢ and Qp
because MALIML is higher order unbiased without the constraint K'W = 0.

When  is equal to Qp or g, a closed form solution for W* is available. Let u}* = (I —

Py,)fH™'X and define the matrix U = (u,...,ud) (ul,...,u}l). It now follows that NH ! f/(I —
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PW)(I — P(W))fH=*X\ = W/UW such that S (W) is affine in W. It then is easy to show that

the optimal unconstrained weights for MA2SLS are

2~ 1), A" "KNH 'ByH '\
1/]\4A_11M

1
Wy = arg MI/IéiélU S\(W) = §A71 <K)\’HlBNH1)\ + 1M> , (3.3)

where A = 03 KK'+ (0203 4+ 03,) ' + 02U. As we show in Corollary 7.3 the approximate MSE of
MAZ2SLS simplifies when the constraint K'W = 0 is imposed. In this case, weights are chosen such
as to eliminate the highest order bias term. We therefore find the following closed form solution
for W5.

W = arg i 5,(W) = AZ'R(RAZ'R) "0, (3.4)

where Ap = (0203 + 03 )T + 02U, b = (0,1)’ and R = (K,1y). It is clear that Qp C Qu such
that minyeq, Sx(W) < minweq, Sx(W). Since the Nagar estimator is contained in Qp, it follows
by construction that MA2SLS based on W weakly dominates the Nagar estimator in terms of
asymptotic MSE. In Section 3.3 we show that MA2SLS strictly dominates the Nagar estimator.
When the optimal weights are restricted to lie in the sets Q¢ or 2p, no closed form solution exists.
Finding the optimal weights minimizing Sx(W) over a constrained set is a classical quadratic
programming problem for which there are readily available numerical algorithms.® We note that
for Qp, it follows from Corollary 7.2 that the criterion can be simplified to (7.4).

The optimal weights in Qg for MALIML have the same form as (3.4) except that now A; =

(‘752‘7,2\ — 0/2\6) I' + 02U replaces Ap, R = 1); and b = 1 such that the optimal weights are
* — — —1
WU,LIML = ALI]‘M (llMALllM) :

3.3 Relative Higher Order Risk

It is easily seen that Donald and Newey’s (2001) procedure can be viewed as a special case of model
averaging where the weights are chosen from the set Qpy = {W € 1wy, = 1 for some m and w; =
0 for j # m} to minimize Sy (W). Note that when W € Qpy, it follows that K'W = m and
(I —-PW))(I—-P(W))=(I— P,). Hence, S (W) with W restricted to W € Qpn reduces to

2 !
-1 m.m _ o f'(I = P) f -1
H (ag N + N(bo Bn) + o N H

for m < M. Because m/N = o(m?/N) as m — oo, the expression for S (W) with W € Qpx reduces
to the result of Donald and Newey (2001, Proposition 1). We note that all sets Q = Qp, Qp, ..., Qp

5The Gauss programming language has the procedure QPROG, and the Ox programming language has the
procedure SolveQP.
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contain the procedure of Donald and Newey (2001) as a subset (i.e., Qpy C §2). This guarantees
that MA2SLS weakly dominates the number of instrument selection procedure such that Sy (W*) <
minweq,,y Sx (W). In fact, as the argument in the proof of Lemma 7.8 shows, there are simple
sequences in Qy and Qp that strongly dominate arg minyeq,, Sy (W) in the sense of achieving
higher rates of convergence.

A stronger result is the following theorem which shows that, under some regularity conditions
on the population goodness-of-fit of the first stage regression, MA2SLS and MALIML dominate

corresponding estimators based on sequential moment selection.

Theorem 3.1 Assume that Assumptions 1-5 hold. Let vy, = NH 1 f'(I — Py,)fH ' \/N. Assume
that there exists a non-stochastic function C(a) such that sup,c(_c ;| Ym(1+a)/¥m = C (a) wpal as
N,m — oo for some ¢ > 0. Assume that C (a) = (1 +a) >+ o (|a|20‘).

i) For Sy (W) given by (3.1), it follows that

minweq, Sx\(W)
minweqp,y Sx (W)

Letting W be the weights with wy, = N/ (N —m), wy = —m/ (N —m) and wj = 0 for j # m

< 1 wpal.

where m is chosen to minimize Sy (W), it follows that

minWEQB S)\(W)
Sx (W)

ii) For Sy (W) given by (3.2), it follows that

< 1 wpal.

miny e, Sx(W)
minyeq,,y Sx (W)

< 1 wpal.

Remark 2 The additional conditions on 7, imposed in Theorem 3.1 are satisfied if v, = dm ™22,

but are also satisfied for more general specifications. For example, if ym = & (m) m=2%+ o, (m*%‘)
as m — oo, where the function 6 (m) satisfies § (m (1 +a)) /0 (m) =140 <la|2a) wpal, then the

condition holds.

The first part of the theorem indicates that all MA2SLS estimators considered here dominate
the simple number-of-instruments-selection procedure in terms of higher order MSE. Likewise, the
second part implies that the MA2SLS estimators obtained from choosing W over the sets 2y and
Qg dominate the Nagar estimator in terms of higher order MSE. The third part of the result shows
that MALIML dominates LIML with sequential instrument selection for W € Qg , Q¢ and Qp.

We contrast the optimality properties of MA2SLS with kernel weighted GMM. For illustration,

consider the model weights w,, = 1/M for m < M and w,, = 0 otherwise, which correspond to the
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kernel weighted GMM with kernel function k(z) = y/max(1 — z,0) (see (2.5)). Because the weights
are always between 0 and 1, the MSE is given in (7.4). As a function of the kernel bandwidth M,

the MSE approximation is

_ o (M+1)? ,15,Uly
S\(M) = o5, N VAN

The form of Sy in this case illustrates the fact that kernel weighting generally reduces the higher
order bias of 2SLS, here in this case by a factor 1/2, but that this comes at the cost of increased
higher order variance. It is easily seen that 1/,Uly; > M 2u§/l’ uﬁ/l . Since the difference between
1,,U1y and M 2u§4 ! uﬁ‘\/f is data-dependent, it can not be established in general that kernel weighting

reduces the MSE. This example illustrates that kernels do not have enough free parameters to

guarantee that bias reduction sufficiently off-sets the increase in W/ UW.

4 Implementation

Fully data dependent implementation of the estimator classes defined in Section 3.2 requires a
data-dependent criterion Sy (W). The non-trivial part of estimating the criterion concerns f'(I —
P(W))(I — P(W))f/N. Donald and Newey (2001) show that the Mallows (1973) criterion can
be used to estimate the term f/(I — P,,)f/N. This approach fits naturally in our framework of
model averaging for the first stage. Hansen (2007) proposes to use the Mallows criterion @'a/N +
203 K'W/N, where @ = (I — P (W)) X H ') to choose the weights W for the first stage regression.

The use of Mallows criterion is motivated by the fact that
E[Wu/N|z] = NH'f'(I - PW))(I — P(W))fH'A/N + o3 (WTW —2K'W) /N + o3}

such that F [@'a/N + 205 K'W/N|z] = E[||(f — P(W)X)H ')|?|z]/N + ¢3. We note that, in the
context of instrument selection, the relevant criterion is E [||(I — P(W))fH ')||?|z] rather than
E[|(f —P(W)X)H'A|[?|z] such that the criterion needs to be adjusted to @a/N + o3 (2K'W/N —
W'TW/N). We also note that, when W € Qpp, it holds that W'I'W = K'W = m. Therefore, the
correctly adjusted Mallows criterion in this special case is @,y /N + o3m/N which leads to the
formulation used in Donald and Newey (2001, p. 1165).

We propose a slightly different criterion which is based on the difference between the residuals

iy = (Py — P(W)XH )
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where M is a sequence increasing with N that is chosen by the statistician. In practice, M is the
largest number of instruments considered for estimation. This number often is directly implied by
the available data-set or determined by considerations of computational and practical feasibility.
Note that Py; — I, as M — N, which leads to the conventional Mallows criterion. Including Py
rather than I serves two purposes. On the one hand it reduces the bias of the criterion function

when W puts most weight on large models. This can be seen by considering the criterion bias:
E [H(PM — P(W))uH A |z} =02 (M = 2K'W + W'TW).

When W € Qpu, it follows that K'W = m and o3 (M — 2K'W + W'TW) = 0% (M — m) which
tends to zero as m reaches the upper bound M. Similarly, as our theoretical analysis shows, the
variability of the criterion function can be reduced by using the criterion based on P;.

Let 3 denote some preliminary estimator of 3, and define the residuals ¢ = y — X3. As pointed
out in Donald and Newey (2001), it is important that B does not depend on the weight matrix
W. We use the 2SLS estimator with the number of instruments selected by the first stage Mallows
criterion in simulations for MA2SLS and the corresponding LIML estimator for MALIML. Let H
be some estimator of H. Let 4 be some preliminary residual vector of the first stage regression.

Let @iy = @H ')\.7 Define,
62 =¢¢/N, &3 =a\ur/N, 6Gre = U\é/N.

Let 4* = (Ppy—Pp)XH ' Nand U = (a,...,aMy(ak,...,ad"). The criterion Sy, (W) for choosing

the weights is

A . (K'W)? o (WTW)  K'W . W/ UW — 63 (M — 2K'W + W'TW)
Sy (W) = b B
(W) (aA N th Ty N B+ N
(4.1)
with ay = (3?\6, b)\ = (}20§ + ‘7)\5 and B,\,N = )\'ﬁleeNI:[”/\, where BN is some estimator of BN.S

When the weights are only allowed to be positive, Corollary 7.2 suggests the simpler criterion

5 K'W)? WUOW — 63 (M — 2K'W + W' TW
Sy(W) = aAu + &2 % i ). (4.2)
N N
For MALIML we choose W based on the following criterion
. W' TW W'UOW — 62(M — 2K'W + W'TW
S\(W) = (6263 — 63.) ~ + 67 ( %l ~ * )> : (4.3)

"Note that 4 is the residual vector. On the other hand, 43"s are the vectors of the differences of the residuals.
$When dim(8) = 1, we have By = 2(62%, + 402,) and we may use By n = 2(6203 + 463,).
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In order to show that W, which is found by minimizing S (W), has certain optimality proper-

ties, we need to impose the following additional technical conditions.

Assumption 8 For some a, sup,, <, m** ™ (supya—y N f (P — Pms1) fA/N) = Oy (1).

A~

Assumption 9 H — H = o0, (1), 62 — 02 = 0,(1), 63 — 02 = 0p(1), Gre — 0re = 0p(1) and

BN — BN = Op (1)

Assumption 10 Let a be as defined in Assumption 8. For some 0 < ¢ < min(1/ (2a),1), and 6
such that 2ae > § > 0, it holds that M = O (N(H‘s)/(%““l)). For some ¥ > (1+46) /(1 — 2a¢), it
holds that E <\ui|w> < 00 . Further assume that 63 — o3 = o, (N~%/(2a+1)),

Assumption 8 supplements Assumption 2 and controls the strength of the instruments. As-
sumption 9 assumes the consistency of the estimators of the parameters in the criterion function.
Assumption 10 restricts the order of the number of instruments and assumes the existence of the
moments of u;. It also imposes a condition on the rate of the consistency of (3?\. For example, when
o =3/4, M = O(N3/®), E[|Ju;]|'] < oo and 6} — 03 = o, (N~1/%), Assumption 10 is satisfied by
taking e = 1/2, § = 1/2 and ¥ = 8. We note that 6 — o2 = o, (N~1/%) is achievable.

The following result generalizes a result established by Li (1987) to the case of the MA2SLS

estimator.

Theorem 4.1 Let Assumptions 1-10 hold. For Q = Qu, Qg, Q¢, or Qp and W = arg minyycq S (W)
where Sy (W) is defined in either (4.1) or (4.3) it follows that

5 ()

S VRN 44
infien Sy (W) 7 (44)

Theorem 4.1 complements the result in Hansen (2007). Apart from the fact that Sy (W) is
different from the criterion in Hansen (2007), there are more technical differences between our
result and Hansen’s (2007). Hansen (2007) shows (4.4) only for a restricted set € where Q has
a countable number of elements. We are able to remove the countability restriction and allow
for more general W. However, in turn we need to impose an upper bound M on the maximal

complexity of the models considered.
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5 Monte Carlo

This section reports the results of our Monte Carlo experiments,’ where we investigate the finite
sample properties of the model averaging estimators. In particular, we examine the performance
of the model averaging estimators compared with Donald and Newey’s (2001) instrument selection
procedure, possible gains from considering additional higher order terms in the asymptotic MSE,

and potential benefits we obtain by allowing negative weights.

5.1 Design

We use the same experimental design as Donald and Newey (2001) to ease comparability of our

results with theirs. Our data-generating process is the model:
yi = Y+ e, Yi=7'Z+u,

for i = 1,..., N, where Y; is a scalar, (3 is the scalar parameter of interest, Z; ~iid.N(0, I3;) and
(€i,u;) is iid. jointly normal with variances 1 and covariance c¢. The integer M is the total number
of instruments considered in each experiment. We fix the true value of 3 at 0.1, and we examine
how well each procedure estimates 3.

In this framework, each experiment is indexed by the vector of specifications: (N, M, ¢, {7}),
where IV represents the sample size. We set N = 100, 1000. The number of instruments is M = 20
when N = 100 and M = 30 when N = 1000. The degree of endogeneity is controlled by the

covariance ¢ and set to ¢ = 0.1,0.5,0.9. We consider the following three specifications for .

This design is considered by Hahn and Hausman (2002) and Donald and Newey (2001). In this

model, all the instruments are equally weak.

4
m
Model (b): mp, = c¢(M) (1— M+1> ,  Ym.

This design is considered by Donald and Newey (2001). The strength of the instruments decreases

gradually in this specification.

m— M/2

4
—— | f M/2
M/2+1> or m > M/2,

Model (¢):my, =0 for m < M/2; 7, = (M) (1 -

9This Monte Carlo simulation was conducted with Ox 5.10 (Doornik (2007)) for Windows.
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The first M/2 instruments are completely irrelevant. Other instruments are relevant and the
strength of them decreases gradually as in Model (b). We use this model to investigate potential
benefits of allowing for negative weights which makes the procedure more robust with respect to
the ordering of instruments. For each model, ¢(M) is set so that 7 satisfies #'m = R?c /(1 — R?),
where R? is the theoretical value of R? and we set Rfc =n'w/(7'7m 4+ 1) = 0.1,0.01. The number of

replications is 1000.

5.2 MAZ2SLS

We first examine the performances of 2SLS-type estimators.

5.2.1 Estimators

We compare the performances of the following seven estimators. Three of them are existing proce-
dures and the other four procedures are the MA2SLS estimators developed in this paper. First, we
consider the 2SLS estimator with all available instruments (2SLS-All in the tables). Second, the
2SLS estimator with the number of instruments chosen by Donald and Newey’s (2001) procedure
is examined (2SLS-DN). We use the criterion function (4.2) for DN. The optimal number of instru-
ments is obtained by a grid search. The kernel weighted GMM of Kuersteiner (2002) is also exam-
ined (KGMM). Let Qxquar = {W €11 : wy, = L™ if m < L and 0 otherwise for some L < M}.
Then, the MA2SLS estimator with W € Qg gy corresponds to the kernel weighted 2SLS estima-
tor with kernel k(x) = \/Im . Because the weights are always positive with Qx g, we
use the criterion function (4.2) for KGMM. We use a grid search to find the L that minimizes the cri-
terion. The procedure “2SLS-U” is the MA2SLS estimator with Q = Qy ={W €y : W1y = 1}.
The MA2SLS estimator with Q@ = Q¢ = {W € 1 : Wlym = Lwy, € [-1,1],Ym < M} is de-
noted “2SLS-C”. The procedure “2SLS-P” uses the set Q = Qp = {W € l; : Wiy = 1wy, €
[0,1],¥Vm < M}. The criterion for 2SLS-U, 2SLS-C and 2SLS-P is formula (4.1). The procedure
“2SLS-Ps” also uses the same set Qp, but the criterion for computing weights is (4.2). For these
MAZ2SLS estimators, we use the procedure SolveQP in Ox to minimize the criteria (see Doornik
(2007)). We use the 2SLS estimator with the number of instruments that minimizes the first-stage
Mallows criterion as a first stage estimator B to estimate the parameters of the criterion function
Sy (W).

For each estimator, we compute the median bias (“bias” in the tables), the inter-quantile range

(“IQR”), the median absolute deviation (“MAD”) and the median absolute deviation relative to
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that of DN (“RMAD”).! We also compute the following two measures. The measure “KW+" is the
value of Z%zl m max(wp, 0). For 2SLS, this measure is merely the total number of instruments.
For 2SLS-DN, it is the number of instruments chosen by the procedure. The measure “KW-”
is the value of S°M_ m|min(wy,,0)|. This measure is zero for the procedures that allow only
positive weights. For 2SLS-U or 2SLS-C, it may not be zero because of possibly negative weights.
A comparison of KW+ and KW- offers some insight into the importance of bias reduction and

instrument selection for the 2SLS-U and 2SLS-C procedures.

5.2.2 Results

Tables 1-3 summarize the results of our simulation experiment. 2SLS-All performs well when the
degree of endogeneity is small (¢ = 0.1). However, when ¢ = 0.5 or 0.9, 2SLS-All exhibits large
bias and some method to alleviate this problem is called for. The selection method of 2SLS-DN
achieves this goal only partially. In Model (b) with ¢ = 0.5 and ¢ = 0.9, where the rank ordering
of instruments is appropriate and bias reduction is an important issue, it reduces the bias of the
estimator by using a small number of instruments. However, 25LS-DN tends to use too small a
number of instruments and the improvement of the performance does not occur in general. Even in
Model (b), 2SLS-DN uses too small a number of instruments when ¢ = 0.1 and thus unnecessarily
inflates the variability of the estimator. In Models (a) and (c), 2SLS-DN seldom outperforms 2SLS-
All. In particular, in Model (c), the number of instruments selected by 2SLS-DN tends to be far less
than M /2, which means that 2SLS-DN often employs only the instruments that are uncorrelated
with the endogenous regressor. KGMM typically outperforms 2SLS-DN, which demonstrates the
advantage of kernel weighting. However, the problem observed for DN also applies to KGMM.
KGMM does not improve over 2SLS-All in Models (a) and (c).

All model averaging estimators perform well. 2SLS-Ps, which may be considered a natural appli-
cation of Hansen’s (2007) model averaging to IV estimation, outperforms 2SLS-DN and KGMM in
most cases. 2SLS-P further improves over 2SLS-Ps in Models (a) and (c) substantially, which shows
the benefit of taking additional higher order terms into account when choosing optimal weights.
The good performance of 2SLS-P is mainly due to its low variability measured by IQR. On the other
hand, in Model (b), 2SLS-P is outperformed by 2SLS-DN when ¢ = 0.9. Nevertheless, the RMAD
measure is never above 1.3 which is significantly lower than the RMAD measure for 25LS-All. This

result may be due partly to a trade-off between additional terms in the approximation of the MSE

10We use these robust measures because of concerns about the existence of moments of estimators.
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and a more complicated form of the optimal weights: It provides a more precise approximation of
the MSE on a theoretical level; however it also complicates estimation of the criterion Sy (W) which
may result in larger estimation errors in the estimated criterion function. 2SLS-U and 2SLS-C also
perform well. Their performance is particularly remarkable when ¢ = 0.1 and n = 100 in Models
(a) and (b) and when ¢ = 0.9 and n = 1000 in Model (c). We note that the performance of 2SLS-C
and that of 2SLS-U are similar. In general, the performances of 2SLS-C and 2SLS-U are similar
to 2SLS-P. However, the performance of 2SLS-U or 2SLS-C in Model (b) is not as good as that of
DN when ¢ = 0.9 with a RMAD measure reaching values of around 1.69. Nevertheless, 2SLS-U
and 2SLS-C perform better than 2SLS-All even in these cases. Their relatively poor performance
in Model (b) may be due to having too large a choice set for W. Note also that the values of
“KW+" and “KW-" for 2SLS-U and 2SLS-C indicate that they do not try to eliminate the bias
completely.!! The median biases of these estimators are similar to other MA2SLS estimators.

In summary, 2SLS-Ps displays the most robust performance of all procedures considered. It
almost never falls behind DN in terms of MAD and often outperforms it significantly. 2SLS-U,
2SLS-C and 2SLS-P show some problems in Model (b) when the degree of endogeneity is moderate
to high. On the other hand, those estimators achieve even more significant improvements in terms

of MAD over 2SLS-DN in Models (a) and especially (¢) where DN does not perform very well.

5.3 MALIML

Next, we consider the performances of LIML-type estimators.

5.3.1 Estimators

We compare the performances of the following five estimators. First, we consider the LIML estima-
tor with all available instruments (LIML-All in the tables). Second, the LIML estimator with the
number of instruments chosen by Donald and Newey’s (2001) procedure is examined (LIML-DN).
We use the criterion function (4.3) for LIML-DN. The optimal number of instruments is obtained
by a grid search. The procedures “LIML-U”, “LIML-C” and “LIML-P are the MALIML estimators
with Q=Qu={Wel :Wily=1},Q=Qc={W ely: Wiy = Lw, € [-1,1],Ym < M}
and Q =Qp ={W el : Wlpm = Lwy, € [0,1],Vm < M}, respectively. For these MALIML esti-

mators, we minimize the criterion (4.3) to obtain optimal weights. We use the procedure SolveQP

"The higher order bias is eliminated when K'W = 0, which is equivalent to the case where “KW+” and “KW-"

are equal.
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in Ox to minimize the criterion (see Doornik (2007)). We use the LIML estimator with the number
of instruments that minimizes the first-stage Mallows criterion as a first stage estimator, 3, to
estimate the parameters of the criterion function Sy (W).

As in the previous subsection, we compute the same six quantities to evaluate the performances
of the estimators. We note that a comparison of KW+ and KW- does not provide an insight
into the bias reduction because the estimators considered here do not exhibit a second-order bias.
Negative weights might be present in LIML-U or LIML-C solely when the criterion indicates the

existence of redundant instruments.

5.3.2 Results

Tables 4-6 summarize the results of our simulation experiment. LIML-All has a small bias in many
cases as the theory indicates. Nonetheless, it is severely biased when the instruments are weak
(Rfc = 0.01) and the sample size is small (n = 100) (see Hahn, Hausman and Kuersteiner (2004)).
Compared with 2SLS-All, the MAD of LIML-AIl is high when ¢ = 0.1 and low when ¢ = 0.9. In
contrast to the case of 2SLS, the instrument selection works well for LIML in all the specifications.
LIML-DN outperforms LIML-AIl in most of cases, in particular when ¢ = 0.1. When ¢ = 0.9, they
behave similarly.

All model averaging estimators perform well. They improve LIML-All and LIML-DN in many
cases. It is interesting to note that the model averaging estimators perform particularly well when
LIML-DN improves over LIML-All. For example, they perform better than LIML-DN when ¢ = 0.1
and the improvement may be substantial. In Model (b), and ¢ = .5 LIML-U and LIML-C perform
somewhat less well than LIML-DN but better than LIML-All. Comparing LIML-C (or LIML-U)
and LIML-P, we see that LIML-C improves over LIML-P when ¢ = 0.1, but the performance of
LIML-P is more stable so that the performance of LIML-P is the best among the model averaging
estimators when they cannot perform well. We note that the good performance of the model
averaging estimators appears to be due to its ability to reduce the variability (measured by IQR).

In summary, model averaging can outperform instrument selection. In particular, the improve-
ment is substantial when instrument selection is important. Allowing negative weights can further
improve the performance in those cases, while it also makes the estimator slightly less stable. From
the experiment, we recommend LIML-P in particular because it can improve the estimator sub-
stantially when it works but its performance is relatively stable even when model averaging does

not work well.
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5.4 MAFuller

Next, we consider the performances of Fuller-type estimators.

5.4.1 Estimators

Similarly to the experiments for the LIML-type estimators, we compare the performances of the
following five estimators. First, we consider the Fuller estimator with all available instruments
(Fuller-All in the tables). Second, the Fuller estimator with the number of instruments chosen by
Donald and Newey’s (2001) procedure is examined (Fuller-DN). We use the criterion function (4.3)
(the criterion is the same as that for LIML) for Fuller-DN. The optimal number of instruments is
obtained by a grid search. The procedures “Fuller-U”, “Fuller-C” and “Fuller-P are the MAFuller
estimators with Q = Qp, Q = Q¢ and Q = Qp, respectively. For these MAFuller estimators,
we minimize the criterion (4.3) to obtain optimal weights. We use the procedure SolveQP in Ox
to minimize the criterion (see Doornik (2007)). We use the Fuller estimator with the number of
instruments that minimizes the first-stage Mallows criterion as a first stage estimator, B , to estimate
the parameters of the criterion function Sy (W).

As in the previous subsection, we compute the same six quantities to evaluate the performances

of the estimators.

5.4.2 Results

Tables 7-9 summarize the results of our simulation experiment. The performances of Fuller-DN
and the model averaging estimators compared with Fuller-All are similar to what we observe in the
experiment for LIML-type estimators. Among the Fuller-type estimators, we recommend Fuller-P
by the same reason that we recommend LIML-P among the LIML-type estimators (i.e., it can
improve the estimator substantially when it works but its performance is relatively stable even
when model averaging does not work well.)

Fuller-All has a smaller MAD than that of LIML-All. This good performance of the Fuller
estimator comes from that it has small variability (as measured by IQR). This result may be related
to the well-known fact that the Fuller estimator has finite moments, but the LIML estimator does
not. However, once instrument selection or model averaging is introduced, the Fuller estimator
does not necessary outperform the LIML estimator. For example, when n = 1000 and R? =0.01in

Model (a), Fuller-All has a smaller MAD than that of LIML-All, but other Fuller-type estimators
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are dominated by the corresponding LIML-type estimators.

5.5 MAB2SLS

Lastly, we consider the bias-corrected 2SLS estimator (B2SLS) and the model averaging version of

B2SLS. B2SLS is defined as

N m -1 m
Bras = (X'PuX = X'X) (X' Pay = 55 X7y),

when we use the first m instruments. The model averaging B2SLS estimator (MAB2SLS) is

; K'W ! K'W
ﬂmastls = (X/P(W)X - NX,X) (X/P(W)y — NX/y> .

5.5.1 Estimators

We compare the performances of the following five estimators. First, we consider the B2SLS
estimator with all available instruments (B2SLS-All in the tables). Second, the B2SLS estimator
with the number of instruments chosen by Donald and Newey’s (2001) procedure is examined
(B2SLS-DN). The procedures “B2SLS-U”, “B2SLS-C” and “B2SLS-P are the MAB2SLS estimators

with Q = Qp, Q = Q¢ and Q2 = Qp, respectively. The criterion used to compute optimal weights is

W) = by W’AF[W e (W@'W —62(M - 2K'W + W’PW)) |
For B2SLS-DN; the optimal number of instruments is obtained by a grid search. For the MAB2SLS
estimators, we use the procedure SolveQP in Ox to minimize the criterion (see Doornik (2007)).
We use the B2SLS estimator with the number of instruments that minimizes the first-stage Mallows
criterion as a first stage estimator /3 to estimate the parameters of the criterion function Sy (W).
As in the previous subsection, we compute the same six quantities to evaluate the performances

of the estimators.

5.5.2 Results

Tables 10-12 summarize the results of our simulation experiment. B2SLS-All eliminates bias effec-
tively when R} = 0.1, however, it exhibits large bias when R} = 0.01. The diversity of B2SLS-All
with all the instruments (measured by IQR) is smaller than that of LIML-All when ¢ = 0.1 but
the difference is small. On the other hand, when ¢ = 0.9, LIML-All has small diversity and the

difference is substantial. In general, we may recommend LIML over B2SLS when we use all the

22



instruments. DN improves All in many cases and the improvement can be substantial. This result
is similar to what we have observed in the case of LIML. However, B2SLS-DN perform substantially
worse than B2SLS-All does when ¢ = 0.5, 0.9 and n = 1000 in Models (a) and (c).

B2SLS-P typically improves B2SLS-DN. The performances of B2SLS-U and B2SLS-C are similar
to each other and their performance is very unstable. When ¢ = 0.9, B2SLS-U and B2SLS-C exhibit
non-negligible bias and their MAD is substantially larger than that of B2SLS-DN. On the other
hand, when ¢ = 0.1, their improvement can be substantial. For example, when ¢ = 0.1, n = 100 and
R? = 0.1 in Model (a), the MAD of B2SLS-U is the smallest among the estimators considered in the
experiments (including 2SLS and LIML-type estimators). We note that the good performance of
the model averaging estimators appears to be due to its ability to reduce the variability (measured
by IQR).

In summary, B2SLS-P demonstrates most stable performance. B2SLS-U and B2SLS-C improve
B2SLS-All substantially in some case but there are also cases in which B2SLS-U and B2SLS-C
do not work well. Thus, we recommend B2SLS-P when we apply model averaging to the B2SLS
estimator. On the other hand, we recommend to avoid using B2SLS-type estimators. The LIML
estimator has better bias property and the 2SLS estimator shows less diversity. Model averaging
can improve the performances of LIML and 2SLS estimators in a more stable way than that of

B2SLS.

6 Conclusions

For models with many overidentifying moment conditions, we show that model averaging of the
first stage regression can be done in a way that reduces the higher order MSE of the 2SLS es-
timator relative to procedures that are based on a single first stage model. The procedures we
propose are easy to implement numerically and in some cases have closed form expressions. Monte
Carlo experiments document that the MA2SLS estimators perform at least as well as conventional
moment selection approaches and perform particularly well when the degree of endogeneity is low

to moderate and when the instrument set contains uninformative instruments.

7 Formal Results and Proofs

This section presents the formal theorems and their proofs. In the proofs, C' denotes a generic constant

whose exact value depends on the context.
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Theorem 7.1 Suppose that Assumptions 1-3 are satisfied. Define pu;(W) = E[e2u;|Py(W) and p(W) =
(W), ., un (W) If W satisfies Assumption 4 and 5(i) then, for B defined in (2.2), the decomposition
given by (7.7) holds with

P“ 2 K/ 2 /F
Sw) = H! (Cum €7, €, Ui, U] w + UUGU;E( ]?/) + (028, + Uueoi“)w
_ BN _~_E[€§u/1]zif ( ) + Zz fz ( )E[E%ul]

N N
+f'(I = PW)u(W) /N +p(W)' (I = P(W))f/N + o?

J'(I = POW)(I = POV))FY s
)

where d = dim(3), and

1

N N
1
2 -1 -1 -1
By =2 (oe Sy + doyeol, + ¥ ; fio H You f! + ~ ; (fiolh e H fiole + OucflH 1 0ye f{)) (7.1)

Remark 3 Whend =1, By = 2(02%, +402,).

Note that the term By is positive semi-definite. This implies that usual higher order formula that
neglects the term K/TWB ~ overestimates the effect on the bias of including more instruments. A number of
special cases lead to simplifications of the above result. If Cumle;, €;, u;, u}] = 0 and E[e?u;] = 0 as would be

the case if ¢; and u; were jointly Gaussian, then the following result is obtained:

Corollary 7.1 Suppose that the same conditions as in Theorem 7.1 hold and that in addition Cumle;, €;, u;, u;] =

0 and E[e2u;] = 0. Then, for 3 defined in (2.2), the decomposition given by (7.7) holds with:

fI=PW)U = PW)FY -
o? N )H !

(K'W)?
N

(WTW)  K'W
N N

By +

S(W) = H! (Uuea;é + (U?Eu + Oueol,)
(7.2)

where By is as defined before.

Another interesting case arises when W is constrained such that w,, € [0,1]. We have the following

result.

Corollary 7.2 Suppose that the same conditions as in Theorem 7.1 hold and that in addition w,, € [0,1]
for all m. Then, for 3 defined in (2.2), the decomposition given by (7.7) holds with:

SW) = H! <JMJ;€ R O LA LN (7.3)
P R eV L P YA L LA Ty P

where By, is as defined before. Moreover, ignoring terms of order O,(K'W) (= 0,((K'W)?)), to first order

, (K'W)? zf’(f—P(W))(I—P(W))f)
N

SW)y=H""! (aueaue N o H™'. (7.4)
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A last special case arises when the constraint K'W = 0 is imposed on the weights. This constraint requires
that w,, can be positive and negative. The expansion to higher orders than Donald and Newey is necessary
to capture the relevant trade-off between more efficiency and distortions due to additional instruments. For
simplicity we also assume that Cumle;, €;, u;, u}] = 0 and E[e?u;] = 0. Without these additional constraints
the terms involving Y, (P;(W))?/N, 3, fiP,i(W)/N and f'(I — P(W))u (W) /N potentially matter and

need to be included.

Corollary 7.3 Suppose that the same conditions as in Theorem 7.1 hold and that in addition Cuml|e;, €;,u;, ul] =

0 and Ele?u;] = 0. Furthermore, impose K'W = 0. Then, for B, the decomposition given by (7.7) holds with

WIW) | a0 POV = POVTY o

v - (7.5)

S(W)=H""! ((O’?Zu + Uuea;é)(
Remark 4 We note that this result covers the Nagar estimator, where M = N, w,, = N/ (N — k) for k =
m, wy = —k/ (N — k) and w,, = 0 otherwise for some k such that k — oo and k/v/N — 0. First, we verify
that all the conditions of the Corollary are satisfied, where Zn]\le |wm| = (N+k)/(N —Ek) which is uniformly
bounded if k = o(N), K'W =1, 1),W =1, "M |w,|m = 2Nk/(N — k) — 00, M |w|m/VN =
2V/Nk/(N — k) — 0. Further, supj¢jd—§L|an:1 wWm| = 0 by taking L < k. Next, note that W' ITW =
k/(1—k/N)? —k2/N (1 —k/N)* and f'(I — POW))I — PW))f = f'(I — P)f/ (1 — k/N)? noting that
Py = 1. If we use Wy to denote the Nagar weights, then S (Wx) = H (022, + oycol, )k/N + o2 f'(I —
Po)f/NYH™! +0(S(Wy)). The lead term is the same as the result in Proposition 3 of Donald and Newey
(2001).

The next theorem gives the approximate MSE of the MALIML and MAFuller estimators.

Theorem 7.2 Suppose that Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied. Let v; = u; — (0uc/02)e;.
Define ¥y = Xy — 0wty (W) = (oa(W), ... iy NOW)Y', o1 (W) = E[e2v;]Piy(W). If W satisfies
Assumption 4 then, for 3 defined in (2.83) (MALIML) and B defined in (2.4) (MAFuller), the decomposition
given by (7.7) holds with

sSw) = H! (U?EU W/JI\;W +0? fI = PW)(I = P(W))f + Cumle;, €;, v;, v;]izl(PX[(W))Q
2 xS =PW)pu(W) (W) (I = P(W)) N -
T N B N )H g
where N N
(= fiPu(W)E[eiv]/N - KNW > fiElevi]/N.
i=1 =1
When Cumle;, €;,v;,vi] = 0 and E[e2v;] = 0, we have
SW)y=H"" (afzv W/;W +0? I P(W)J)V(I — P(W))f)H*. (7.6)
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Theorem 7.3 Assume that Assumptions 1-5 hold. Suppose that dim(3) = 1. Let

2 (X'P(W)X)?
 X'PW)PW)X - X'X’

If Zle lwj| = o(1) and E(X;) =0, then

5 E()
= By 1ot

7.1 Lemmas
The MA2SLS estimator has the form of VN (3 — 8) = H~'h. We define h = f’¢/v/N and H = f'f/N. The
following lemma is the key device to compute the Nagar-type MSE of MA2SLS. This lemma is similar to

Lemma A.1 in Donald and Newey (2001), but with the important difference that the expansion is valid to

higher order and covers the case of higher order unbiased estimators.

Lemma 7.1 If there is a decomposition h=h+Th+2Z" h=h+Th H=H+TH + ZH,

AW — bW/ H YT — THH= hi = A(W) + ZA(W),

such that T" = 0,(1), h = O,(1), H = O,(1), the determinant of H is bounded away from zero with

probability 1, pw,.n = tr(S (W)) and pw.n = 0p(1),

1T = oplpwn), 12"l = oplow,n),  1Z7]] = 0p(pw.n),
ZAW) = oplpwn), E[AW)|z] =0’H + HS(W)H + op(pw.n),
then
N(B=Bo)(B—Bo) = QW)+#W),
EQW)|z] = o?H '+ S(W)+T(W), (7.7)
(FW)+TW))/tr(SW)) = o0,(1), as K'WT — 0o, N — c<.

Remark 5 The technical difference between our lemma and that of Donald and Newey is that we consider

the interaction between T" and TH in the expansion and we do not require that ||T"|| - ||TH|| is small.

Proof. The proof follows steps taken by Donald and Newey (2001). We observe that

H'h=H''h—H Y (H-HH 'h+H *(H-HH '(H - H)Hh.

Noting that H — H = TH + ZH ||TH|]2 = 0,(pw.n), ||Z7|] = 0p(pw.n) and h = h+ Z" = h + o,(pw.n),
we have

H'h=H'h—H'TEHh+ 0,(pw.n).
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7 = AW) 4+ ZAW) + THH YW HTH = AW) + 0,(pw.n),
by ZAW) = o,(pw.v) and ||[TH|| = o,(pw.n). It follows that
N(B=B)(B~8) =H "(AW) + op(pwn))H " + 0p(pw,n) = HPAW)H ™ + 0y (pw,w)-
Therefore, we get the desired result. m

Lemma 7.2 Let T be the N x N matriz where I';; = min(i, j). Then I' is positive definite.

Proof. Define the vectors b; v = (0}, 1_;)’, where 1; is the j x 1 vector of 1’s and 0, is defined

similarly. Then

N—
E ]NJNv
7=0

and for any y € RV it follows that y'T'y = EN_ ! (y'b;, N) > 0 and the equality holds if and only if y = 0.

This shows that I" is positive definite. H

Lemma 7.3 Let T be defined as in Lemma 7.2. If, for some sequence L < M, L — oo, L ¢ J for J defined
in Assumption 2(iii), sup;gy i<y | Zin:l Wy = Op(1/V/N) as M — oo and W'y = 1 for any M, then it
follows that W'TW — oo as M — oo.

Proof. For L < M and L — oo it follows by the assumption that

M M j M
1= g Wy, | < inf g + E W | < inf g W, sup E W,
m=1 JESISEA | S m=1 JgSIsL T J¢J7J<L m=1

such that inf;¢ 7 ;i<f ‘Z 1 u}m‘ >1-0, (1/\/N) Now let C'; be the number of elements in J such

m=j5+
that
2 2
M—-1 M M 5
WIw =3 S wa| =2 3 [ 3 wa| 2@-0cy (1—op (1/\/N))
j=0 \m=j+1 jgJ,j<L \m=j+1

Since L — oo and C'5 is bounded and does not depend on L or N, the result follows. ®

Lemma 7.4 If, for some sequence L < M, L — oo and for J defined in Assumption 2(iii) L ¢ J, and
SUPj¢j <L | Zfﬁ:l Wy | = O(l/\/ﬁ) as M — oo, then Z%:ngj (Z;n:l wm)2 m—** — 0.

Proof. Note that

L L8 86

m:l,mQJ_ m=1 méj m:L+1,m¢J_
g 2 L M m
< () S 5 (Sl) e
J¢Ji<L |s=1 m=1 m=L+1,m¢J
L
< O@/N) Y m™* +Cn Z m =0,

m=1 m=L+1
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m

where the last inequality follows from the fact that ) ", |w.,,| < Cj1 < oo uniformly in N by Assumption

4. Then, Z%:LH m~2% — 0 because L — oo and an:l m~2% < oo uniformly in M. =

Lemma 7.5 Suppose that Assumptions 1-8 are satisfied. Then we have

1. tr(P(W)) = 2%21 wmm = K'W (Hansen (2007) Lemma 1.1),

2. 32(Pi(W))? = o (K'WT),

8. 3 iz Pi(W)Pj;(W) = (K'W)? + 0, (K'WT),

4 Xiy Py(W) P (W) = 5200 Yy wwn min(l,m) + 0, (K'W) = W'TW + o, (K'W),
5. Zi;éj Pij(W) =0p (N —K'W),

6. h=f'e/V'N =0,(1) and H = f'f/N = O,(1) (Donald and Newey (2001) Lemma A.2 (v)).
Proof. We do not provide the proofs of parts 1 and 6, as the proofs are available in Hansen (2007) and

Donald and Newey (2001). For part 2, first we note that A;; < B;; if A < B, which implies that P ;; < P
for I < M. Then, Assumption 3 and Lemma 7.5(1) imply

N
(W) = Z

%

N M
W W Py 35 P is < Z Z [ W | |wi] P ii Prii

i=1 m,l=1

HM?

IN

M N M
max(Paz,i;) <Z |wl|> Z Z | Wi | Pris < C max(Pay ) trP (W+)

m=1 i=1 m=1

op()(K'WT) = 0y (K'WT)

where Z%Zl |w;| < Cyy for some Cj; < 0o was used and the bound holds uniformly for all N by Assumption

4. Also these results imply
S Pi(W)P(W) =Y Pu(W) > Py(W) =Y (Pu(W))* = (K'W)? + 0, (K'WH),
i#] i j i

which shows part 3.

To show part 4, first we observe that
> Py(W)P;(W) = tx(P(W)P(W)) = 3 (Pa(W))*.
i#£] %

Now tr(P(W)P(W)) = Zﬂle Z;‘il wmw; min(l, m) by Lemma 1.2 of Hansen (2007). Thus, combining this

result with part 2 of this lemma,

M M
D Py(W)P5(W) =YY wpwymin(l, m) + o, (K'WT).
i£] m=1 =1
For part 5, note that
D Py(W) = 1y P (W) Ly — tx(P(W)



where 1y P, 1y < 1y1y = N by the fact that P, is an idempotent matrix. Then note that

M
NP (W) 1y = te(P(W)) = [IyPW)in| = te(P(W)) < Y [wnl|[ly Pnln| = tr(P(W))
< CON-KW

such that 3,; Pij(W) = 0, (N — K'W) = 0, (N). =
Let e, (W) = f/(I — P(W))(I — P(W))f/N and A(W) = tr(e; (W)).

Lemma 7.6 Suppose that Assumptions 1-3, 4 and 5(i) are satisfied. Then
1 AGW) = 0,(1),
P = PV = 0,(AW)12),
. E[u/P(W)e|z] = oy K'W,

‘e’ P(W)ulz] = 32, fiPu(W)E[e;u;] = Op(K'WT),
. Let g(W) : W — R with g(W) > 0 be a function of W such that g(W) — oo as N — oo. Then
VIW)AW)/VN = Oy(g(W)/N + A(W)),
7. ERWH YW f/N|z] = 3, fif/ H  E|2u;)f!/N? = O,(1/N) (Donald and Newey (2001) Lemma A.3
(vit)),
8. E[f'(I = P(W))ec' P(W)u/N|z] = f'(I = P(W))u(W) /N = o, (K'WT)/N + AW)),

2

3. Bl

4. E[u'P(W)ee' P(W)u|z] = 0ueoly (K'W)? + (02504 + 0ucol, ) (W'TW) + Cumle;, €5, ui, wj) Y, (Pi(W))?,
9. B

6

9. E[f'ee fH ' P(W)u|z]/N? = O,(1/N) + 022, K'W/N,

10. B[f'ee P(W)uH " (u'f + f'u) |z]/[N? = Op(1/N)HE'W/N)(E, fiouH 0w fi N+, fiowH ' fioy /N),
11 B [ POW)ee [H (W[ + f'u) |2] [N? = Oy (1/N) + (K'W/N) (dowecty. + oue Xy fIH ' 0ucfi/N),

12. WTW < CK'WT.

Proof. Let 7, = tr(f'(I — B,,)f)/N. By construction 7,, > 0. Write
tr(f'(I = P(W))(I = P(W))f)/N = W' AW

where

It follows that

M-1 m 2
W’AW = ( (Z ws) (:Ym - ’?m—i—l)) +'~YM (78)

M— m 2
= (Z ws) (Ym = ma1) | +m + Op (1)
m=1,m¢gJ \s=1



where the second equality holds by Assumption 2(ii) such that

M—1 m 2 M—1
W’AW < Z (Z ws) ﬁ’m + Op (1) = Z (Z wS) 7204 _20‘
m=1,m¢J \s=1 m=1,m¢J

IA

M-1 m 2
sup (mzo"?m) Z (Z ws> m—2e,
s=1

m<M metomd]
where sup,, <5 (Mm**¥m) = Op (1) by Assumption 2(ii). For a sequence L < M, L — oo and L/N <
M/N — 0 satisfying Assumption 4(ii) it follows that Z%:ngj >, ws)?m=2% = 0(1) by Lemma 7.4.
This implies that tr(f'(I — P(W))(I — P(W))f)/N = A(W) = o0,(1).
Next, we observe that E[f'(I — P(W))e/v/N] = 0 and

L= PWe 0= POVIIL] _ o0 POV POV _ s, ()

VN VN N
Therefore f'(I — P(W))e/V/N = O,(A(W)'/?) by the Chebyshev inequality. This shows part 2.
For part 3,
N
El/P(W)el2] =Y Py (W) E[uig;] = ouctr(P(W)) = 0y K'W.
i=1

To give part 4, observe that E[u;P;;(W)e e Pri(W)uj] = 0 if one of (4,4, k,1) is different from all the
rest. Also E[eZu;ul] is bounded by Assumption 1. Therefore we have

E[u' P(W)ee' P(W)u|z]

= Y (Pi(W))*El¢uiw] + Y Elu;i Py (W)eie; Py (W) 2]

i#£j
+> BluiPy(W)eje Py (W)ujlz] + Y | Elui Py (W)€ Py (W)uj|2]
oy oy
= Bleiuuj] Z(P”(W))Q + TueTy, Pi(W)Pj;(W) + (020 + Tucorye) Z Pij(W)Pi(W)
i i#] i+

= Cumle;, &, u5,w)] Y (Pi(W))? + 0ucol (K'W)? + (0250 + Guco, ) (W'TW),

by Lemmas 7.5(3) and 7.5(4) and noting that Cumle;, €;, u;, u}] = E[e?u;ul] — 025, — 20400,
Assumption 1 also implies
[f e’ P Zfz ]k GZCJuk Zfz zz ]
.5,k

and furthermore together with Assumption 3,

<Z\Pu Al B[ u]l] = Op(K'W),

which gives part 5.
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To prove part 6, first we consider the function of a: g(W)/a+a or a € R which is convex and the minimum

value of which is 24/¢(W) with the minimizer a = 1/g(W). If A(W) = 0, then (\/A(W)/N) /(g(W)/N +
A(W)) =0 and for A(W) # 0,

AW)/N ( g (W)

g (W) /N +A(W) N ) <=0 (7.9)

as g (W) — oo.
For part 8, let Q (W) = I — P(W) and for some a and b let f; , = fu(2;) and p;, (W) = E[eZuip) P (W).
Now the (a, b)-th element of E [f'(I — P(W))ee' P(W)u|z] satisfies

E

Z fi,aQijEjekPkl(W)ulb‘z

.5,k

Z fi,aQijE[E?Ujb}ij(W)‘

,J

F2Q (W) py (W) | < 1 £2QQ fal 2|1ty (W) pan (W) [V/2,

where the inequality is the Cauchy-Schwartz inequality. Now |f/QQf.|'/? = Op((N A(W)Y/?) by the
definition of A(W). |u,(W)us(W)| < C >, (P;i(W))? for some constant C' by Assumption 1 and applying
Lemma 2(2) we have |, (W)us(W)| = 0,(K'W ). Therefore we have

E(f/(I - P(W))ed P(W)u/N|z] = O,(NA(W))2)o,(VETW)O,(1/N)
= 0 (A(W)VEWFVN) = o, (K'WH)/N + A(W)) |

where the last equality follows from the fact that
AW AVEWT VN < (K'W)/N + A(W))/2
by (7.9). In addition if we define yi; (W) = E[e2u;]P;i(W) and p (W) = (1 (W), ..., i (W)')/ then

E[f'(I = P(W))ec' P(W)u/N|z| = f'(I = P(W))u (W) /N.

For part 9, we have the following decomposition:
E[f'ed fH 'W/'P(W)u|Z] /N> = Y fif{H 'Ele;uuj]P;(W)/N
+2) " fifjH " Elequw] Elejuf] Py (W) /N?
i#j

+Y fifH Bl Eluu) Py (W) /N2,
i#£j

The boundedness of f!f; H~'P;(W) implies that

> fiflH ' Ele}uuf] Pi(W)/N? = Op(1/N).
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Let f,; be the ath element of f;. Then, we have

<D wnl(foPufa) /N® <3 |win| (£ fa) /N? = Op(1/N).

m=1 m=1

> faifaiPii(W)/N?

i,J

This implies that

> fif{H Eleu] Blejuf) Py (W) /N?

i#£]
= Zfif]{H_lE[fiui]E[GJ ]] (W )/N? — Zfsz ' Blejui) Blequi] Pu(W) /N?
= O;,(l/N).

Lastly, we have

> fif{H B[ E[uju}|P;;(W)/N?
i#]

= (fo) H 6%, (ZP“ )/N2 ZflfH 1925, Py(W)/N?
= 2%, K'W/N + O,(1/N).
Therefore, we have

E|[f'ee€ fH "W P(W)u|Z] /N* = 625, K'W/N + O, (1/N).

For part 10, using again Lemma 7.5(5) as before,

E [f'ee P(W)uH "' f|z] /N?
= Y fiPi(W)E[GuiH wil 2] f{/N* + > fiPj;(W)E [eju}] H ' Elu;e;] f{/N”

i#]
+U?ZfiPij(W)E [ H 2] f;/N2+a§ijPji(W)E [uH " u;] fi/N?
i#j i#]
= O,(1/N)+ > [iPy;(W)Elejuj] H " Eluie| f{/N* = Op (1/N) + (K'W/N) Y fiol, . H 'oucfi/N
i#j i

and

E[f'ee P(W)uH " f'u|z]/N*?

i#£]
+02 > fiPy(W)E [uyH™ ful|z] /N? + 02 f;Pji(W)E [u;H' fiud|z] /N?
i#j i#j
= O,(1/N)+>_ fiPj;(W)E[e;uj]H " f; Elu}ei] /N> = O, (1/N) + (K'W) /N> _ fioi, H " fiol, /N.
i#] i
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For part 11, with the same arguments, it holds that

E [u’P(W)ee’ fH flulz] /N?

= Z-Pu E uzsz u1f| /N2+ZP]] [GJUJ}fZH_lf,LE[U;Q]/NQ
i#]
+02 Y Piy(W)E [u; f{H " fiuj|2] /N? + " Pyy(W)Eluge;] f{H ™ fiEluje;] /N
i#£j i#£j

1 K'W
= Op (N>+ N UuegueNZfH 1fz

1 K’ 1 1 K’
O, (N> + Twaueaéetr (HIN Zf1f1/> =0, <N> + dTWJMJ;e

and arguments similar to before give

E[WP(W)ee fH W f'|2] N> = O, (1/N)+ > _ Pj;(W)E[eju;] f{H " E[we;] f|/N*
i#£]

1 KW 1
Op (N) + Taueﬁ Zfi/H_lauefi/'
A

For part 12, note that

2

M [ M M M M
W'FW:Z ij SZZ lw;| ij SCZ|wm|m:CK’W+
m=1 m=1j=m j=m m=1

j=m

where the second inequality follows from the condition supj < s ’ETA,{: & wm‘ < Cj1 < oo which holds uniformly

inM. n

Lemma 7.7 Assume that Assumptions 1, 2, 3, and 4 hold. Let

[1]

(W) = tr(f'(I = P(W))f/N). (7.10)
Let pw,n = tr(S(W)) where S(W) is defined in (3.2). Then, we have
(E(W))? = op(pw,w)-

We note that the result holds when S(W) is defined in (3.1).

Remark 6 Considering the set J in Assumption 2 is important because the optimal weighting vector has a
structure such that w; does not converge to 0 if f'(Ppy — Pmi1)f/N = 0. Thus, the optimal weighting vector

= O0(1/V/N) in general.

does not satisfy sup,;<y, ‘Zi:l Wy

Proof. Let 4, = tr(f'(I—P,)f/N) and A be the M x M matrix whose (4, j)-th element is min(%;,5;) =

Ymax(i,j)- Let e be the first unit vector. We write

E(W) =W'Aey, AW)=W'AW.
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Let Wy = (wy,...,wg,0...,0) and Wy = (0,...,0,wr41,...,wa). We have the following decomposition.

(EW))? = WjAeiel AW, + 2W, Aerey AWy + Wy Aere) AWy,
AW) = WIAW, + 2] AW, + WLAW,.

First, we consider

( 7b+1 <j£:1ﬂs> Y
( ’YJJrl + (Z ws)

—1/
W{AWl = Z (Z ’U)S>
=1
J

> o)

s=1

2.

J
JEJI<L

INA
w
=
ol

Y. G -H)+n

( . 2
. 2
J
< ws)
jéijSL s=1 jQ‘]_,jSL—l
( ] |

Zws> F = O,(1/N).

s=

= sup
J¢J, <L

—

By Lemma 7.3, W/ IT'W — oo so that
W{AW; = O,(1/N) = o(W'TW/N) = o(pw,n)-

Since [W{ AW, | < (W] AW,)Y2(W4 AW,)'/2 by the Cauchy-Schwartz inequality, we have A(W) = Wi AW+

op(pw,n). Next, we consider

W{AelellAI/Vl
. 2 . 2
L—1 Vi L L—1 7 L
- z(m) wj—ajHH(zws)aL (> (zw) <aj—aj+l>+<zws>%
7j=1 \s=1 s=1 j=1,5¢J \s=1 s=1

J L 2
< (Z ) —%i+1) + (Zm) L > G =) +Ac
J¢JG<L \s=1 '

j&J,i<L
= WlAW1

where the inequality is that of Cauchy-Schwartz. We examine the order of WjAeje}j AW,. We observe that

WyAe, = Z ( Z ws> (% —%‘H)‘F( Z ws> M,

j=L+1 \s=L+1 s=L-+1

and

WiAW, = Y <Z ws) (%’—%H)‘i‘( > ws> M-

j=L+1 \s=L+1 s=L+1
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These formulas imply that

W2/A€1 — WQIAWQ

j=L+1 s=j+1 j=L+1 \s=L+1

+0p(pw,N ),

s=L+1

()02 ))

We observe that, by the Cauchy-Schwartz inequality,

where

m < Cym = op (pw,N) -

2

> (2 ) {2 o)

j=L+1 \s=L+1 s=j+1
. 2 2
M j M M
< > ( > ws) (%5 — ¥j+1) DD we | G —A)
j=L+1 \s=L+1 j=L+1 \s=j+1
< WQIAW2 -C(YL — M) + Op(PW,N) = OP(PW,N)

since Wo AW, = O(pw,n) and 71 — Fm = 0,(1). It also holds that

(5 ()

J=L+1 \s=L+1
L 2 M J 2 1

= (Z“’S) > < > ws> (Vi =) | =0y (N) = 0p(pw,N);
s—1 j=L+1 \s=L+1

by Assumption 4. It therefore follows that
(W3Aer — WoAW:)? = o, (pw,n)-
Therefore,

WhAeiet AWy = (WhAWy + WiAey — Wi AW,)?
< 2(WoAWs)? + 2(WiAe; — Wi AW,)? = o, (pw.N)-

Lastly, by the Cauchy-Schwartz inequality, we have
WiAeiey AW, = 0,(pw,N).-
To sum up, we have

(2(W))? = W] Aerey AW, + 2W] Aeye) AWy + Wi Aeiey AWy = o,(pw.N)-
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Lemma 7.8 If Assumptions 1-8 hold, and for Q = Qu = {W € [;|W'1y; =1} where M satisfies the

constraints in Assumption 10 and W = (wy, ...,wnr) , it follows that
. —2a
inf S\ (W) =0, (N = ) :
where Sx(W) = NS(W)X and S(W) is defined in (3.1).

Proof. Consider a sequence W where wy; = 2, waps = —1 and wj = 0 for j # M,2M and M =
LNﬁJ . Clearly, 1'W =1 and W € [; for all N such that W € Q. We note that K'WW = 0. It follows that

S, (W> ! (ba (W;5W) + o2 /(I —PW))(I — P(W))f) Hy,

N
where L
(WTW) 2M 2
= v mo (v
and

tr (f/(1 = POV)(I = POV)f)
N
where 3, = tr(f'(I — P,,)f/N). This argument shows that infycq Sy (W) < CN7sT,

=43y — 3oy = Op (M_Qa) = Op (N%) ,

To show that the rate is sharp, suppose that there is an € > 0 such that

. —2a(14¢)
inf Sy (W) = 0, (N 5T )

Take any W such that, for M = LN%J, where 0 < § < ¢/2,

T — 1 _ 1 M J ? —2a(14e
tr (f 7 P(W)])V(I P(W))f> => (sz> (%5 — ¥i+1) + M = Op (Nﬁ) , (7.11)

i=1

j=1
where we use formula (7.8). Let Jps be the set of integers j such that 1 < j < M for which j2*™ (5; — §j41) >
0. By the assumptions of the Lemma, w.p.a 1, §Jy; = O (M) as M — oo, where §J); is the cardinality of
Jur. It follows that

> (sz> W =) = D (sz> M (2at1) ZO(N;(?‘ETAM)) 3 (sz>

j€Jm \i=1 Jj€Jm \i=1 JE€EJMm \i=1

—20(e—38)+1+8

. 2
which together with (7.11) implies that >, ; (Zgzl wi) =0 (N Zat1 = o0 (M). Now, since

)
o=y oo (o) () (0] (S0) ) o

J€JIM J€JIMm =1 i=j+1
and by the Cauchy-Schwarz inequality

. o\ 1/2 o\ 1/2

(5] () (58

j€In \i=1 i=j+1 i=1 jedn \i=j+1

A

1/2
M /

0(\/M> Z Z % )

JEJIMm \i=j+1
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2
it follows that (7.12) can only hold if liminfx 3, ;- (Zi\ijﬂ wi) /M > 0. Then, for some n > 0 and N
large enough, it follows that

M M 2 s
WTW = (Z wm> ZMn:O(N%)
J

=0 \m=j+1

such that W' TW/N = O (N 72?;?16), which implies that Sy (W) = O (N 72%5?16) , a contradiction to the

—2a(14¢)

assumption that infyeq Sy (W) = O, (N ZaF1 ) This argument establishes that infyeq Sy (W) =

O, (N‘;Tial) is a sharp bound. =

Lemma 7.9 Let

(K'W)* + 13,,(

8, (W) = T (a[, i WIW) KW g\ ol —P(W))(I—P(W))f> A

By + 63 N H7\

If Assumptions 1-9 hold, then, for Q as defined in Lemma 7.8, it follows that

sup Sx (W)

— 1=, (1),
wea Sx (W) o (1)

where S\(W) = NS(W)X and S(W) is defined in (3.1).

Proof. We define the subset Q2 = {W € [} |—00 < liminfy K'W < limsupy K'W < co}. Note that

K'W/N (K'W)? /N
su ——————— — 0and su —_—
Weﬂgﬂz Sx (W) WEQEQQ Sy (W)

by Lemma 7.8 and the fact that {Wy € I;|K'W = 0} € Q. It now follows immediately that

~0 (7.13)

/ 2
Y (Ff—lagﬂ—l - H‘laUH_1> N sy EWI/N

=0,(1
weona, Sx (W) »(1)

with the same argument holding for the term By K’ W/N. Define

Sna, (W) = NH <bU(W’JI\;W) 2= P(W)z>\r([ - P(W))f> i

and note that Sy o, (W) > NH 1o, HIA(W'TW)/N as well as Sy q, (Wy) > o2NH 1 /(I — P(W))(I —
P(W))fH=1)\/N. Thus, we have

L WTWYN _ (WTWN Sy, (1)
WGQRQQ Sx (W) - Weagﬂz Sx,0. (W) Weagng SA(W)
1 . S0, (W)

< -
= NH b, H X\ weana, Sx(W)

where supycona, Sx,0, (Wn) /Sx (Wy) — 1 by (7.13). This implies that

NP B _ W'TW)/N
N{(H Y% H'—H %, H ')\ su (7:0 1).
( ) WEQEQQ SA(W) p (1)
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Now consider

N (ﬁ_lﬁf _H—lag) f’(I_P(W)])V(I_P(W»fﬁ—l)\

v U= PO POV (o1 )

N
where
N (ﬁ—l&f - H—laf) 71— POW))(I — P(W))ff[‘l)\/N‘
weana, S\(W)
e (o - g, LN
wea (1 - paw))rH-10VN |
where

RO
weo (1= pwy) -V

Op (1)

by Assumption 2. Together, these arguments show that

Sy (W)

su —1=0,(1).
weanos Sx (W) p (1)

For W € QN QY where QF = {W € Iy |liminfy |K'W| = oo} it follows that

|K'W| /N
sup e
weanag (K'W)” /N

such that for

K'W)? T "I -P I-P
S1 e (W) 1 [, WPy WTW) o /(L= POV)U = POV))S] sy
2 N N N
it follows that
S w
sup LHHI&SNHOO.

weanag  SA(W)
Then similar arguments as before can be used to show that

sup g)\ (W)
weana, Sx (W)

—1=0,(1).
Since (2 UQS) NQ = Q, this establishes the claimed result.

Lemma 7.10 Let Assumptions 1-10 hold. Then, it follows that

sup S’A(W)
wea Sx(W)

-1—,0

where Sx(W) = NS(W)X and S(W) is defined in (3.1).
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Proof. Without loss of generality assume that f; is a scalar and NH ! = 1 so that 03 = o2. First

.
consider

|z~ P A = 11— Paoy v = |[(Pas — POVY) V]

and note that
f'(I—Py) f/N =0, (M%)

by Assumption 2. Together with Lemma 7.8, this implies that

|2 = PO VA |0~ POV VA

weo S\(W)
SUPweq f/(I — Py)f/N e nr 20 —2a8
= M Nzoti | = Nza+t | = 1
= infry e Sx (W) O 1) =0, (N7 ) =0, (1)

Combining these results with Lemma 7.9 it is then sufficient to show that

e = P XV Pas = P OV VR = o 01 = 2w 4 wmw)
sup =o

wea S\(W) p(1)

We note that in this expression we replace 62by o2 which is justified by the same arguments as in the proof

of Lemma 7.9 as long as 62 — 02 = o, (N~%/(22%D) because, under the assumptions of the Lemma, it then

follows that (62 — 02) M/N = o, (N~2¢/e+D)) = o (infyeq Sx(W)) and the remaining terms involving

2

= can be handled in the same way as in the proof of Lemma 7.9. Now note that

[P = POV XA = (P - P vy sV
_ H(pM - p(W))u/\/NH2 +2u' (P — P (W) (Par — P (W)) f/N.
It follows that

Eu' (Payy =P (W) (Pyr =P (W) u/N|z] = oy (tr(Par) — 2te(P(W)) + tx (P(W)P(W))) /N

o2 (M —2K'W + W'TW) /N,
and

E' (Py — P (W) (Py — P (W)) f/Nlz] = 0.
Moreover, we have the bound

‘||(PM —P(W))ulf® — o2 (M — 2K'W + WTW))
M M M
< ’u/PMu - O'iM‘ + sup |u’Pju - aij’ QZ lwj| + ZZ |wj] |wi]
jsM j=1 J=11=1
where Z;Vil |lwj| < Cjy uniformly in M is used. It follows for some ¥ > 1 from Whittle (1960, Theorem 2)
that for some constant C,

B [jupyu =i lo] < 8 [ju] (i (7)) = OF [ju*’]

39



and thus for any 1 > 0 and some constant C', not necessarily the same as above,

supweq [[(Pa = P (W) ul = o2 (M = 2K'W + W'TW)| /N
Pr >
infyyeq Sx(W)

EUu’PMu—aZM‘w\z} M E[‘U’Pu—au]‘ ]
= nﬂN219N74a19/(2a+1) +3CZ 19N219N 4a9/(2a+1)
292 9 941
E [|U1| ] (M + M ) 1+85—9(1—9)
< C 1P N29 N—4ad/(2a+1) =0 (N okt ) =o(1)
Next, consider
[u' (P — P(W)) (I = P(W)) f/N| = Z wiw;u — Puax(ig)) [/N
7,7=1

where )

Zwle PM PmaX(Zj) f/N < Z ij |u( i+1 — z)f/NI

1,9=1 =1 Jj=1

Let K, = NL(1=)/2a+1)]  Then,

S (i) W (P~ PYSNE S (S ) (P — P /N 1
wen S\(W) = Sup 507 +0, (1)
(7.14)
because

e [ qup Ziert (Siywy) W (Por — P) F/N

>n|z
RS S\(W) "'

WP o Y imr Kot (E;:1 wj ) [ (Piy1 = F) f/N|

|
infyeq Sx(W)

< Pr > 1z
9 g
CE [[uil*| SiLic, 11 (' (Pisa = Py) [/N)
= ’9N’9N 4av/(2a+1)

where the inequality follows from Markov’s inequality, Lemma 7.8, the fact that ’22‘:1 wj| is uniformly

bounded on {2, and Theorem 1 of Whittle (1960) which implies that

E[[u! (Piyy = P) f/NP 2] < CE [l | N7 (F/ (Poya = P) /N)” (7.15)
Now note that

CE [l | S5 (' Brva = P)I/NY” OB [lail™ | (17 (1 = Prey) §/N)" M

19N19N 409 /(2a+1) — 19N19N—4a19/(2a+1)
_ Op (K 2a19M/N19N4a19/(2a+1))
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which establishes (7.14). We thus turn to the lead term on the right hand side of (7.14). By the Cauchy-

Schwarz inequality we have

W (Piy1 — P) f/N| < (f' (Prs1 — P) f/N)? (W (Psy — P)u/N)'2.

It now follows that

K, ?
Zw] ' (Piy1 — P;) f/N] (7.16)
i=1
4 1/2 4 1/2
K, [ i K,
< A Dwi| F (P —P)f/N ng u (Pip1 — P) u/N
i=1 \j=1 i=1 \j=1
) 5 1/2 ) 1/2
i K, i K, [ i
< sup (> w; > wj | f(Pis1—Pi) f/N > wj | u' (Pip1 — P)u/N
iSM\ T i=1 \j=1 i=1 \ j=1
2
where sup, < s ( =1 wj> 7 < oo uniformly in M such that
K, 7 2 Yz i 1/2
Z ij v (Piy1 — P)u/N < Sblvp Z |w; | (Z u' (Pyq1 — u/N) (7.17)
i=1 \j=1 j=1

< C(u (Pr,s1— P1)u/N)"?

, 2
where W € [; was used to bound supy, (Z;Zl |wj\) . Let Qn C Q be the sequence of subsets of sequences
in Q for which w; = 0 for all ¢ > N. Clearly,
K, i K, i
> it (Zj:l wj) |u' (Piy1 — P;) f/N| > it (Zj:l w]) W (Pi1 — P;) f/N]

su su
Weo Sy (W) Webn Sy (W)

(7.18)

Now, fix an arbitrary w > 0 and define the sequence of sets

S (Sicywy) (P~ P /N

N (=2a+e/2)/(2a+1)

QlNZ WEQN

)

<w

and let QﬁN be the complement of €y y in Qp, such that Qn = (Qx Ny N)U (QN N QiN) We note that
1, n depends on the realizations for the instruments z.

As was demonstrated in the proof of Lemma 7.9, as N tends to infinity, Sy (W) > o2NH 1 f/(I
PW))(I — P(W))fH=*\/N. Also note that

2

K, 7
FI=PW)I=PW)F/N=Y D wi| f(Pya—P)f/N

i=1 \j=1
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Therefore, for N sufficiently large,

K, i z,
S (Siciws) I (P = P /N
sup
WEQNHQEN S)\ (W)
Ky (i 2
S (Siciws) I (Piya = P /N
sup - 3
weannaly i (22:1 U’j) [ (Piy1 — B) f/N
C (' (Px, 11— P)u/N)"?

A 5 172
infyycoynag (Zfi1 (2;21 wj) ' (Pig1 = B) f/N>

IA

IA

where

. 2 1/2
(ZiEJK,L (23‘21 wj) ' (Piy1 — Pi) f/N>
Weambae Nate/D/Gat) >V

by the construction of {21 n. It then follows that

. 2
ZiK:nl (Z;:1 wj) |'LL/ (Pi+1 - Pz) f/N| < C(u/ (PKn+1 - Pl)u/N)1/2

sup < - (7.19)
WEQNHQIC:N S)\ (W) \/EN( OL+€/4)/(20¢+1)
Secondly,
K, [ i 2
sup STwi | f(Pigr — P) f/N < wN(720F/2)/ (o) (7.20)
WGQNQQLN i—1 j=1
by the definition of {; n such that
. 2
K, i
S (Sicaws) e (Pa = P f/N]
sup (7.21)
WeQnNQ, N S (W)
K, i 2 /
< SUPW ey, v > it (Zj:l wj) W (Piy1 — Py) f/N|
- infyyeq Sy (W)

< JoN st oW (PKW,+1 — Py)u/N)"?
h infyyeq Sy (W)

It now follows for any random function gy (W) that

sup gy (W) = max sup gy (W), sup  gn (W)
WEeQnN WeQnNQ, N WEQNOQEN
< sup gy (W)+  sup gy (W).
WeQnNQ, N weQnnQf

. 2
Thus, setting gy (W) = 3250 (23-:1 wj) W' (Pysr — P)) f/N| /Sx(W) and using (7.18), (7.19) and (7.21)

one obtains the bound

S (S0 wy) ! (Peaa — P £/N]

su 7.22
weo Sx (W) (722)
C (' (P, 1 — P1)u/N)"/? L JoNEH C (W (Pg, 11 — Py)u/N)"?

= JoN (—ate/D/(a+D) infyyeq Sy (W)
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It then follows that for any 7, > 0,

S (Siywy) o (Per — P 1N

Pr || su > |z
wen Sx (W) "
L C(BW (P = POw/N2)? (B[ (Pre,n = PO w/NEDY (v
- \@ N (—a+e/2)/(2a+1) N —20a/(20+1) P )
where the inequality uses Markov’s inequality, (7.22) and Lemma 7.8. Next, note that
C(E[W (Px,41—P)u/N|2DY? 1 C\/(Kns1 —1) /N —ezoesz
N(—a+e/2)/(2at1) T Vo NCate2/Catn ~ ° (N ot ) =o(1) (7.23)
and
E [U’PKnHu/N\z}l/Q 0, (N%HM) - 0, (K711/2N(7a+s/4)/(2a+1)71/2>
—2a—e/4 —2a
= 0, (N ST ) =0, (NT)
such that

E v (Pk,+1 — P1)u/N|z 1/2 —ate/4
( [ ( Nt;a/(Q(jJ)rl)/ | ]) Op (N 2ot )ZOp (1) (7.24)

Using (7.23) and (7.24) then establishes that

K., i 2,
S (X5 ws) ! (Piaa = P2 £/
Pr || sup

sup NG > 771‘2 =o0(1)+o0,(1).

This completes the proof of the Lemma. =
7.2 Proofs of Theorems and Corollaries
Proof of Theorem 7.1. The MA2SLS estimator has the form:
VN(B—pB)=H *h, H=XPW)X/N, h=XPW)e/VN.

Also H and h are decomposed as

h = h+Th+17,
T = —f'(I-PW))e/VN, T3 =u'P(W)e/VN

H = H+Tf +1F + 18 4 21
T = —f'U-PW)f/N, Ty =@ f+fu)/N, Ti'=uPW)u/N
7" = (W'(I=PW))f+ f'(I-P(W))u)/N.

We show that the conditions of Lemma 7.1 are satisfied and S(W) has the form given in the theorem. Let

pw.y = tr(S(W)). Differently from Donald and Newey (2001), we extend the MA2SLS to order K'W/N.
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It is important to point out that since W can contain negative weights, it is possible that (K'W)2?/N is
not the dominating term in S(W). For example, K'W = 0 is allowed. However, K'W/N = O(S(W)) by

construction.

Now h = O,(1) and H = O,(1) by Lemma 7.5(6). As
Th=TP + T} = —f'(I — P(W))e/VN + u'P(W)e/VN,

Lemma 7.6(2) and (3) implies that
T} = 0,(AW)"?)

and

=0, (max (|K’W , \/(W’FW) + Z(Pii(W)P) /\/N) , (7.25)

SO

Th = 0,(A(W)Y?) 4 0, (max (|K’W| : \/(W’FW) + Z(PM(W))Q) /\/JV) ,

where A(W) = 0,(1) by Lemma 7.6(1), K'W/V/N = o(1) by |K'W|/VN < K'W+/V/N = o(1), 3,(P:;(W))? =
0, (K'WT) by Lemma 7.5(2) and W'TW = O (K'W*) by Lemma 7.6(12). Therefore T" = 0,(1). Next, we
observe T{! = O(Z(W)) by the definition. Lemmas 7.7 and 7.6(1) imply that T/ = 0,(1). TS = O,(1/V/'N)
by the CLT. A similar argument for T4 implies

T# =0, (max (K’W| , \/(W’FW) +Z(Pii(W))2) /N) . (7.26)

Now, we analyze

L 1T = Op(AW)V2EW)) = 0, (pwn)
by Lemma 7.7. It holds that
T I = 0, (A2 /VN) = op(pw:)
because by Lemma 7.6(6) one can take g(W) = N (tr (S(W)) — A(W)). From Lemma 7.3, it follows that

W/'TW — oo as N — oo. This implies that g(/W) — oo. Then, by Lemma 7.6(6), it follows that

AW VR = o0y (L5704 A7) ) =0, (1 (S0V)) = 0y ).

Next,

7] - 1757l

Oy (A(WW? max <|K’W| : \/<W'FW> + Z(mew) /N)

= o (max (|K'W|7%W'FWHZ(PZ-Z-(W)P) /N) = 0y (pw.x)
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by Lemma 7.6(1), (7.26) and the fact (as noted before) that T = O (tr(S (W))). Next, (7.25) and the
definition of T{ imply that

[eesimivad]

O, (E(W) max (|K’W| : \/(WTW) + Z(Pii(W)F) /W)

= o, (A(W)l/2 max (|K’W| , \/(WTW) +Z(PM(W))2) /\/N)
by Lemma 7.7. By similar arguments as before it follows from Lemma 7.6(6), that
AW)2 |K'W| VN < (K'W)* /N + AW) = O (pw.n)

and A (VV)l/2 = 0, (1) such that o,(A(W)Y2K'W/\/N) = o, (pw,n) as required. Lemma 7.6(6) gives

AW \/<Wfrw> S (P2 VR

_ o, ((WTWHZZ-(PZ-i(W))Q

2 L) =0, (o).

Thus, we have ||T%|| - [|TE|| = op(pw,n). From (7.25) it follows that

T3 2] = Oy (max (|K'W| , %WTWW + Z(mmﬁ) /N) ,

where K'W/N = O (tr (S (W))) and /(WTW) + > .(P;;(W))2/N = o, (tr(S(W))). By (7.25) and (7.26)
it follows that

I3 T = 0, (max <|K’W|2 7 ((W'FW) + Z<P“(W)>2>> /N3/2> = oy (pw.x)

because (|[K'W| /N)*? = o (pw,n) and (W'TW) + ,(Pi(W))2) /N = O, (pw,n). Similarly, ||T2|[2|| T || =

2
op (pw,n), [[T21PIIT57]] = 0p (pw.v) and [[T2{[P||T5T|| = o, (pw.wv)- For [|TH||", we have

||T1HH = Op (E(W)Q) = 0p (PW,N) by Lemma 7.7,
HT2HH2 = Op(1/N) =0, (pw,N)

I = o (max (IK/WL\/(WTW)+Z(PM(W))2> /N) = 0y (pw.x)

so that by the Cauchy Schwartz inequality ||TH H2 = op (pw,N)-

As [|Z"|| = 0 in our case, ||Z"|| = op(pw.). The last part, which we need to show o,(pw ), is
[|ZH2||. Now Z" = /(I — P(W))f/N + f'(I — P(W))u/N and both terms are O,(A (VV)l/2 JVN) =
op(g (W) /N +A(W)) = op(pw,n) for gW) = N (tr (S(W)) — A(W)) by Lemma 7.6(6). Therefore we have

1Z7] = op(pw.n)-
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Note that we have shown H = H + op(1) and h=h+ 0p(1). Lemma 7.1 can now be applied, where the

discussion above indicates

!/ /!
3 3 3 3
ZAW) = —hr'H\D> T - Yo rf | O -1 E DY T - | Y 1| BT
5=l =1 j=1 =1
—hT'H T — T H T — Ty H ' T — T H Ty
—(TP + T (T + T8V H (Z TH> (ZTH) YTl + T (T 4 T
= oplpw,n)

and

3
AW) = (h+Tr+TH(h+Th+ T8 — hh'H™ (Z TH) (Z TjH) H™'hi'
j=1
—hTyH YT + T — (o + T HE T - T H N+ T — (T + T ) H T
Now we calculate the expectation of each term in A(W). First of all, E [hh/|z] = E [fe€'f'/N|z] = 02H. Sec-

ond, E [WT{'|z] = E[—fee(I — P(W))f'/N|z] = =2 f(I — P(W))f'/N. Similarly E [T{'h'|z] = =02 f(I —
P(W))f'/N. Third,

E [hTY|2] = E [fed P(W)u/N|z] = E [} Zfl (W) /N =0, (K'W/N),

by Lemma 7.6(5). This implies that E [TJ'h/|Z] = O,(K'W/N) too. Fourth,

[ = P(W))ee' (I - P(W))f|z] _ U= PW)U - PW))f

E[T{TV|2] = E ~ N

Fifth,
E [T}y |z) = —E[f'(I - P(W))ee P(W)u/N|2] = —f'(I = P(W))u (W) /N

by Lemma 7.6(8). Again, we have E [TET{|2] = —pu (W) (I — P(W))f/N. Sixth,

"P(W)ee' P(W
_ , (K'W)? 2 , (W'TW) / 2
= 0wl N + (022, + Uueaus)iN + Cumle;, €;, u;, u;] g (P (W),

%

by Lemma 7.6(4). Seventh,

By - - [LH I POV ] o0 POV

N2 e N ’

also, we have E [T{TH-'hh/|Z] = =02 f'(I — P(W))f/N. Lemma 7.6(7) implies

E[hh'H-'TH|2] = [hh/ S [ )4 _o, (1>

N N
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and E [TffH='hh'|z] = Op(1/N). Also,

‘e fH=1u/ P(W K'W 1
by Lemma 7.6(9). Next,
Bl — - [L PO PO
= Jbzl: fiPi(W)E [eu]] H’l—f/(l _Jj\:;(W))f

by Lemma 7.6(5),

E[hTVH'T 2] =

O, (K'WH/N)Z(W)) = o (pw.v)

by Lemma 7.6(10). Similarly, it follows that

E[TyWH'T 2] =

flee POW)uH
B[Pt

1 K'W
o () +

CHf A ) Z}

(}VZL- O el +foz T —1fia;€>

e’ fH™

Therefore, we have

. [UIP(W)

o 3)-

N21<u,f + 7 |Z}

K'W 1 _
N <d0ueU;€+0ueNzi:fi/H 1Uuefi,>

E [A(K)p}
_ f'd—PW))f f'd—PW)UI —PW))f
= 2H 202 N +02 N
61“41 Zfz zz /N+E€1u1 ZfL M(W /N
/ 2
FFL = POV (W) [N + g (W) (1= POV)E/N + 0, B0
+(028y 4 ouedl,) (W;\F[W) + 0, (K]/VW> + 203’N(I’Nﬂ + 0, (zlv> — 2023, KZ/VW

— KJ/VWQ <dc7uea;6 + Jbé fiol H \oucfl + % é (fio;eH_lfio;E + Juefi’H_louefi')>
+o0p (pw,N) ) )
= 02H + 07 2 /1 = P(W)])V(I_P(W)) E[&u} Zfl (W) /N + Eleu,] Zf P (W)/N
ey

+f1(I = PW))u(W

K'W
-2
N

+o0p (pw,N ) 5

)/N + p(W)'(I — P(W

< 25y + douco,, + NZL%H Louefi +

Nf/N + Uuea;e + (Uzzu + Uusa&e)

N

N
Hﬁlfio';e + Uu€fi/H10'“€fi/)>

¥ 2 (1
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where the last equality holds because 1/N = o,(pw.n) and o,((A(W)K'W/N)'/2) = o,(pw.n) by the fact
that (AW)K'W/N)'/2 < K'W/N + A(W). =

We omit the proofs of Corollary 7.1 and 7.3 because they are trivial given Theorem 7.1.

Proof of Corollary 7.2. We note that in this case K'W = K'W*. Thus, Y ,{P;;(W)}? = 0,(K'W)
by Lemma 7.5(2) and f'Q(W)u(W)/N = o,(K'W/N + A(W)) by Lemma 7.6 (8). Therefore, we have
equation (7.3).

To derive equation (7.4), we note that

M M
W'TW = ZZwlemmzj <ZZw1w]]—Zw,Zw]j—W’1 K'W = K'W,
i=1 j=1 =1 j=1

which means W/ IT'W = O(K'W). Moreover, Ef\il fiPii(W) = O,(K'W) by Lemma 7.6(5). Therefore, we
have equation (7.4). m
Proof of Theorem 3.1. The result is established by constructing a sequence in Qp that dominates
the optimal choice in Q4,. By Corollary 7.2, the formula of Sy (W) for MA2SLS when W € Qp is
(K'W)? | o\
AT + o, Z Z Wi Wi Vmax (i)
j=11i=1
with A = ’|)\/H_1O'UEH2 (the other two terms in (3.1) can be ignored). Let My, be the optimal number of
instruments picked by the Donald and Newey (2001) algorithm. For a € (0,1), let M7 = (1 — a)M,, and

M, = (1 + a)M,, and choose W* such that it has only two non-zero elements wy;, = way, = 0.5. Then,

K'W* = My, and

(o] o0
Z Z W WiYmax(i,j) = 0-257a, + 0.757s,

j=1i=1
Then,

92)

A(WH) A(K'W*) /N + 020 25vm, + 0 20.75v a1,
sq(Ms ) A( sq)2/N+U27M
A(Myg)*/(NoZym,,) + 025 (yan [vm,,) +0.75 (var /.,
A(Msq)? /(NUE'YMS(,) +1

miny ecq, Sx(W)

IN
U

minWegsq S,\ (W)

where v = limsupy_ ., A(Msq)?/(N7a,,) < 0o because Mg, sets the rates of the bias and the variance

equal. The above expression is bounded by 1 if
0.25 (yar /v, ) +0.75 (var /v, ) < 1.
By assumption, for N large enough, it follows that, with probability close to one,
0.25 (var, /a1, ) + 0.75 (vt /7ar,,) = 0.25 (1 — @) 2% +0.75 (1 + a) > +0 (|a|2“) .

Consider the function

h(a)=0.25(1—a) > +0.75 (1 +a) ">,
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where h(0) = 1, dh(a) /da = 0.5a (1 —a) ** " — 1.5a (1 +a) >* " such that dh(0)/0a = —la. This
implies that for some a, possibly close to zero, h (a) < 1 and thus 0.25 (yar, /vam.,) +0.75 (Var /Y., ) < 1.
When W € Qp, the formula of Sy (W) for MA2SLS is
W'TW o
S\(W) = A<N7) + 062 Z Z W5 WiVmax(4,5)

j=1i=1
where A = NH Y023, + 040l )H '\ while the MSE for the Nagar estimator with M instruments is
AM/ (N — M) + o?yp. Let My be the choice of M that minimizes Sy (W) when W = Wy as defined in
Remark 4. For a € (0,1) let My = (1 —a)My and My = (1+a)My. Define w* = N/ (N — My) and choose
W* such that W* has only three non-zero elements wy, = wp, = 1/2w* and wy = —My/ (N — My).
For brevity write w; and we instead of wys, and wyy,. Then wy + we + wy = 1 and K'W* = 0 such that

W* € Qp. Note that WATWx = ((w*)? + 2w*wn) My + wi N = MxyN/(N — My) and
WHTW* = wiM; 4+ wiMy + 2wywe My + wi N + 2wy (wy My + wy M)

= wal + ngg + 2wiwo My + U)JQVN + 2wnw My

= ((w*)? + 2wyw*) My +wi N — (1/2)(w*)*aMy

such that W*TW* < W, I'Wy. In the same way it follows that, for W*,

Z Z ijilymax(i,j) = w%’YMl + (w% + 2’lU1’LU2) YMs + (w?\] + 2wN (’LU1 + U}Q)) YN

j=1i=1
(W*)z (Var, /4 + 3var, /4) + (w]gv + 2wyw*) YN

Since the term (w% + 2wyw*) vy is of smaller order than Sy (Wy) the result now follows if (yas, /4 +
3y, /4)/Ymy < 1 wpal. But this follows from the same arguments as for the proof of the first statement of

the theorem.

For MALIML, the formula of S\ (W) is

W'TW N —
S)\(W) = A% + 0'62 Z Z W5 WiYmax(i,5)
j=1i=1

where A = NH (02X, — oucol, )H '\, Let M, be the optimal number of instruments chosen by the
DN method. The MSE of the estimator that uses M, instruments is AM,,/N + crf*yMSq. For a € (0,1),
let My = (1 —a)M,q and My = (14 a)M,, and choose W* such that it has only two non-zero elements
wpr, = war, = 0.5. The MSE of the estimator with W* is

A
N(0.75M1 +0.25M>) + 02(0.25v1s, + 0.757a1, ).

We note that 0.75M7 + 0.25M2 = My, — 0.5aMyq < Mg,. Moreover, we have 0.25vr, + 0.75vn, < Yy,
by following from the same arguments as for the proof of the first statement of the theorem. Therefore, the

desired result is shown. =
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Proof of Theorem 4.1. We follow the proof of Donald and Newey (2001, Lemma A9). We first
consider the case for S(W) defined in (3.1) and Sy(W) defined in (4.1). Note that when Q = Qy and
Q = Qp, the optimal weight, W*, is well-defined and has a closed form (see the discussion in Section 7.5).
When Q = Q¢ or Qp, we note that Sy (W) is continuous in W and 2 is a compact set, which implies that
the optimal weight, W*, is well defined in this case too. Thus infycq Sy (W) = Sy (W*) for some W* € Q
holds. It then follows that

0<1— M <4 sup
S (W) WeQ

Sx (W)

S (W) _1‘

The result now follows from Lemma 7.10.

Next, we consider the case for S(W) defined in (3.2) and Sy (W) defined in (4.3) (the case for MALIML).
We follow the steps taken in the above argument. First, we show that infycq S\(W) = Op(Ni’%fl). The
weighting vector, W, where wy; = 1 and w; =0 for j # M for M = O(Nﬁ)7 gives Sy (W) = Op(NZ_TZfI).
The proof that this rate is sharp is exactly equivalent to the corresponding part of the proof of Lemma 7.8.
We then show that supyyco (Sx(W)/Sx(W)) — 1 = 0,(1), where

WITW | LU= PW)I = PW)f\ 4
N —|—a€ N )H A.

S\ (W) = VB <<6§&§ 82

This can be shown by following the same argument as that for the Qs part of the proof of Lemma 7.9.
Lastly, we show that supycq(Sx(W)/Sa(W)) — 1 = 0,(1). The proof of this statement is the same as that

of Lemma 7.10. We then obtain the desired result. ®
Proof of Theorem 7.3. Since it is easy to see that X' X/N —, (E(f?) + 02), we need to show

1 / 2
X POVNX =, B(f7) (7.27)

and

1

NX’P(W)P(W)X —, E(f?) (7.28)

to obtain the desired result.

We have the following decomposition:

- _ L, L, L, L L
FXPWX = S f'f = /(= PW)f + 5 f'P(W)u+ o' P(W) f + o' P(W)u.

By Lemma 7.7 and 7.6(1), it holds that

= POV)f = 0,(1)
Since
! "P(W)u = L g ! "I —-P(W
Nf ( )U—NfU—Nf( = P(W))u,

50



Lemma 7.5(6) and Lemma 7.6(2) (by replacing € by ) imply that
1
L PPV =0,(1)

Similarly, it follows that «'P(W)f/N = 0,(1). Lastly, Lemma 7.6(3) and Assumption 4 imply that

%U/P(Wﬁl = 0,(1).

Thus, we have shown (7.27).
We now consider (7.28). We have the following decomposition:

1., o 1, 1,
LXPWPW)X = - pf - - Pow) W)
+% FPOW)P(W)u+ %U’P(W)P(W) i %U’P(W)P(W)u.

We have that
1 M M M M
s1=1s2=1 j=1 s=j+1

where 4; = f'(I — P;)f/N. It follows that

M

M M j
Z 2w; Z W +w32 %Zij <2_22ws+w]‘>7yj.
Jj=1 s=1

j=1 s=j+1

Take L such that L — co. We have that

M J
ij <2—22ws+wj> o7
j=1 s=1

IN

L J M J
ij <2—22ws+wj>7yj + Z wj <2—22w5+wj> YL
j=1 s=1

j=L+1 s=1

L J
= D (2—2Zws+wj>% +0p(1)
j=1 s=1

since 41, = o0p(1) and W € [; implies that |Z§\1L+1 w;(2 — 22?5::1 ws + wj)| is bounded. Then, since

Z]-L:l |w;| = o(1) by the assumption, we have

L J
> s (2223 s, ) 5 =t
j=1 s=1

It follows that

1

ﬁf’(f —PW)P(W))f = op(1).
We have that

E <be’P(W)P(W)u> =0

o1



and

1 ’ ? . i/ w!
E((NfP<W>P<W>u)> = 5 POVPOV ) POV POV)S
= SO POV POV PO P(W) |

_ /
= N2 T, 5 wslw52w33w54f PIIIin(Sl,SQ,Ss,S;L)f
81,82,83,54=1

M
1
< ﬁai Z |ws, W, Wsy W, | [ f = 0p(1)

81,82,83,54=1

because f'f/N = Op,(1) by Lemma 7.5(6) and W € l; by Assumption 4. It therefore follows that
1
P POVIP(V)u = 0,(1).

Similarly, we have that «'P(W)P(W)f/N = o,(1). Lastly, we observe that

1 W'TW
E(=uPW)P =02
(Nu (W) (W)u) T

by Lemma 1.2 of Hansen (2007). Assumption 4 and the Markov inequality imply that

L
Therefore, (7.28) is shown and we have obtained the desired result. m

7.3 Lemmas for MALIML

As the first step, we show the consistency of MALIML and derive its asymptotic distribution. Define the

LIML estimator based on the first m instruments as
Brm = argmin(y — XB) Py = XB5)/((y = XB)'(y = XP3)).

We first establish uniform consistency sup,, <, ‘ BL,m — ﬂo‘ —p 0 for M/N — 0. This result is then used to

establish the uniform convergence of A (W) over M and W satisfying Assumption 5.

Lemma 7.11 If Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied, then
1. sup,,<ps € Pre/N = 0, (1),

2. suppcnr f' (I = Pn)e/N =0, (1 /\/N) ,

8. sup,,<pr ' Pre/N = o0, (1).

Proof. For 1. we observe that

sup € P.e/N < € Pye/N
k<M
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and
E[€' Pyelz] = o?tr (Py) = 02 M

such that

Pr (sup,,< s |€ Pme/N| > n]z) < Pr(|€ Pye/N| > n2)

1
WE [€IPM€|Z] — 0.

IN

For part 2, note that E[f’ (I — Py,) €|z] = 0 such that

M M
mZ:ltrE [f' (I —Pp)ee(I —Py,) f/N|z] < ngljgw (mQatr(f’ (I-Pn)f) /N) UEQmZ:lm—za

= OP (1) )

which shows that sup,,,<,, f' (I — Pn)e/N = O, (1/\/N>
For part 3, note that E [u'P,e/N|z] = E [v'Pe/N|z] + 0ue /02 E [€ Ppe/N|2] = 0+ 0uem/N and

E [Hu'Pme/N — guem/N| |z] (7.29)
< M max E [tr (u'Pmee’ U — auea;emQ) |z]
m<M N2

tr, tr P, N tr (B [ui €] B [, €,]) Prnsivia Prnisia
m<M N2 T Z ]i]Q

N 2
tr (Cum (ui, us, €5, €;)) Py, i
+M max (Z e

i=1

IN

(tr2, + tr (Cum (u;, u;, €;, €;))) ( P iiioPm

N——
_|_
=

S5

IA

=5

5
ls
E

yi1i2 yi2i1

ir yia=1
= o(1)+ M max <W> =o(1)
where we used P, iyiy = Ppii, and Z?hiz:l Prvivia P igiy = Zf\il Py,.ii = m. Then,
[t'Pre/N|| < ||t/ Pre/N = guem/N|| + [|ouc| m/N < |u' Pre/N = ouem/N| + llowell M/N
= ||u'Pne/N —ouem/N| +o0(1),

where the o (1) term is uniform in m < M. The result now follows from (7.29). m

Lemma 7.12 If Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied then sup,, <

BL,m - 60‘ —p 0.

Proof. Define X = (y,X) and Dy = (8o, 1). X can be written as X = XDy + ec}, where e; is the
first unit (column) vector. Let A, = X'P,, X /N and A,, = D\H,,Dy. Let B= X'X/N and B=F [Xi 71’]
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Let 7 = (1,—f')" and define the augmented parameter space © = {1} x © such that 7 € ©. Then,
(1, fﬂ}’m)’ = argmin, 7' A,,7/(7'Br). Essentially the same argument as that in the beginning of the proof
of Lemma A.5 in Donald and Newey (2001) shows that (1,—3() = argmin, 7' A,,7/(7'B7). Then, letting
L (1) = 7' Ap7 /(7' Br) and Ly, (1) = 7' A, 7/ (7' Br) and noting that
7! (Am — Am> T

7' BT

7' BT
7' BT

' Bt

7' BT

AT
7' BT

sup  |Lpm (T) = Ly, (7)] < sup
TE@,mSM Teé,mSM

sup
TEO

+ sup
T€O,m<M

sup
TEO

- 1‘ .
(7.30)

We note that 7/A,,7/(7'Br) < 1 uniformly in n, m and 7. It follows that

AT

— | < 1.
BT | T

sup
T7€0,m<M

By a LLN, B— B = 0p(1) which implies that sup_.g

T BT _ 1‘ = 0, (1). From Donald and Newey (2001,

7' BT

p.1185) it follows that B is positive definite such that inf, 7/ BT > ¢ > 0 for some ¢ and

b Ae) | s o2

3 7.31
Tég}:rIL)<M ' BT B € ( )
We now show that sup_.g ,..<ns ’T’ (flm — Am) T‘ = 0,(1). For this purpose, we observe that
alm _ o’M

sup —— < —<— =0(1), 7.32

S NS TN (1) (7.32)

sup 7' DYE [v' Pyulz] Dot _ sup tr (P, E [uDo17’' Djyu']) (7.33)

T€O,m<M N T€O,m<M N
tr (Py,) 7' DXy Dot
= sup
T€O,m<M N
M
< —sup7'DyE, Dot =0(1),
TEO
where sup_ g 7' DX, DoT is bounded by Assumption 7, and
sup 7' DYE [u' Pe|z] €y _ sup tr (P, E [er’ Dju']) ‘ (734)
7€0O,m<M N T€O,m<M N
tr (P, "D ue
_ sup r (Pp) 7' Dyo
T€O,m<M N

M
< —sup |7’ D{ouc| = o(1),
N TE@

where sup_.g 7' Dyoye is bounded by Assumption 7. The term A,, has the decomposition A,, — A,, =

Apa + Ao+ ... + Ay + 0(1), where the o (1) term is uniform in m < M and consists of (7.32), (7.33)
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and (7.34) and

) f/me u/ mf 1 f/Pmu
An1 = Dj ( N A )| Do; A2 = Dy N Dy; Ay, 3 = Dy N Dy;
. 'Pou—E (WP, - "Pp,

Am,4 = Dl Y Y N(u u|2) Dy; Am’s = 61%D07

n P Uue N le

Ame = Dé% e Anr=e ‘ fDo;

. f'Ppe A € Ppe—o’m

Anms = D ~ els Amo = ?ele'y

For Ay, 1 define T'.. o = 20, Zn /N, Ty = f'Zin /N, Vezpe = E[Zy,3Z}, ;) and Ty = E[f:Z], ;] and choose
a sequence My where M7 — oo such that Ml/N3 — 0. It then follows for m < M; that

E U’f‘fz,m —Tzm 1 = N2 Z trl [(va;nJ - Ffz,m) (ij;n,j — Ffz,m)/:|
i,j=1
- - 4 m

and

d

Using the Markov inequality, one obtains

P 2y (ZuniZp, - 7o /}_mj
Fzz,m Fzz,m” :| =N ;'HE (Zm,lZm,i Fzz,m) (Zm,zZm,i Fzz,m) =0 N /-

N M, N 2
Pr < sup |[L'fzm — Ffz’mH > 5) <— sup F [Hrfz’m — Ffz’mH ] =0 (M12/N) =o0(1)
m<M; g2 m<M;
as well as
. M, . 2
Pr ( sup ]-—‘zzﬁm - Fzz,mH 2 E) S o sup E |:’ Fzz,m - Fzz,mH :| =0 (Mf)/N) = 0(1) . (735)
m<M, €% m<M

Let [|C||? = sup £'C"C¢/£'( for any matrix C' and note that [|C1Cy|| < [|C1]| | Cally and [|[C1Call < [|Call [|Ch

for any conforming matrices C; and C3. Now,

‘Ffszzzlmfl mH HFfzm FfzmH’ zszfzmH +||szmH2‘ wom — L2
Iyl [Erem ]|
‘ 22m fzmH < ’Fz_zmrfzm Fz_zmrfzm“+||rzzmrfzm|‘2
< B rzm = e | [[F2]|, + Wzl [Pt = T2 + P25l
and
S P R T |
Define F' such that HI‘“mH , < F where F is finite by Assumption 6 and let

Fzz7m - Fzz,mH

zz,m ZZ’I'TLH /(F‘

zz,m ZZ mH +F2)

Gnox = |02
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Ioem — Fzz,mH = 0, (1) by (7.35). Following Lewis and Reinsel (1985,

such that sup,, <z, Gm,N < SUP,,<pr,

p.- 397),
zzmH < HFzzmHQ ‘ zzm_Fz_zmH
< F+F*(suppcar, Gnv) / (1= Fsup,,<py, Gmon) = Op(1).
It now follows that
!
P, .
sup / ]\;”f — Ap||= sup [|Ty. szzlm "o — Am|| = 0p(1). (7.36)
m< My m< My
For My <m < M it follows that A,, — H = E[f;f!]. Then,
f'Pof B , , , B B B
N _Am—_f (I_Pm) f/N+ff/N_H+H_Am—OP(1)7 (737)

where the o, (1) term is uniform in M; < m < M because

2a

sup T f (I — Pm)/fT/N < sup - (supr’f’ (I - Pm)/fT/N>
€O, M; <m<M Mi<m<M Mj r

= M;%0,(1) =0, (1)

by Assumption 2. By Assumption 6, and for M; <m < M, H — A,, = O (m_2a) <0 (Ml_2") =o0(1). By
a law of large numbers,

JI/N =1 =0, (1VN) =0, (1),

Together, (7.36) and (7.37) imply that

sup ‘ =o0,(1).

TEO,M;<m<M

Now consider, for some e > 0, not necessarily the same as in (7.31),

Pr sup ’T/ (/Alm,z + .+ Am,g) T‘ >elz] < ZPr sup ||7|| Z HAmJH > ¢glz (7.38)
T€EO,m<M T€EO
9
Msupr Izl i P
'f”/ Z E m’]H |Z ’
j=
To show that M max,, <y E [(e P,e—o m) /Nz\z] —p 0, we observe that
N
E[(€ Ppe —o?m)?|z] = o (trPy)” + 202 (trPy) — om? + Cumle;, €, €, €; Z i)

=1
N
= 20? m+Cumez,ez,el,el g mu

=1

= O(m) + 0,(m)
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because Ei]il(Pm,ii)Q < (max; P, ) Zfil P,,.ii = o, (m) by the same calculation as the proof of Lemma

7.6(4) and Lemma 7.5(2). Therefore

2afm + C’um[q, €4, €4y Ei] Zi\il(Pm,”)z

2
anaLXE [(e'Pme —oZm) /NQ\z} < MTIYPSaA)SI Nz (7.39)
< M max,<pr (max; P, i) m  202M?
- N2 N2
M2\ 20tM?

Am,5

“ 2
AmAH |Z:| —p 0, Mmaxm<ME[

2
Similarly, we can show that M max,,< E [ z] —p 0 and

M maxy,<yp B [

. 2
Am’GH z} —p 0. Next,

M max E 1D, PuuDo/NI* 2] < |Doll" M max B [|f' Prau/N* |2]

tr (f" P E [ut|2] P f)
N2

_ 4 tr(f/me)
= [|Doll tf(Eu)anlgﬁT

D0l e (20 M =0, () =on 1),

| Dol|* M max
m<M

IN

where Oy, (sup,,< m** (supyiny Nf (I = Pp) fA/N)) = O, (1) by Assumption 2(i). Analogous calcula-
A 2 R 2
tions show that M max,,< F D’Am’7H |z] = o(1) and M max,,<p E {HAWSH |z} = 0(1). Summing up,

2
we have & sup__g ||7|| Z?Zl maxX,, <y E [ Am’jH |z] —p 0. Combining (7.30), (7.31), (7.32), (7.33), (7.34)
(7.38) establishes that

Sup L (7) = L (7)] = 0, (1) . (7.40)
T€O,m<M

From (7.31) and the fact that, if |7 —79|| > ¢ for some € > 0, there exists an n > 0 such that

sup,, < s [ L (7) — Lin(70)| > 1, it follows that

Pr < sup ’BL,m — ﬂo‘ > 5z> <Pr < sup |Ly, (Tm) — L, (10)] > n|z)

m<M m<M

with 7, = (1, —B'L,m)' and by standard arguments

| Lim (Tm) = Lin (70)| < |Loym (Tm) — Lo (Fn)| + | Ly (T0) — Lim (70)]

+ | Lnm (Tm) — Lym (mo)l,

where 0 < Ly, o, (Tm) < Lpm (70) + 0p (1) = 0, (1) uniformly in m < M by the definition of 7,, and Lemma
7.11 such that

sup |Ln,m (Tm) — Ln,m (70)| <2 sup [Lnm (10)] + 0p (1) = 0, (1)
m<M m<M
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and

Pr ( sup |Ly, (Tm) — L, (10)] > 77|z> < Pr < sup |Ly, (Tm) — L, (10)] > n|z> (7.41)
m<M m<M

IN

T€EO,mM<M

Pr (2 sup  [Ln,m (1) = L (1)] > nlz> -0
by (7.40). m

Lemma 7.13 If Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied, it follows that for 3 defined in (2.3)

(MALIML), | - 50‘ ~, 0.

Proof. Let A, (8) = (y — XB)'Pn(y — XB)/N and B(3) = (y — X8)' (y — XB)/N. Define A,,,(3)

Am(8)/B(B).
As sup,, <y HBL’m —ﬁOH —p 0 by Lemma 7.12, it follows that that sup,,<, B(BL’m) — o2 —,

=

Moreover,

Ay (Bo) = € Ppe/N —, 0 (7.42)

uniformly in m < M by Lemma 7.11(1) which implies that sup,,,< s |A,n(3)] —p 0 and therefore SUp, < s | Am (Br.m)| —p

0. We also note that A,,,(3) = Ly (7) < 1 uniformly in m < N and 3.
It now follows that for A (W) = Zf\f:l Wi Am (Bo)

M
AWy =Am)| <> fwnl 1L () = Lom ()]

M M
< 2sup Ly (7) = Lin (7)] Z W] + SEIK/[ [ Lin (7m) = Lim (70)] Z Wil
m= m=1

m,T
’ m=1

where 2sup,, . |Lynm (T) — Lm (7)| = 0, (1) by Lemma 7.12, sup,,, < ps [ Lim (Tm) — Lim (70)| = 0p (1) by (7.41)
and Zf\il |wm| = O (1). It now follows that

B—fBo=(X"PW)X —A(W)X'X) Y (X' P(W)e—A(W)X'e). (7.43)
We have (A (W) — A (W)) X'X/N = o0, (1) and |A (W) < SM_ Jwm| |Am (B0)| = 0, (1) such that
N1 (X'P(W)X —Aw) X’X) = N"'X'P(W)X + o, (1) (7.44)

and, similarly, A (W) X’e¢/N = o, (1) such that

B=Bo=(X'PW)X)" X'P(W)e + o0, (1)
and the result follows from Theorem 7.1. =

Lemma 7.14 Suppose that Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied. Then, for 3 defined in (2.3)
(MALIML), VN(3 — o) —a N(0,02H™1).
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Proof. The result follows from (7.43), (7.44) and the fact that X’¢/v/N = O,(1) together with
A (W) = 0,(1). We then have

VI (5= ) = (xpomx V) TR o, )

such that the result again follows from Theorem 7.1. ®

Lemma 7.15 Suppose that 1 - 4, 5(ii), 6 and 7 are satisfied. Let Aggm(B) be the Hessian of Ay, (B). If

SUpP,, < ps HBm - BOH —p 0, then

~—

sup HAﬁﬁ,m(ﬁo) - Afw,m(ﬁm)H =op(1

and

2 _
sup HAﬂﬁ,m(ﬂO) - gHmH =0p(1).
m<M O¢

Proof. Let Ag,,(8) and Agg ., (8) be the gradient and Hessian of A, (8). Let A,,(8) = (y—X3)' P, (y—

XB)/N and B(B) = (y — XB3)'(y — XB)/N. Let Ag.,(B) and Bg(8) be the gradients of A4,,(3) and B(3),
respectively, and Agg m (8) and Bgg(83) be the Hessians of A,,(8) and B(3), respectively. We have

Agm(B) = B(B)" (Agm(B) = Am(B)Bs(5)),
Asgm(B) = BB (Agpm(B) = Am(B)Bap(8)) = B(B) ™ (Bs(B)As.m(B) + Apm(B)Bs(B))-

By assumption, sup,, < H@m — ﬂOH —p 0, which implies that sup,, < |B(,(~3m)—a?\ —p 0,8Up,, < s |Bg(@m)—
(—20yc)| —p 0. Moreover,

_ /
max [Am(fo)| = max | Pme/N| =, 0,

by Lemma 7.11(1),

— ! < ! / — .
max || Ag.m(Bo)ll = max [|X"Prme/N|| < max || f* Pre/N|| + max [lu'Pre/N|| =0, (1), (7.45)

where max,, < ||f Pme/N| = 0,(1) by Lemma 7.11(2) and max,,<u ||v'Prne/N|| = o, (1) by Lemma
7.11(3).

From the proof of Lemma 7.12 and (7.40), it follows that sup,,<, A (Bm) —p 0. Similarly, we note
that

Apn(B) = X'Pus(y = XBn) /N = X' Prae/N + X' P X (B = ) /N,

where ¢ P, X/N = o0, (1) uniformly in m < M by (7.45) and X’P,, X/N is uniformly bounded by the same
arguments as in the proof of Lemma 7.12. This shows that Ag ,,(3,) —, 0 and therefore Ag ,,(Bm) —p 0.
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Now, consider

Apom(Bm) = Agom(Bo) = (6,61/ N B(Bm)1> 2(X' P X/N — A (Bo) X' X/N)

1 ~ e€X X'e

- <e’e/N - B(ﬂm)l) (NAﬁ,m(ﬂO)/ + Agm(Bo) i )
+B(Gn) ™ (An(B0) = An(B) ) X'X/N
—B(B) " (Ba(Bn)Ng,m(Brm) — Ba(Bo)Agm(Bo)")
~B(Bn) ™" (Mg (Bn) Ba(Bm) = Mgom (o) Ba(B)')

where

(1)t _ 200 (=) (=) =)
e'e/N (Bm) B B(Bm)€'e/N a B(fm)e'e/N
uniformly in m < M. Since X'P,, X/N — A,,(80) X' X/N = O,, (1) uniformly in m < M and all other terms

=op (1)

are of smaller order, it follows that sup,, <, HAng(ﬂo) - A@@m(ﬁm)H = 0p (1). Next, consider

2 _ 1 1 2 _
1 / €X , X'e
~Fow (Am(ﬁo)X X/N +2 v Apm(Bo) + 2M5.m(6o) ~ )

Note that 2X’'P,, X/N — 2H,, —, 0 where the convergence is uniform in m < M by the same arguments
as in the proof of Lemma 7.12. Also note that Bgg(f) = 2X'X/N —, 2E(X,X]). It therefore follows that

SUP,, < s “Agg,m(ﬁo) - J%FIWH = 0p (1) uniformly in m < M. =

Lemma 7.16 Suppose that Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied. Then

f'I—Pp)e v'Ppe
\/N + \/N ) OP (1) )

\/N(BL,m —Bo) = (H;zl +0p (1)) (h -
where both oy, (1) terms are uniform in m < M.

Proof. Let Ag,,(3) and Agg,m(5) be the gradient and Hessian of A,, (), respectively. A standard

Taylor expansion shows that

&zAm,m@m)) - ( 53\/NAﬁ,m(/30)>
2 2 ’

VN(Brm — Bo) = —Aspm(B) " VNAg (o) = (

for some mean value 3,,, where 2 = €'e/N. As sup HBLm — ﬁOH = 0, (1) by Lemma 7.12, it follows that

e =

sup,,, HBm — BOH —, 0, such that by Lemma 7.15 it follows that

\/N(BL,HL - 60) = (H,;Ll + 0p (1)) (-W) )

where the o0,(1) term is uniform in m < M.
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Consider the gradient term. Define & = X'e/c’e, a = 0y /0? and v = u — e’. It holds that & — o =

O,(1/v/N)by the CLT. We have the following decomposition:

_‘fﬁAB,m(ﬁo) _ X'Ppe  €PpeX'e
2 VN V/Nee
f'I—Py)e v'Ppe . € P, e
= h- + — VNG -« .
VN N A

First, we have h —4 N(0,02H) by the CLT. Lemma 7.11(2) implies that f'(I— Py,)e/v'N = O,(1) uniformly
inm < M. From Lemma 7.11(1) sup,,,< s € Prne/N = 0, (1) such that VN(@&—a)e'Pye/N = 0,(1) uniformly
in m < M. In conclusion, we have

\/N(BL,m ﬁo) (H + Op( )) (h _ f’(l\;ﬁpm)ﬁ + Ui/P]l\;€) + 0p (1),

where both 0,(1) terms are small uniformly in m < M. m

Lemma 7.17 Suppose that Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied. Then
~ ~2 A~
AWw) = AW)- (" - 1) AW) = A, (W) + Ry

2
O¢

AW)+0, (11]) +0, (g;‘g) +op (p\V/"]’TJD :

VWITW + ZZ—(Pn(W)P)
N b

where

A(W)=¢€P(W)e/(No?) = K'W/N + 0, (

52 = €'¢e/N, VNRy = Op (1/\/ﬁ>, Ry is simply the difference between A and the first three terms in

the expression between two equalities, Ag.,(8) and Agg m(B) are the gradient and Hessian of Ay, (B) and
pw.n = tr(S(W)) for S(W) defined in (3.2).

Proof. We note that, in the LIML case, to show o,(pw,n), it is enough to show o,(W'TW/N +
K'W/N + > (P;;(W))?/N + A(W)). We use the notation developed in the proof of Lemma 7.14. We
expand A, = Am(ﬁAL,m) around the true value 5y. By Donald and Newey (2001, p1186),

- 6.2 6.2 _ 0_2 2
Am (ﬂO) = Am - < - 1> A %Avm

2
O¢

where A,,, = ¢ P,,¢/(No?) such that

Zwm AW - <;_ >/~\(W)+(&€62;5)]\(W).

By a similar argument as in Lemma 7.6(4), we have

€P(W)e K'W n e€P(W)e—o?K'W

A (W) 3 ~ o (7.46)
K'W VIWITW +37,(P(W))?
- Ko, (TSR
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Consider

dvec [Ags.m(B)]

a3 = —B(8)"*Bs(B)vec [(Aps.m(B) — A (8)Bss()) — (Bs(8)Apm(B8) + Ng.m(8)Bs(B))]

)"
=B(B8) Agm(B)vec [Bss(6)))

~Bps(B) (K10 @ 1) (Ap.m(B) ® D) = Mggm (8) (K1, @ I) (I ® By(B))]'
~Bps(B) (K10 @ 1) (I @ Agm(B)) = Magm (B) (K1 @ 1) (Bs(B) @ 1],

where the result follows from Magnus and Neudecker (1988, p. 185) and K, is the commutation matrix.

Let ﬁm be some mean value between BL,m and Sy. Then,

ovec [Agﬁ,m(@m)} Ovec [Agg,m(ﬁo)]/
08 - o8

Ovec[Agg.m (Bo)l’
ap

=0, (1)

uniformly in m < M and is bounded uniformly over m < M. A Taylor expansion then leads

to

Wl = i WA Z Wi = (ﬁL m ﬂo)/AB,B,m(ﬁo) (BL,m - 50)

1=

+ M . (ﬂLm ), ovec

1

[Aﬁﬁ m m)}/ ((@L’m _ 50) ® (BL,m - 50>/>

M 1Y L 1
= D ()~ 3 s (o) (A 80 M () + O, (557

where O, ( e /2) can be established by considering

!

(ﬂL m— )I e {Aﬂal;m(ﬂm)} <(BL,m - 50) ® (BL,m - ﬂo),)

ﬁMs

dvec [Aﬁﬁ,m(ﬁm)}'
op

M . 3
Z ‘wm| HﬁL,m 7/80H
=1

with

/

VN (BL,m - ﬁo) = (Hy;'+o0, (1) <h _ f/(IVNP’”)E n ”\/g) + o, (1)

v' Pe

N

where the Op(1) and op,(1) terms are uniform in m < M such that

M 5 M
> lwnl HBL,m - ﬂoH < O (N_3/2) Op (1 + D [wl (Hﬁrﬁ
m=1 m=1

+0, (N*2) 0, (f: jwl || H;
m=1
+o, <N3/2 i W, | (HHm ° U/PmG/\/NH3>> :
m=1
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Consider

P V'] = 3 217 (o] 1] )

m=1

S~ ol 175715 |

m=1

with

E [Hv’Pme/\/N‘r |z} N72E {(tr(v’ mee'va))2 |z}

= N E E E [0jy,i1 V51 i4Vjai5 Vo is €in €ig €ig iz | Prmivia Pmigia Pmisic P izis
G1,j2 41,..,48=1
N
-2 2 : § :
CN (Pm,iliQPm,i2i1 Pm’i3i4Pm,i4i3 + 2Pm,i1i2Pm,i4i1Pm,i3i4pm,i2i3)

Ji,J2 |t1,.5ta=1

IN

N
-2
+CN § : E (Pm,iligpm,izigPm,i1i4pm,i4i3 + 2Pm,i1i2Pm,i4i3Pm,i1i4Pm,i2i3)
J1,J2 |i1,..,04=1
N
-2
+CN E : E (Pm,hisz,izizPm,i3i4pm,i4i1 + 2Pm,i1i2Pm,igigpm,i3i4pm,i4i1)

J1,d2 |#1,.-,04=1

+lower order terms,

where C' is a constant such that ’maxm [$u]; ;|02 < C and we use the fact that P,, is idempotent and

7 ] ’
symmetric such that P, ; i, = Ppi,i, and Ziz:l Privio Prigis = Pm,iyiz- This implies for example that

N N
E Pm,iliZPm,i4i1Pm,i3i4Pm,i2i3 = § Pm ’Ll’LQ m ’LQ’Lg E Pm,i1i4Pm,i4i3
i1,.,04=1 i1,..,83=1 i4=1
N N N
= o L R 2 _ —
= Z Pm71113 Z Pm7117,2pm7127,3 — Z Pm,i1i3 = t]:' (Pum) =m
i1,i3=1 in=1 i1,i5=1

N N .
and > ;1 Poivia Pmisia Pmsivia Pjigis = My 32450 =1 Pmivia Pmisig Pmivia Pmizis = m with the re-

maining terms being of lower order. This implies that

4

uniformly in m < M and by the Markov inequality and the fact that HI_{;Ll H is bounded uniformly in m that

M — 3
> el (151
m=1

! me/f” |z} =0 (m/N?) =0(1)

VPoe/ V|| 4 B | P VA 4 1|

UIPmE/\/NH) =0, (1)

. 3
Thus, we have shown that Z%Zl |wm ] HBL’m — ,BOH =0, (N*‘O’/Z). To summarize, it then follows that

M 1
W)= Y- wnn() = A0 9+ 0, (1775 )
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Since O, (N~%/2) = N=1/20, (W'TW/N), it follows that VNRA = 0, (pw.n). Now turn to A, (W), where
by Lemma 7.15 and

Agm (B0) (Ags.m(B0)) ™" Ag.m (Bo)
h "(I—Pyn)e v'Pne\ ,-_ h "(I—Py)e v Ppe
= (\/N_f( N ) + N ) (Hm1+op(1))(\/]v_f( N ) + N >+OP(1)

WH; h _ _ _
= N N732YH (I - Pye+ N3 2N H W Pe + N73/26/ (I — Po) fH ' h

+N2(I - P, fH, /(I — Py)e+ N2 (I — Py,)fH,,*v'Ppe

+N732¢ PwH Y h + N=2€ PpywH L f' (I — Pp)e + N ™2 PpoH ; '0' Py 4 terms of lower order.
Next, consider

N—3/2

M )
< |R/NIY lwml ||y

m=1

Zwmh’ “LN(I — Pp)e

£ = Pa)e/VN| = 0, (7).

€l — Py) f/\FH = 1) by Lemma 7.11 2). For N=3/21/ H--14/ P,,¢, note that

E [Hleme/\/ﬁH2 |z} trE [v' Ppee’ Ppv/N|2] (7.47)

mu

mao? 5 Cumlvg, v;, €, €] "
N tr, + N Z

=1

such that by the Markov inequality

M M
N_3/2 Z Wmh/ﬁglv/PmE S ||h/N|| Z |wm‘ HE[’n—’L ’U/PWE/\/NH
m=1 m=1
M
< 0, (NHO, <Z|wm|\/m> =0, (N7).
m=1

For N=2¢/(I — P,,)fH,;' f'(I — P,,)e, note that

M

20D wé (I = P) fHLM (I = Pry)

m=1

For N=2¢(I — P,,) fH,,;*v' P,¢, note that

J(I =B VN| =0, (v,

M —
Z wn,| || H,,

N
b

M
> wme' (I = Po) fHy, 0 Proe

m=1

eI - P)f/VN| f: [ [ P/ VA

op (N71)
by Lemma 7.11 and (7.47). For N=3/2¢'P,,vH,; ' h, it follows that

N—3/2 Z W€ PrvH - h

m=1

< /N Z fwnl | 2|

v' Py, e/\FH—oP )

by (7.47) and the Markov inequality. For N~2¢'P,,vH, v’ P,,e, it holds that

M M
Z W€ PpvH 20 Pl < N7t Z [ W | HH’;}H e’va/\/NH2 =0, (Nfl)
m=1 m=1
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by (7.47) and the Markov inequality. Together these results imply that

M 7

3w (M (B0) Mpn(B0) ™ Mg (80) = 0, (v — 0, (v ()
m=1
where =1 (W) = XM w,, H, and ||[H™H (W)|| < M fw || HH =0 (1).

To sum up, we have

A M 1
A (W) = Z wmAm(ﬁ0> - Aq (W) + OP <N3/2>

= A(W) - (562—1>[\(W)+~

O¢
~2

A
_ AW - (;— )A(W)—Aq<W)+Op (ng/z)

where the last equality follows by (62 — 02)? = O,(1/N). This proves the first equality in the lemma.

We now consider the second equality in the lemma. We have from (7.46) that

(Zz _ 1) AW) = o, (\/%) (KJ'VW +0, (\/W’FW +§i(Pii(W))2>>

K'W PW,N
= 0O (N3/2> +op (\/]V .

A, (W) =0, (;)

We also have that

form (7.48). It therefore follows that

AW)=AW)+0, (zir) + 0, (ﬂg) + 0, (%V)

Lemma 7.18 Suppose that Assumptions 1 - 4, 5(ii), 6 and 7 are satisfied. The the following statements
hold:
W' P(W)u/N = A(W) %, = O, (\/WTW + Z-(Pz-i(W))z/N),
E[hA (W) €v/VN|z] = (K'W/N) Y., fiE(e2v))/N 4 O,(1/N) + O, (K'W+ /N?),
E[hW'H=Y (W) h/VN|z] = O,(1/N),
. zﬁ,{_l W B [hh' Hy, f'(I — Py)e/N|2] = O, (1/N),
E[hWH

2
3
4
5.3 m 1wm
6
7.3
8

~

1 lee/N| ] = 0p (1/N)7

he'(I — Pp,) fH,'v' Pre/N~3/2|2] = 0, (1/N),

nL 1 wm

[
[
D m= 1wm [he'(I = Pp) fH /(I = P )e/N73/2|2] = O, (1/N),
[
[he' PpvH, W' Pre/N3/2|2] = O, (1/N).

m 1wm
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Proof. We begin with the proof of part 1. It holds that F [A(Wﬂz} = tr(P(W)E[e€'])/(No?)
(K'W)/N. We also have

- K'W\? E[d¢PW)ed PW)e|z]  [K'W\?
E A - = J—
(o= 15)"| W ()
MKW+ 20 WITW + 0, (X,(Ps(W))?) [ K'W?
B N2g4 N
WTW + 37, (P (W))?
= Op N2 ,
by Lemma 7.6(4) with replacing u by € and Lemma 7.5(2). This gives
- K'W W'TW + > (Pi;(W))?
Similarly, we have
WPWyu  K'Wo o [VWTW +3(Pa(W))?
N N v TP N '
Thus, part 1 is proved.
For part 2, we observe
hA (W) v > i i wi Elfi€i€; Pin(W)erevy]
E|——|z| = D5
VN N?o?
_ Zz szu(W)E[GfU;] n ZZi;éj fvipij(W)E[f?U;] i Zi;éj f,;ij(W)E[e?vﬂ
N N2g2 N2 N2
_ 0 K'W+ K'W+ iy [iPis(WEEV] S, fiPy(W)E[e3v]]
- p N2 P N2 + N2 - N2
K'W Y, fiBlev]] 1 K'W+
= N N L2 + Op N + Op T y
where Lemma 7.6(5) implies that
> fiPi(W)E[ejv]] K'w+
N2g2 = Ol v )
i fiPi(W)Ele}v]] K'W+
N2g2 = O N2

and the fact for f,; the a-th element of f;,
M
iz fa:iPij(W)‘ < Pomet [0m| |(faPrdn)| 22, fiPu(W)

N2 - N2 N2
= Tl (P )) A1) (KW
= N2 O TN
o (fada ' i wnl |, (KW
- N N P\ N2

1 K'W+
= ofy) o ().

1.PlWE€2 ! /
iz f 5\52) [e5v]] Op(l)_i_op(K]\I;I?/*).

gives




Part 3 follows Lemma A.8(iii) in Donald and Newey (2001). We have

M N
ERWH Y (W)h/VNl2l = Y wm Y. El[fie et Hy' fiye,|2] /N?

m=1 D1 yeens ig=1

M N
= Y wn Y E[Z] fif{H," fi/N* =0, (1/N).

For part 4, let f[m be the i-th row of f/(I — P,,) such that

N

E [hhlggblfl(l - P77L)6/N|Z] = Z E [fileileizfgggglf‘ig,meislz] /N2 = OP (I/N)

il,...,’Lg:l

by the same argument as in (7.49).

For part 5, consider

N

E [hh,anl’U’Pme/Nb] = Z E [f“ €i,1€iq fZ{zH;LlrUia Pm,i3i4€’i4 |Z] /N2

i1, 04=1

N
= Z fil fi/zg;zlpm,isuE [€i1€i2Ui3€i4|Z] /N2

i1, ia=1

N
= Zflf{H,Zle’”Cum [Ei,ei,vi76¢‘z] /N2 = Op (N_l) .
i=1

For part 6, let fl'm be the i-th row of f'(I — P,,) such that

E |he'(I — Py)fH f/(I - Pm)e/N*3/2|z] = ZN

For part 7, consider

11,0003 =

N

E [hGI(I — Pm)ff{;llvlpm€/N_3/2lzj| = Z FE |:fi1€i1€i2ﬁ2,mH7;1Ui3Pm,i3i4€i4|Z:| /N2

For part 8, consider

01,..0,04=1

N

=1

E {he’vaHniblv’Pme/N’?’/ﬂz

N
Z E [fi161'16i2Pm7i2i3vg3I_{';leupmﬁﬂseis |Z] /N2
) =1

B1,y..515
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(7.49)

B[ funeis€ia fly i Fiaimeinl2] [N = 0, (1/N).

Zfzfl/ﬁ;IPm,“Cum [67;767;,’l)i,6i|2] /N2 = 0p (N_l) .

(7.50)



N
= Z offile,ilisz,iziztr (H;LlE [Uiz’l};2€i2|2]) /N2

i1,i2=1

N
—+ Z O—Efilpm,ilhpm,hiztr (.H;IE [1)1‘11]1/-161‘1‘2]) /N2

i1,i2=1

N
+ Z Gezfilpm,izilpm,iliztr (H,;LlE [vilvgleil\z]) /N2

i1,i2=1

+ Z fn P igiy Prmivis b1 (H 'E [1}“ Vi, | ])/N2

i1,t2=1
N
+ Z fiP2 itr (Hy'Cum [6;, €5, 03, 0], €] 2]) /N?,

where E [v;v}€;]2] does not depend on z by Assumption 3 and for the first term in (7.50) we have

N N
Z Jis Privia Prjizi = Z FirPanivia = [Pl < (F ) (U Paln)> < VN (£ 1)

i1,42=1 i1,d0=1
such that
al = 2
Z Uszfilpm,ilizpmyiziztr (H;mlE [Ui2U§2€i2|Z]) /N2 = Nil (flf/N)l/ = OZD (Nil)
i1,da=1

where a similar arguments shows that the second term in (7.50) is O, (N _1). Next,

N
Z fil-Pm,igileA,hQ: Z le m,i1%o mmzl Zfz muSSUp |f2HZPmu: )7

i1,i2=1 i1,i2=1

where sup, || fi| = O, (1) by Assumption 3(iv) such that the third term in (7.50) is O, (m/N?) = o, (N7!)
and the same argument also shows that the fourth term in (7.50) is o, (N~!). Finally,

Z,fz 2 atr (H"Cum [6;, 65,03, 0, 65]2]) /N < |tr (H,,"Cum [e;, €5, 03, 0], € bup I £l Z gy
= o0, (m/N?) =0, (N7").

These results establish that Zm LW B [he’vaHT:le’Pme/N*:S/Q|z] =0, (N7!) as desired. m

7.4 Proof of Theorem 7.2

Proof. The MALIML estimator, 3 defined in (2.3), has the form:

VN(Br — o) = H'h,

H = X'P(W)X/N—-AW)X'X/N, h=XPW)e/VN—AW)X'e/VN.
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Also H and h are decomposed as

5
h = h+) T/ +2"
j=1
Th = —f(I—P(W))e/VN, T&=v'P(W)e/VN,
Th = AT T - A T T = VR (W) o
- R . X'e A X'e
zh = (A(W)—A(WH—RA)\/N(N—aue)—RA\/N,
and
3
H = H+)Y 1/ +2",
j=1
T = —f(I-PW)f/N, T =@'f+fu)/N, T =-AW)ff/N

Z" = WPW)u/N—-AW)S, —u'(I—P(W))f/N — f'(I — P(W))u/N
+A (W) (H +%,) — A (W) X'X/N.

Let Th = ZJ T} and TH = Z] L Tf'. We give the order of each term. By Lemma 7.5(6), we have
h=0,(1) and H = O,(1). (7.51)

Lemma 7.6(2) gives

Th = 0,(A(W)?), (7.52)

A similar argument to Lemma 7.6(4) (note that E[v;e;] = 0), we have

o —o, ( \/ WITW + ZAPMW))Z) . (753)

N

Lemma 7.17 and the CLT gives

T = ( = 0, <\/WTW "‘%i(Pn‘(W))Z)) 0,(1)

! W'TW 2
_ ( WV + 5, (P (W ))) (754)
N
and
\ K'W WITW + >, (Pu(W))?
=0, ( T v N . (7.55)
By Lemma 7.17, we have
1
" =0, <\/N> . (7.56)
By definition, we have
T = 0,(2(W)), (7.57)
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where E(W) is defined in (7.10). By a CLT, we have

1
Ty =0, — ). 7.58
=0, () (7.5
By Lemma 7.17 and Lemma 7.5(6), it holds that

- ( ( WTW+N21-<P“-<W>>2>> 0,1

! T 2
- o(KW VIWIW £ 3, (P (W ))>. (7.59)
N
By Lemma 7.17 together with the CLT which implies that v/ N ()g\/f — O’ue) = 0y (1), as well as
~ . . =2
AW)=AW)+ Ry = <Z2 - 1) A(W) + Ay (W)
- K'W  JWTW +3,(Pi;(W))? -
- O,,(N 1/2)0p< ~ N +0,(N7Y),
it follows that
K'W VWITW + 3. (P (W))? 1
hoo_ i _
Z" = O ( N + 0, ( N Op Wi
1
+0, (37 ) +ontwa 10,0
K'W  /WTW + 3, (Pu(W))? 1
= OP <N3/2 + \/ N3/2 +OP N +Op(pW,N)
= op(pw.n), (7.60)

where 1/N = 0,(W'I'W/N) = op(pw,n). Lastly, we have
AW)H+2) —AW)X'X/N = A(W)(H+%, — X'X/N) — ( (W) — (W)) X'X/N

1 PW,N
op(pw,n) + Op (N> +0p <N3/2) +0p N) =0y (pw,N) s

where (H+ X%, — X'X/N) = O, (1/\/N) and A (W) — A(W) = 0O, (%) + O, (K/W) + op (pWN) from
Lemma 7.17. It then follows that

4 » 1/2
z" = op (pw,n) + Op <\/W W+ Zi(P”(W)V) + 0, (A(W)>

op(pw,N); (7.61)

by Lemmas 7.18(1), 7.6(2), 7.17, the CLT and the LLN.
We show below that the conditions of Lemma A.1 of Donald and Newey (2001) are satisfied and S(W)

has the form given in the theorem.
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We first have h = O,(1) and H = O,(1) by (7.51). Next, we need to show that 7" = 0,(1). By (7.52),
(7.53), (7.54), (7.55) and (7.56), it follows that

™ = 0, (A(W)l/z) +0, <\/WTW + Zi(Pii(W))2>

N

K'W  /WTW + > .(P:(W))? 1
+Op< -t N >+Op<x/ﬁ>'

Now, Lemma 7.6(2) says that A(W) = 0,(1). We have |[K'W/N| < K'W* /N — 0 by Assumption 5. By

Lemma 7.6(12) and Assumption 5, it holds that W/ IT'W/N < CK'W* /N — 0, where C is some constant.
Lemma 7.5(2) implies that Y_,(P;;(W))%/N = 0,(K'WT/N) = 0,(1). Thus, T} = 0,(1) is shown.
The next step is to show that ||T#|> = o,(pw,n). We have, by (7.57), (7.58) and (7.59),

He o=z Ly ZOV) W) KW WTW + 5 (Pa(W))
TP = 0p(BW) 4 + ==+ o v
L WTW £ 3, (Pa(W))? KW gy VVIW 5 3 (Pa(W)P
N2 N - N
K'W| | /WTW + 35 (Pa(W))
N S )

+E(W) (W)

Since /WIW + 3, (Pu(W))2/N = O, (W'TW + X_,(P(W))?) /N) = o,(pw,n), |K'W|/N3/% = o |[K'W|/N) =
op(pw.n), (K'W)2/N? = o( K'W/N) = o,(pw.n), 1/N = o,(pw,n) and the observation that Z(W)/vN =
0,(pw.n) by Lemma 7.6(6) and Z(W) = O, (A(W)*/?), we have

17711 = Oy ((E(W))?) + op(pw.v).

The order of (Z(W))? is o,(pw.y) by Lemma 7.7. Next, we consider |[T"|| - [|T*||. We have, by (7.52) -
(7.59),

T - 1|
o < sy« [TV SR | W) WV TS ]1V>
_ L RW] T S (Pl ()2
-Op <H(W)+\/N+ N T N )
_ o, AW WTWESRONE | WIW 55 (PP
= 0, <A(W)1/2H(W) LY, A ~ +H<W)\/ ~ )
+op(pw,n)
- o, (A(WW?E(W) vz %"(P”(W))Q) +oylow) = oplown).

since 0,(1)| K'W|/N = op(pw.n), /WIW + 32, (Pi(W))?/N = 0, (pw.n), L/N = op(pw.v), AW)V2/VN =
op(pw.n) by Lemma 7.6(6) and the order of Z(W) is 0,(A(W)'/?) by Lemma 7.7. Lastly, it holds that

Z" = o,(pw,.n) and ZH = o,(pw,n) by (7.60) and (7.61).
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We have shown that the conditions of Lemma A.1 of Donald and Newey (2001)'? are satisfied and we

apply the lemma with

AW)Y = (h+TP+TH(h+ T8 + T8 + W(Th + T + T + (T8 + T + T8N
—hh'H Y TE +TH + T8 —(TH + TH + T YH*hi

and

ZAW) = (Th+ TP+ 1T + 10 + ThY

H(TE + TP + TITP + T + (T + T (TP + TP + TH).

We show that Z4(W) = o,(pw,n). By (7.54), (7.55) and the fact that \/W'TW +>_,(P;(W))?/N =
op(pw,~ ), it holds that

(T + TH)T + T = O, ((KNW) ) +oplown) = oplow,n)

By (7.54), (7.55), (7.56) and the fact that /W TW + 3_,(P;(W))2/N3/2 = 0,(pw,n), it holds that

K'W
THTY + Ty = O, (1\73/2) + op(pw,N) = 0p(pw,N).

By (7.56), we have
1
TTLY = 0, (57 ) = oslowin).

By (7.52), (7.54), (7.55) and the fact that \/W'TW +>_.(P;;(W))2/N = o,(pw,n), we have

K'W
721+ 71) = 0, (A5G0 ) 4 0y o) = oppwin),

since A(W)1/2 = 0, (1) by Lemma 7.6(2). By (7.53), (7.54), (7.55) and the fact that /W' TW +_,(P;;(W))2/N =

op(pw,N), it follows that

K]’VW\/W’FWJr%:Vi(Pn(W))Q) + op(pwn) = op(pw).

et 41t o,
Lemma 7.6(6), (7.52) and (7.56) imply that

1/2
THIhY = 0, (A%)) — oy (pw)-

Lastly, we have

T =0, (V R NZ*P“(W”?) = oplow:n),

12We note that here we do not need to use our Lemma 7.1, which is a modified version of Lemma A.1
Donald and Newey (2001).
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by (7.53), (7.56) and the fact that /W' TW + Y, (P;;(W))2/N = o0,(pw,n). To sum up, we have ZA(W) =

op(pw,N)-
Now, we calculate the expectation of each term in A(W). First of all, E[hh/|z] = E[fee' f'/N|z] = 02H

Second, we have

e - 5 [-LCUZ PO ] af U POV,

N N
Similarly, it holds that E[T]'h'|2] = —a2f'(I— P(W))f/N. Third, Lemma 7.6(5) with replacing u by v gives

E[hTY 2] Zfl i (W) E[eiv;|2] /N,

which is O,(K'W™*/N). Fourth,

E[Tlthhl|Z} — B |:f/(I_ P(W))ee'

N N

(I—P(W))f|z] _ U -PW)U - PW))f
Fifth, by Lemma 7.6(8) with replacing u by v, we obtain

J'(I = P(W))e P(W)u 4 = POV) (W)
N N ’

E[TITV|2] = —E [

where 11, (W) = (uo1(W),..., iy n(W)) and p,; = Pu(W)E[e?v;]. Similarly, we have E[TPTP|z] =
—uy(W)Y(I — P(W))f/N. Sixth, noting that E[v;€;|z] = 0, a similar argument as Lemma 7.6(4) gives
E[T}TY 2] = 025, (W'TW)/N + Cumle;, €1, v5,v]] Y _(Pi(W))?/N.

Seventh, we have

E[hh/H—lTlHl|Z] - _E |:f/€6/fH_1f/(I — P(W>)f|2:| — _062 f/(I_ P<W))f

N2 N
Similarly, we have E[T{ H=1hh/|z] = —o2f'(I — P(W))f/N. Eighth, Lemma 7.6(7) implies that

E[hh/HflTQH/| } - F |:hh/ (Zvlf"‘f/ )Z:| _ Op <]]\'[) _ Op(pW,N)

and that E[T{IH-1hH|z] = 0,(pw,n). Ninth, we have
(T — hW H Y TEY =100 — T H'hh =0

Tenth, we have

KW YN fiBEu] 1 KW+
h _ i=
En(T))|z] = N ! N + Op ~ +Op N7
KW YL fiElul
= N =1 N +0P(pW7N)7
by Lemma 7.18(2). Similarly, we have E[TJ}h|z] = —(K’VV/N)(Z?IZ1 fiEle?ui]/N) + o,(pw,n). Lastly,

Lemma 7.18(3)-(8) implies that



and that E[TPR 2] = op(pw.N)-

Let A N w N
(=D fiPu(W)E[vi]/N — ~ > fiEle}vi]/N.
=1

=1

Note that CA = 0 under the third moment condition in the Theorem. Therefore, we have

ST =PW))f L[ U=PW)f [ UU=PW)u(W) p(W)'(I = PW))f

E(A(K)) = olH o ~ o N N - N
+o23%, WIJSW + Cumle;, €, v;, vg]izi(P%W))z +¢+ ¢
ror = P(W)])V(I —PV)S | 52 /' —]Is(W))f L2 —]IJ(W))f + oy (pwn)
—— W’]I\;W YA P(W)])V(I — P(W))f
+Cumle;, €, 0, V] ZZ-(P;\‘[(W))Q _fa- P(]‘gf))uv(W) B uv(W)’(IA; PW))f

+¢+ ¢+ op(pw,n).-

By Lemma A.1 of Donald and Newey (2001), we have the desired result.
For the MAFuller estimator B defined in (2.4) the result can be established by noting the following. By

the construction of f\m, we have 0 < 1 — ]\mg 1. Therefore,

: " a_(1—A,,)? A2
0< Ay — Ay = Mo )" o((1-An) ) - a :o<>
1_me(1—Am) N—-—m—a(l—A,) N—-M—-« N

uniformly over m. It therefore follows that

A(W) = A(W) + O,(1/N). (7.62)
Now let pyw n= tr(S(W)). We have
X'PW)X X'X  X'PW)X X'X 1
N AW = N AW 1Oy
X'PW)X X'X
= XPIOX 3 XX 4oy (ow).
by (7.62), X' X/N = Op(l) and 1/N = op(pva). Similarly, we have
X'P(W)e « X'e X'P(W)e X'e < 1 >
—— —A(W = —— - AW)—=+0, | =
wo MWUR T Ty MR TR
X'P(W)e X'e

= — — W)— +o PW.N) -
\/N ( )\/N p ( s )
Therefore, the higher order mean square errors of the MALIML and the MAFuller estimator are the same.
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7.5 Verification of Regularity Conditions for Unconstrained Optimal Weights

In order to demonstrate that the regularity conditions imposed are not too stringent, it is useful to consider
various optimal weights and verify that the conditions hold. We note that when € is equal to Qy or Qp, a
closed form solution for W* is available. Let 4,, = NH1f'(I — P,,)fH\/N and U be the matrix whose
(i, j)-element i8 Fmax(i,j) so that NH=1f/(I — P(W))(I — P(W))fH'XA/N = W/UW. This implies that
Sy (W) is quadratic function in W and the optimal weight is given by solving the first order condition. For

the MALIML estimator with Q = Qp, we have

l\)

9y

o3 +N(T1—92)
2

0_2
~ATNG T NG
W* = (1%/[([] + 0'12}1_‘)711]»1)71([] + 0'12)1—‘)71]_&[ = .

2 2
g, Ty

T o2+ N(Am—2—Am-1) + o2+ N(m—1—n)

2
%
02+ NAM-1—YM) +1

such that

It follows that for some € > 0

2()/+1 0.2

j2et1g2 N + ¢

wpal for j ¢ J

and
L2a+1
0— forj¢ J,j<L

such that, for L = O (N2(2;+1> ), it follows that

3| =0, (1)

s=1

The case of MA2SLS with = Qg is handled next. The optimal weight is given by

W5

1 2-1,,A 1K)\HlBH1/\
= arg min S\(W) = AV KNHT'ByH )M+ N 1
WeQy 2

1,,A 11y

oito3. /ol
UA-&-UM/UQ-FN(%—%)

oito3. /ol oito3. /ol
— eyt 1 2(0203 + 03 + Mo3,) — By T RT3 e AN A | 3 Fe3 Jo2+ N (72 =3s)
2 2 9 M-1 oi+o? [o? .
0302 + 0% TR Ljm1 TTeE, /o7 NG, o)
oito3. /ol

- o03+03 /o2+N(FAM_1—TM)
First, consider

2 2 /2 M-1 2 2 /2 2042
oy + 03 /08 1 Dat1 ‘7,\+G>\E/U _ (M )
=Up

1
j=1 of +03./02 + N (7 _%H) =Or N3 ! jrett (0% + 03 /02) /N + ¢ N

M —

75



such that

I\/[2a+2

20203 + 03, + Mo3,) ~ By 0,(M) it M0,

2,2 1 52 2 M-l o3 to3 /o2 —2a+1 ~
0302+ 05+ 05 > i T T NG =) O, (M N) otherwise.

By the same argument as before we have

P S Wl s C W AN
s=1 0§\+0§5/U€2+N(;}}1_;§/2) N 0’?\—]—0’?\6/062_}'_5 vJ =
such that
sup J w.| = Op (ML;O“FI) if M?]\c;+2 —0 (1> 7
sl =
iglIskfs=1 Op (M 20t L2eT) otherwise,

where in the first case the desired rate obtains if
N\ (2t
(3
M

L:o(M%).

and in the second case if

Note that when M = N it follows that M213+2 — 00 such that the second case applies and L = o (N 321})

delivers the desired result. The condition MZ;H = O (1) may be too restrictive in practice because the

optimal rate in the case of Donald and Newey (2001) is M = O (Nl/(Q‘”'Q)) , indicating that the upper
bound M should grow faster for MA type estimators. This indicates that the second case is more relevant

in practice. The constraint on L in the second case is mild since L can go to infinity at arbitrarily slow rates

for Lemma 7.7 to hold.
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Table 4: Monte Carlo results: Model (a), LIML

LIML LIML
-All. DN -U -C -P | -All -DN -U -C -P
c=0.1 R7 =0.01 R7 =01

n = 100 bias | 0.293  0.128 0.0958 0.0916 0.0873 | 0.037 0.05 0.051 0.0497  0.0337
K =20 IQR 2 0975  0.809 0.838  0.853 | 0.693  0.572 0.453 0464  0.495
MAD | 0.851 049  0.408 0424 043 | 0.347 0288 023  0.237 0.25
RMAD | 1.74 1 0833 0.865 0.879 1.2 1 0801 0825  0.868
KW+ 20 4.95 309 228  7.02 20 9.16 175 315 8.75
KW- 0 0 333 20.7 0 0 0 189 28 0

n = 1000
K =30 bias | 0.061 0.0833 0.0716 0.0665 0.0526 | 0.001  0.0017 0.015 0.0149 0.00371
IQR | 0.826  0.633  0.492  0.505  0.578 | 0.147  0.146 0.147  0.144  0.146
MAD | 0409  0.323  0.251  0.258  0.292 | 0.074  0.0731 0.074 0.0731  0.0729
RMAD | 1.27 10777 0.8  0.903 | 1.01 1 101 1 0.998
KW+ 30 824 369  49.8 10.9 30 292 311 83.5 23.2
KW- 0 0 392 46.2 0 0 0 311 65.7 0

c=0.5
n = 100 bias | 0.289 ~ 0.46  0.458  0.449  0.432 | 0.021 0.198 0227 0222  0.171

K =20 IQR 1.61 0.868 0.713 0.734 0.759 | 0.651 0.527 0.514 0.517 0.496
MAD | 0.868 0.601 0.568 0.571 0.559 | 0.319 0.302 0.342 0.336 0.296

RMAD 1.45 1 0.945 0.951 0.931 1.06 1 1.13 1.11 0.979
KW+ 20 4.94 2860 22.4 7.05 20 9.36 166 25.7 8.96
KW- 0 0 3140 20.1 0 0 0 176 20.8 0

n = 1000
K =30 bias | 0.043 0.322 0.315 0.308 0.227 | 0.002 0.00661 0.016 0.0162 0.00984
IQR | 0.769 0.572 0.548 0.552 0.553 | 0.142 0.141 0.146 0.146 0.142
MAD | 0.384 0.396 0.409 0.402 0.348 | 0.071 0.0705 0.074 0.0735 0.0719
RMAD | 0.971 1 1.03 1.01 0.878 1.01 1 1.04 1.04 1.02
KW+ 30 8.53 247 47.2 11.2 30 29.4 26.9 26.9 23.5
KW- 0 0 259 42.7 0 0 0 3.91 3.91 0

c=0.9
n = 100 bias | 0.139 0.708 0.793 0.79 0.777 | -0.01 0.281 0.187 0.186 0.176
K =20 IQR 9.46 0.561 0.514 0.518 0.505 | 0.507 0.399 0.435 0.435 0.413
MAD | 0.831 0.83 0.822 0.819 0.802 | 0.234 0.343 0.282 0.282 0.27
RMAD 1 1 0.99 0.986 0.966 | 0.683 1 0.823 0.823 0.786
KW+ 20 5.61 140 20.3 7.4 20 10.8 36.5 13.4 10.3
KW- 0 0 152 17 0 0 0 29.8 4.07 0

n = 1000
K =30 bias | 0.006 0.413 0.244 0.244 0.226 0 0.00686 0.011 0.0101 0.0101

IQR 0.58 0.48 0.503 0.502 0.455 | 0.135 0.131  0.136 0.136 0.136
MAD | 0.261 0.477 0.341 0.341 0.319 | 0.067 0.066  0.069 0.069 0.0689

RMAD | 0.547 1 0.714 0.714 0.669 1.01 1 1.05 1.05 1.04
KW+ 30 12.3 126 23.8 13.4 30 29.6 23.9 23.9 23.9
KW- 0 0 123 12.6 0 0 0 0.008 0.008 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+" = Z%zl max (W, 0)m; “KW-" = Z%zl | min(wy,, 0)|m.

81



Table 5: Monte Carlo results: Model (b), LIML

LIML LIML
-All -DN -U -C -P -All -DN -U -C -P
c=0.1 R% =0.01 R7=0.1

n = 100 bias | 0.302  0.105 0.0949 0.0905 0.0805 | 0.031  0.0223 0.044 0.0413  0.0248
K =20 IQR 2.01 0.92 0.745 0.773 0.793 | 0.693 0.438 0.352 0.36 0.403
MAD | 0.859 0.454 0.381 0.393 0.4 0.35 0.22 0.179 0.183 0.203
RMAD | 1.89 1 0839 0.866 0.881 1.59 1 0816 0.835 0.924
KW+ 20 4.55 152 23.6 6.64 20 5.58 406 35.8 6.13
KW- 0 0 168 22.4 0 0 0 451 38 0

n = 1000
K =30 bias | 0.073 0.0317 0.0622 0.0554 0.0342 | 0.002 0.00446 0.018 0.0153 0.00489
IQR | 0.797 0.477 0.352 0.372 0.44 | 0.144 0.136 0.131 0.128 0.134
MAD | 0.399 0.237 0.187 0.196  0.223 | 0.072  0.0681 0.067 0.065 0.0675
RMAD | 1.68 1 078  0.828 0.942 | 1.05 1 0989 0.954 0.99
KW+ 30 5.31 898 64.5 7.82 30 11.2 1390 115 11.4
KW- 0 0 959 69.1 0 0 0 1480 119 0

c=0.5
n = 100 bias | 0.292 0.375 0.419 0.417 0.391 | 0.015 0.11 0.134 0.132 0.0921
K =20 IQR 1.6 0.821 0.718 0.742 0.737 0.65 0.398 0.471 0.466 0.442
MAD | 0.864 0.542 0.535 0.536 0.528 | 0.317 0.225 0.266 0.264 0.233
RMAD 1.59 1 0.986 0.989 0.973 1.41 1 1.19 1.18 1.04
KW+ 20 4.56 132 22.6 6.72 20 5.84 189 22.4 6.89
KW- 0 0 144 21 0 0 0 207 20.3 0

n = 1000
K =30 bias | 0.053 0.152 0.17 0.17 0.12 | 0.001 0.0146 0.012 0.0117 0.00961
IQR | 0.739 0.428 0.511 0.504 0.47 | 0.141 0.133 0.136 0.136 0.135
MAD | 0.369 0.253 0.304 0.303 0.264 | 0.071  0.0682 0.07 0.0696  0.0683
RMAD 1.46 1 1.2 1.2 1.04 1.03 1 1.02 1.02 1
KW+ 30 6.14 262 40.7 9.02 30 12.2 16.4 16.4 13.1
KW- 0 0 282 39.3 0 0 0 4.78 4.78 0

c=0.9
n =100 bias | 0.142  0.563  0.648 0.645 0.633 | -0.01 0.113 0.033 0.0325  0.0323
K =20 IQR | 7.52 0.685 0.659  0.654 0.63 | 0.504 0.387 0.426  0.426 0.426
MAD | 0.826 0.717 0.717 0.712 0.696 | 0.229 0.231 0.211 0.211 0.211
RMAD 1.15 1 1 0.993 0.971 | 0.993 1 0917 0.917 0.915
KW+ 20 5.74 90.4 16.7 7.88 20 8.21  9.93 9.88 9.71
KW- 0 0 95.7 11.7 0 0 0 0.319 0.261 0

n = 1000
K =30 bias 0.01 0.163 0.0425 0.0425 0.042 | 0.002 0.013 0.004 0.0042 0.0042
IQR | 0.554 0.392 0.455 0.455 0.455 | 0.135 0.13 0.133 0.133 0.133
MAD | 0.255 0.264 0.229 0.229  0.228 | 0.067 0.0665 0.066 0.0662  0.0662
RMAD | 0.967 1 0866 0.866  0.865 1 1 099  0.996 0.996
KW+ 30 10.9 14.1 14.1 13.9 30 16.9 16.3 16.3 16.3
KW- 0 0 0251 0.251 0 0 0 0 0.0001 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” = 2%21 max (W, 0)m; “KW-" = 2%21 | min(wy,, 0)|m.
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Table 6: Monte Carlo results: Model (c), LIML

LIML LIML
-All -DN -U -C -P -All -DN -U -C -P
c=0.1 R% =0.01 R} =0.1

n = 100 bias | 0.305  0.136 0.0848 0.0883 0.0893 | 0.039 0.0354 0.038 0.0361 0.0299
K =20 IQR 1.99 0.986 0.834 0.866 0.861 | 0.685 0.562 0.481 0.487 0.52
MAD | 0.855 0.498 0.419 0.432 0.435 | 0.342 0.283 0.24 0.243 0.262
RMAD 1.72 1 0.842 0.867 0.874 1.21 1 0.848 0.86 0.928
KW+ 20 5.09 189 22.6 7.17 20 10.5 226 31 9.38
KW- 0 0 205 20.1 0 0 0 244 27.3 0

n = 1000
K =30 bias | 0.055 0.0953 0.0599 0.0525 0.0457 -0 470.0009 110 5870 5430.002
IQR 0.82 0.634 0.499 0.509 0.579 | 0.144 0.141 0.135 0.13 0.139
MAD 0.4 0326 0.255 0.261  0.298 | 0.072 0.0702 0.068 0.0661 0.0693
RMAD | 1.23 1 0784 0801 0916 | 1.03 1 0962 0.941 0.987
KW+ 30 10.3 524 48 12 30 21.8 1220 102 19.3
KW- 0 0 556 43.8 0 0 0 1310 105 0

c=0.5
n =100 bias | 0.298  0.471  0.471  0.469  0.453 | 0.02 0.183 0.175  0.166 0.159
K =20 IQR | 1.63 0883 0.736  0.759  0.766 | 0.653 0.515 0.499  0.492 0.482
MAD | 0.882 0.605 0.565 0.575 0.561 | 0.322 0.295 0.297 0.292 0.282
RMAD 1.46 1 0.933 0.95 0.927 1.09 1 1.01 0.99 0.956
KW+ 20 5.05 142 22.3 7.19 20 10.6 118 24.1 9.68
KW- 0 0 157 19.8 0 0 0 124 18.4 0

n = 1000
K =30 bias | 0.037 0.311 0.255 0.241 0.215 -0 0.00909 0 0 0.00389
IQR | 0.758 0.602 0.531 0.528 0.55 0.14 0.137 0.135 0.135 0.138
MAD | 0375 0.395 0.362 0.351  0.338 | 0.07 0.0687 0.068 0.0676 0.0693
RMAD | 0.951 1 0916 0.889 0.856 | 1.01 1 0984 0984 1.01
KW+ 30 10.6 242 44.4 12.2 30 22.3 23.4 23.4 20.9
KW- 0 0 256 39.1 0 0 0 5.32 5.32 0

c=0.9
n = 100 bias | 0.154 0.746 0.829 0.825 0.812 | -0.01 3 0.246 0.21 20.2 1 0.203
K =20 IQR | 8.08 0541 0.475 0.486  0.478 | 0.511 0.429 0.355  0.352 0.34
MAD | 0.845 0.864 0.846 0.843 0.831 | 0.232 0.309 0.263 0.261 0.255
RMAD | 0.978 1 0.979 0.976 0.961 | 0.749 1 0.852 0.844 0.825
KW+ 20 5.58 189 21.5 7.36 20 114 61.3 15.7 10.7
KW- 0 0 217 18.6 0 0 0 576 6.41 0

n = 1000
K =30 bias -0 0.435 0.39 0.306 0.287 -0 0.0082 0.004 0.0036 0.00357
IQR | 0.572 0.694 0.434 0.423 0.385 | 0.131 0.129 0.129 0.129 0.129
MAD | 0.257 0.525 0.351  0.348  0.325 | 0.065 0.0652 0.064 0.0642 0.0643
RMAD | 0.49 1 0669 0.663 0.62 | 0.995 1 0985 0.985 0.987
KW+ 30 12.2 325 33.2 13.5 30 24 22 22 21.9
KW- 0 0 337 23.8 0 0 0 0.05 0.0501 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” = 2%21 max (W, 0)m; “KW-" = 2%21 | min(wy,, 0)|m.
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Table 7: Monte Carlo results: Model (a), Fuller

Fuller Fuller
-All -DN -U -C -P -All -DN -U -C -P
c=0.1 R% =0.01 R} =0.1

n = 100 bias | 0.081 0.0938 0.0894 0.0824 0.0917 | 0.011 0.0521 0.0577 0.0579 0.0438
K =20 IQR 1.21 0.508 0.519 0.568 0.489 | 0.625 0.446 0.386 0.398 0.407
MAD | 0.609 0.265 0.272 0.294  0.251 0.31 0.227  0.198 0.206 0.208
RMAD 2.29 1 1.03 1.11 0.945 1.37 1 0.873 0.904 0.915
KW+ 20 3.72 785 34.6 5.13 20 8.4 310 36.5 8.05
KW- 0 0 870 38.6 0 0 0 346 35 0

n = 1000
K =30 bias 0.02 0.0826 0.0788 0.0751 0.0594 | 0.002 0.00264 0.016 0.0159 0.0048
IQR | 0.736 0.468 0.364  0.396 0.444 | 0.146 0.145 0.145 0.143 0.144
MAD | 0.367  0.243 0.194  0.208 0.227 | 0.073 0.0721 0.0731 0.0721 0.0719
RMAD 1.51 1 0.8 0.857  0.934 1.01 1 1.01 1 0.996
KW+ 30 5.6 682 67.6 9.27 30 29.2 314 83.8 23.2
KW- 0 0 733 69.1 0 0 0 314 66 0

c=0.5
n = 100 bias | 0.397  0.489 0.479 0.473 0.47 | 0.067 0.261 0.284  0.275 0.226
K =20 IQR 1.09 0.468 0.482 0.515 0.44 | 0.549 0.436 0.417  0.421 0.398
MAD | 0.588 0.492 0.501 0.501 0.478 | 0.282 0.293 0.327 0.32 0.272
RMAD 1.19 1 1.02 1.02 0.97 | 0.962 1 1.12 1.09 0.93
KW+ 20 3.72 3870 33.8 5.14 20 8.45 254 30.3 8.23
KW- 0 0 4270 37.6 0 0 0 289 27.5 0

n = 1000
K =30 bias | 0.093 0.398 0.394  0.376 0.284 | 0.006 0.0107 0.0218 0.0218 0.0156
IQR | 0.649 0.419 0.388 0.4 0.409 | 0.14 0.139 0.143 0.143 0.14
MAD | 0.335 0.408 0.41 0.397  0.319 | 0.071 0.0705 0.0743 0.0743 0.0717
RMAD | 0.822 1 1 0.975 0.782 1 1 1.05 1.05 1.02
KW+ 30 5.57 696 63.7 9.41 30 29.4 27 27 23.5
KW- 0 0 747 64.4 0 0 0 4.01 4 0

c=20.9
n = 100 bias 0.69 0.863 0.852 0.846 0.841 | 0.082 0.401 0.315 0.315 0.297
K =20 IQR | 0.679 0.266 0.312 0.319 0.267 | 0.372 0.345 0.333 0.331 0.291
MAD 0.69 0.863 0.858 0.852 0.841 | 0.201 0.404 0.32 0.319 0.301
RMAD | 0.799 1 0.994  0.987 0.974 | 0.498 1 0.791 0.789 0.746
KW+ 20 3.87 565 31 5.46 20 9.4 66.6 16 9.51
KW- 0 0 623 33.7 0 0 0 66.7 8.33 0

n = 1000
K =30 bias | 0.098 0.624  0.435 0.435 0.383 | 0.009 0.0149 0.0198 0.0198 0.0197
IQR | 0.405 0.391 0.42 0.404  0.289 | 0.131 0.128 0.131 0.131 0.131
MAD | 0.226 0.625 0.436 0.436 0.383 | 0.066 0.0654 0.0688 0.0688 0.0688
RMAD | 0.362 1 0.698 0.698 0.614 1.01 1 1.05 1.05 1.05
KW+ 30 7.8 346 36.3 11.3 30 29.6 23.9 23.9 23.9
KW- 0 0 366 30.1 0 0 0 0.0084 0.0084 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN “KW+" = Z%Zl max(wy,, 0)m; “KW-”
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Table 8: Monte Carlo results: Model (b), Fuller

Fuller Fuller
-All -DN -U -C -P -All -DN -U -C -P
c=0.1 R% =0.01 R} =0.1

n = 100 bias | 0.072 0.0786 0.0912 0.089 0.0823 | 0.006 0.0284 0.0464 0.0439 0.0325
K =20 IQR 1.18 0.53 0.508 0.539 0.489 | 0.617 0.393 0.323 0.33 0.361
MAD | 0.601 0.269 0.267  0.285 0.25 0.31 0.198 0.169 0.171 0.182
RMAD 2.23 1 0.991 1.06 0.927 1.57 1 0.855 0.867  0.923
KW+ 20 3.54 606 33.7 5.01 20 5.44 442 38.1 5.9
KW- 0 0 730 37.8 0 0 0 491 41.2 0

n = 1000
K =30 bias | 0.033 0.0373 0.0672 0.0608 0.0417 | 0.003 0.00522 0.0188 0.016 0.0057
IQR | 0.702 0.419 0.31 0.332 0.391 | 0.142 0.134 0.13 0.127  0.132
MAD | 0.354  0.212 0.169 0.178 0.197 | 0.072 0.0678 0.0669 0.0642 0.0666
RMAD 1.67 1 0.799 0.841 0.927 1.06 1 0.987  0.948 0.983
KW+ 30 4.85 1060 71.4 7.26 30 11.2 1410 116 11.4
KW- 0 0 1130 78.2 0 0 0 1490 120 0

c=0.5
n = 100 bias | 0.398 0.44  0.442 0.437  0.434 | 0.064 0.144 0.17  0.169 0.131
K =20 IQR 1.09 0.487  0.497 0.52 0.456 | 0.546 0.361 0.409 0.403 0.383
MAD 0.59 0.45 0.473 0.469 0.447 | 0.283 0.214 0.25 0.249 0.217
RMAD 1.31 1 1.05 1.04  0.992 1.32 1 1.17 1.16 1.02
KW+ 20 3.53 383 32.3 5.06 20 5.62 217 23.9 6.59
KW- 0 0 430 36.1 0 0 0 239 22.7 0

n = 1000
K =30 bias | 0.106 0.192 0.22 0.218 0.168 | 0.006 0.0185 0.0166 0.0166 0.0144
IQR | 0.627 0.37  0.443 0.433 0.401 | 0.139 0.131 0.134 0.134 0.133
MAD | 0.328 0.245 0.295 0.291 0.248 | 0.07  0.0684 0.0695 0.0695 0.0687
RMAD 1.34 1 1.2 1.18 1.01 1.03 1 1.01 1.01 1
KW+ 30 5.3 339 45.5 8.29 30 12.2 16.4 16.4 13
KW- 0 0 366 46.2 0 0 0 4.92 4.92 0

c=20.9
n = 100 bias | 0.692 0.754  0.754  0.752 0.746 | 0.079 0.188 0.119 0.119 0.119
K =20 IQR | 0.673 0.332 0.391 0.39 0.35 | 0.367 0.304 0.318 0.318 0.315
MAD | 0.692 0.754  0.763 0.756 0.746 | 0.205 0.229 0.193 0.193 0.193
RMAD | 0.918 1 1.01 1 0.99 | 0.897 1 0.845 0.845 0.845
KW+ 20 3.9 423 22.8 6.09 20 7.71 10.1 9.79 9.49
KW- 0 0 475 22.4 0 0 0 0.856 0.453 0

n = 1000
K =30 bias | 0.106 0.249 0.14 0.14 0.138 | 0.01 0.0208 0.0126 0.0126 0.0126
IQR | 0.396 0.297  0.318 0.318 0.318 | 0.132 0.127  0.129 0.129 0.129
MAD | 0.221 0.271 0.204  0.204  0.203 | 0.066 0.0665 0.0666 0.0666 0.0666
RMAD | 0.816 1 0.753 0.753 0.748 | 0.998 1 1 1 1
KW+ 30 9.6 25.9 14.1 13.3 30 16.8 16.3 16.3 16.3
KW- 0 0 14.8 1.08 0 0 0 0.0002 0.0002 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” = 2%21 max (W, 0)m; “KW-" = 2%21 | min(wy,, 0)|m.
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Table 9: Monte Carlo results: Model (c), Fuller

Fuller Fuller
-All -DN -U -C -P -All -DN -U -C -P
c=0.1 R% =0.01 R} =0.1

n = 100 bias | 0.075 0.0961 0.0978 0.0938 0.0922 | 0.009 0.0483 0.0523 0.048 0.0416
K =20 IQR 1.2 0.508 0.531 0.58 0.48 | 0.61 0.425 0.397  0.408 0.417
MAD | 0.602 0.269 0.285 0.308 0.253 | 0.306 0.217  0.201 0.208 0.211
RMAD 2.24 1 1.06 1.15 0.94 1.41 1 0.927  0.958 0.97
KW+ 20 3.76 487 34.5 5.2 20 9.45 416 36.8 8.52
KW- 0 0 542 38.1 0 0 0 457 35.7 0

n = 1000
K =30 bias | 0.022 0.084 0.0673 0.0602 0.0555 0 0.00185 0.0171 0.019 0.0032
IQR | 0.722 0.44  0.363 0.388 0.457 | 0.143 0.139 0.133 0.129 0.137
MAD 0.36 0.224  0.194  0.207 0.229 | 0.072 0.0694 0.0672 0.0653 0.0685
RMAD 1.61 1 0.865 0.923 1.02 1.03 1 0.968 0.941 0.987
KW+ 30 6.75 1480 69.8 9.98 30 21.8 1230 103 19.3
KW- 0 0 1580 72.1 0 0 0 1320 106 0

c=0.5
n = 100 bias | 0.392 0.498 0.491 0.489 0.48 | 0.066 0.258 0.244  0.228 0.218
K =20 IQR 1.09 0.449 0.48 0.524  0.436 | 0.546 0.439 0.412 0.408 0.389
MAD | 0.579 0.503 0.509 0.511 0.486 | 0.282 0.296 0.286 0.275 0.259
RMAD 1.15 1 1.01 1.01 0.965 | 0.955 1 0.965 0.931 0.875
KW+ 20 3.77 664 34 5.21 20 9.6 287 29.9 8.8
KW- 0 0 746 37.6 0 0 0 317 26.8 0

n = 1000
K =30 bias | 0.088 0.427  0.333 0.304  0.277 | 0.003 0.0135 0.0054 0.0054  0.009
IQR | 0.634  0.423 0.408 0.412 0.423 | 0.138 0.135 0.133 0.133 0.136
MAD | 0.329 0.433 0.365 0.337  0.308 | 0.069 0.0678 0.0668 0.0668 0.0681
RMAD | 0.761 1 0.843 0.779 0.711 1.02 1 0.985 0.985 1
KW+ 30 6.77 962 64.5 10.1 30 22.3 23.4 23.4 20.9
KW- 0 0 1030 65.8 0 0 0 5.44 5.44 0

c=20.9
n = 100 bias | 0.693 0.883 0.87  0.865 0.86 | 0.083 0.359 0.322 0.315 0.314
K =20 IQR | 0.673 0.24  0.286 0.305 0.25 | 0.367 0.548 0.31 0.291 0.265
MAD | 0.693 0.883 0.875 0.87 0.86 | 0.207 0.37 0.327  0.319 0.314
RMAD | 0.784 1 0.99 0.985 0.974 | 0.559 1 0.883 0.862 0.848
KW+ 20 3.83 555 33.4 5.33 20 10.2 201 20.7 9.84
KW- 0 0 642 36.7 0 0 0 215 13.9 0

n = 1000
K =30 bias | 0.095 0.817  0.473 0.45 0.407 | 0.007  0.0164 0.0123 0.0123 0.0124
IQR 0.4 0.463 0.411 0.339 0.274 | 0.128 0.126 0.125 0.125 0.125
MAD | 0.226 0.817  0.475 0.453 0.407 | 0.065 0.0647 0.0638 0.0638 0.0637
RMAD | 0.277 1 0.582 0.555 0.498 1 1 0.986 0.986 0.986
KW+ 30 7.47 1350 57.1 11 30 24 22 22 21.9
KW- 0 0 1430 55.7 0 0 0 0.0525 0.0525 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” = 2%21 max (W, 0)m; “KW-" = 2%21 | min(wy,, 0)|m.
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Table 10: Monte Carlo results: Model (a), B2SLS

B2SLS B2SLS
-All -DN -U -C -P -All -DN -U -C -P
c=0.1 R} =10.01 R} =0.1

n = 100 bias | 0.107 0.0809 0.0965 0.0932 0.0803 0.015  0.0408 0.0809  0.067  0.0289
K =20 IQR 1.41 0.823 0.201 0.283 1.04 0.782 0.58 0.178 0.272 0.619
MAD 0.715 0.417 0.123 0.16 0.519 0.391 0.293 0.11 0.143 0.311
RMAD 1.72 1 0.296 0.384 1.25 1.34 1 0.377 0.489 1.06
KW+ 20 3.19 1680 68.7 3.64 20 7.72 1810 70.9 6.98
KW- 0 0 1850 77 0 0 0 2000 74.7 0

n = 1000
K =30 bias | 0.0289 0.0853 0.0922 0.0863 0.0576 | 0.000893 0.00226 0.0428 0.0169 0.00237
IQR 0.893 0.741 0.115 0.213 0.709 0.148 0.148 0.117 0.137 0.149
MAD | 0.449 0.369 0.101 0.123  0.352 0.0739  0.0734 0.0698 0.0702  0.0746
RMAD 1.22 1 0.275 0.334 0.954 1.01 1 0.951 0.958 1.02
KW+ 30 4.4 4350 158 6.95 30 29.2 3040 113 23.1
KW- 0 0 4650 169 0 0 0 3230 97.5 0

c=0.5
n =100 bias 0.5 0483 0489 0.486  0.464 0.0735 0.258 0.41  0.365 0.174
K =20 IQR 1.2 0.723 0.177 0.257 0.916 0.823 0.55 0.171  0.255 0.591
MAD 0.778 0.592 0.489 0.486 0.648 0.416 0.368 0.41 0.365 0.348
RMAD 1.32 1 0.827 0.821 1.1 1.13 1 1.11 0.991 0.946
KW+ 20 3.21 7740 68.8 3.62 20 7.46 1650 70.4 6.87
KW- 0 0 8520 77.1 0 0 0 1810 74 0

n = 1000
K =30 bias 0.151 0.389 0.472 0.442 0.249 | -0.00223 0.0046 0.123 0.0815 0.00873
IQR 0.89 0.637 0.114 0.198 0.647 0.151 0.148 0.136 0.133 0.148
MAD | 0.476 0.508  0.472  0.442  0.409 0.075  0.0746  0.126 0.0918  0.0747
RMAD | 0.937 1 0929 0.869 0.804 1.01 1 1.69 1.23 1
KW+ 30 4.28 3760 157 6.92 30 29 248 113 22.4
KW- 0 0 4000 168 0 0 0 242 97.1 0

c=0.9
n =100 bias | 0.872 0.869 0.884 0.877 0.836 0.127 0.457  0.705  0.649 0.323
K =20 IQR | 0.692 0.42 0.0987 0.139 0.512 0.843 0.474  0.169  0.199 0.509
MAD 0.942 0.893 0.884 0.877 0.879 0.43 0.506 0.705 0.649 0.412
RMAD 1.05 1 0.989 0.982 0.984 0.85 1 1.39 1.28 0.813
KW+ 20 3.06 1700 68.4 3.57 20 6.3 643 68.5 6.47
KW- 0 0 1860 76.7 0 0 0 715 71.2 0

n = 1000
K =30 bias 0.213 0.676 0.816 0.776 0.426 | -0.00471 0.0148 0.178 0.157 0.0154
IQR 0.845 0.542 0.119 0.142 0.514 0.161 0.148 0.109 0.109 0.152
MAD | 0483 0.731 0.816 0.776  0.503 0.0787  0.0756  0.178  0.157 0.078
RMAD 0.661 1 1.12 1.06 0.688 1.04 1 2.36 2.08 1.03
KW+ 30 3.53 1920 152 6.56 30 28.3 139 109 20.3
KW- 0 0 2050 161 0 0 0 127 95.2 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” = 2%21 max (W, 0)m; “KW-" = 2%21 | min(wy,, 0)|m.
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Table 11: Monte Carlo results: Model (b), B2SLS

B2SLS B2SLS
-All -DN -U -C -P -All -DN -U -C -P
c=0.1 R} =10.01 R} =0.1

n =100 bias | 0.112 0.0756 0.0976 0.0962 0.0721 0.015  0.0211  0.077 0.0619  0.0185
K =20 IQR 1.41 0.849 0.201 0.284 1.01 0.76 0.471 0.172 0.253 0.465
MAD 0.71 0.423 0.124 0.156 0.511 0.383 0.238 0.104 0.134 0.232
RMAD 1.68 1 0.293 0.369 1.21 1.61 1 0.437 0.562 0.976
KW+ 20 3.09 1870 69.6 3.54 20 5.04 2670 73.8 5.1
KW- 0 0 2060 78.6 0 0 0 2940 82.4 0

n = 1000
K =30 bias | 0.0459 0.0308 0.0922 0.0813 0.0273 | 0.00189 0.00279 0.0578 0.0181 0.00384
IQR 0.883 0.541 0.0937 0.202 0.519 0.145 0.137 0.0829 0.122 0.136
MAD | 0.442 0.271 0.0975 0.119  0.259 0.0727  0.0683 0.0648 0.0611  0.0677
RMAD 1.63 1 0.36  0.438  0.955 1.07 1 0949 0.895 0.992
KW+ 30 4.31 8350 167 5.8 30 11.2 11300 166 11.2
KW- 0 0 8870 184 0 0 0 11900 173 0

c=0.5
n =100 bias | 0.479 0.454 0482 0475 0.422 0.0819 0.107  0.381 0.31  0.0857
K =20 IQR 1.22 0.768 0.178 0.253  0.925 0.806 0.475 0.184 0.234 0.464
MAD 0.777 0.58 0.482 0.475 0.614 0.411 0.259 0.381 0.311 0.245
RMAD 1.34 1 0.831 0.819 1.06 1.59 1 1.47 1.2 0.948
KW+ 20 2.99 1380 69.4 3.51 20 4.82 1890 72.5 4.97
KW- 0 0 1540 78.4 0 0 0 2070 79.9 0

n = 1000
K =30 bias 0.158 0.144 0.455 0.398 0.128 | -0.00127 0.0115 0.135 0.0807 0.0131
IQR 0.849 0.53 0.116 0.18 0.495 0.149 0.136 0.117 0.114 0.134
MAD | 0457 0.303 0.455 0.398  0.278 0.0731  0.0692 0.136 0.0876  0.0681
RMAD 1.51 1 1.5 1.31 0.919 1.06 1 1.96 1.27 0.985
KW+ 30 4.21 3110 164 5.68 30 10.6 453 159 10.7
KW- 0 0 3330 179 0 0 0 475 163 0

c=0.9
n = 100 bias | 0.873 0.793 0.874 0.857 0.736 0.118 0.173 0.59 0.534 0.148
K =20 IQR | 0.712 0.582  0.108 0.145 0.634 0.868 0.475  0.177  0.172 0.455
MAD 0.942 0.845 0.874 0.857 0.804 0.428 0.297 0.59 0.534 0.274
RMAD 1.11 1 1.03 1.01 0.952 1.44 1 1.99 1.8 0.922
KW+ 20 2.96 1040 67.4 3.42 20 4.1 142 65.1 4.5
KW- 0 0 1170 75.3 0 0 0 154 68.9 0

n = 1000
K =30 bias 0.215 0.232 0.723 0.684 0.216 | -0.00327 0.0178 0.144 0.125 0.0225
IQR 0.837 0.475 0.127 0.133 0.445 0.16 0.133 0.101 0.102 0.132
MAD | 0.471 0.343 0.723 0.684  0.321 0.0786  0.0692  0.145 0.126  0.0693
RMAD 1.37 1 2.11 1.99 0.934 1.13 1 2.09 1.81 1
KW+ 30 3.38 1100 144 4.98 30 9.38 167 132 9.67
KW- 0 0 1390 152 0 0 0 168 131 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”
= MAD relative to that of DN; “KW+” = 2%21 max (W, 0)m; “KW-" = 2%21 | min(wy,, 0)|m.
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Table 12: Monte Carlo results: Model (c), B2SLS

B2SLS B2SLS
-All -DN -U -C -P -All -DN -U -C -P
c=0.1 R} =10.01 R} =0.1

n =100 bias | 0.0977 0.0961  0.101 0.0957  0.102 0.0209  0.0439 0.0756 0.0641  0.0335
K =20 IQR 1.42 0.822 0.206 0.288 1.04 0.787 0.543 0.174 0.263 0.622
MAD 0.726 0.419 0.127 0.159 0.531 0.395 0.273 0.109 0.139 0.31
RMAD 1.73 1 0.304 0.379 1.27 1.45 1 0.399 0.508 1.14
KW+ 20 3.28 1690 68.6 3.69 20 8.74 2420 70.3 7.42
KW- 0 0 1850 76.7 0 0 0 2660 75 0

n = 1000
K =30 bias | 0.0355 0.0854 0.0905 0.0785 0.0408 | -0.00138 0.0004 0.0596 0.0156 0.00089
IQR 0.899 0.683 0.113 0.2 0.705 0.145 0.141 0.0777 0.115 0.14
MAD | 0.446 0.353 0.1 0116 0.354 0.0722  0.0705 0.0654 0.0591  0.0698
RMAD 1.26 1 0.284 0.33 1 1.02 1 0928 0.839 0.99
KW+ 30 5.36 4110 154 7.36 30 21.7 11600 148 19.1
KW- 0 0 4440 166 0 0 0 12500 156 0

c=0.5
n =100 bias | 0.512  0.489  0.492 0.49  0.467 0.0956 0.251  0.397  0.326 0.174
K =20 IQR 1.22 0.717 0.176 0.25 0.934 0.819 0.53 0.171 0.241 0.613
MAD 0.785 0.595 0.492 0.49 0.66 0.417 0.354 0.397 0.326 0.348
RMAD 1.32 1 0.827 0.824 1.11 1.18 1 1.12 0.921 0.983
KW+ 20 3.21 1280 68.6 3.69 20 8.45 1510 69.9 7.31
KW- 0 0 1440 76.7 0 0 0 1670 74.5 0

n = 1000
K =30 bias 0.146 0.439 0.454 0.397 0.234 | -0.00437 0.00673 0.141 0.075 0.00678
IQR 0.887 0.659 0.125 0.192 0.684 0.153 0.144 0.117 0.112 0.144
MAD | 0.472 0.523  0.454  0.397  0.422 0.0756  0.0721  0.141 0.0837  0.0718
RMAD | 0.902 1 0868 0.759  0.807 1.05 1 1.96 1.16 0.995
KW+ 30 5.1 3150 154 7.32 30 21.5 439 143 18.5
KW- 0 0 3370 165 0 0 0 469 148 0

c=0.9
n = 100 bias | 0.869 0.885 0.886  0.879  0.855 0.126 0.522  0.653 0.57 0.302
K =20 IQR | 0.679 0.381 0.0954 0.139  0.493 0.851 0.571  0.202  0.207 0.534
MAD 0.935 0.9 0.886 0.879 0.888 0.432 0.56 0.653 0.57 0.404
RMAD 1.04 1 0.984 0.976 0.986 0.772 1 1.17 1.02 0.722
KW+ 20 3.11 1320 68.8 3.63 20 7.12 1200 68.1 6.87
KW- 0 0 1490 77.1 0 0 0 1290 71.9 0

n = 1000
K =30 bias 0.2 0.855 0.789 0.708 0.399 | -0.00755 0.0105 0.141 0.116 0.0131
IQR 0.872 0.484 0.159 0.162 0.595 0.16 0.149 0.098 0.101 0.147
MAD | 0485 0.877 0.789  0.708  0.498 0.0787  0.0747  0.141  0.117  0.0747
RMAD | 0.553 1 0.9 0807 0.567 1.05 1 1.88 1.57 1
KW+ 30 3.65 3030 152 7.11 30 20.9 161 124 17.1
KW- 0 0 3260 163 0 0 0 165 124 0

Note: “bias” = median bias; “IQR” = inter-quantile range; “MAD” = median absolute deviation; “RMAD”

= MAD relative to that of DN; “KW+” = 2%21 max (W, 0)m; “KW-" = 2%21 | min(wy,, 0)|m.
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