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BARGAINING AND THE RIGHT TO REMAIN SILENT

By LAWRENCE M. AUSUBEL AND RAYMOND J. DENECKERE!

This paper analyzes a class of alternating-offer bargaining games with one-sided
incomplete information for the case of “no gap.” If sequential equilibria are required to
satisfy the additional restrictions of stationarity, monotonicity, pure strategies, and no free
screening, we establish the Silence Theorem: When the time interval between successive
periods is made sufficiently short, the informed party never makes any serious offers in
the play of - alternating-offer bargaining games. A class of parametric examples suggests
that the time interval required to assure silence is not especially brief.

As a byproduct of the analysis, we also prove (under the same set of assumptions) a
uniform version of the Coase Conjecture: When the time interval between successive
periods is made sufficiently short, the initial serious offer by either party in an
alternating-offer bargaining game must be less than ¢ times the highest possible buyer
valuation, for an entire family of distribution functions.

Keyworps: Noncooperative bargaining, alternating offers, stationarity, Coase Conjec-
ture, incomplete information.

1. INTRODUCTION

THE NEGOTIATION PROCESS TRANSMITS INFORMATION in at least two ways. First,
any time that an informed party responds (positively or negatively) to an existing
offer on the bargaining table, he may reveal some of his private information to
his partners in the negotiations. Second, whenever that party places his own
new counteroffer on the table (or refrains from doing so), the form of the
proposal potentially conveys some information. Together, these two vehicles for
information transmission may result in the rapid disclosure of the informed
party’s information.

Consider a bilateral bargaining situation where one of the parties possesses
private information which the other party wishes to learn. It is reasonable to
think that the first channel (“passive revelation”) can be more readily exploited
to expose the informed agent’s information than can the second channel
(“active revelation”). The uninformed agent obtains information via passive
revelation by making an offer, which the informed agent finds either attractive
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or unattractive, depending on his private information, and merely waiting for
the informed agent’s response. In contrast, active revelation relies on the
informed party’s willingness to voluntarily choose to frame a proposal which
reveals his information. The uninformed party can utilize the first device to
force the informed party to disclose; however, the informed party has the option
of refraining from making counteroffers, and thus can avoid the second means
of information transmission. '

In this article, we formally derive a result of this type. Consider the (k,[)-
alternating-offer bargaining game? of one-sided incomplete information. Re-
strict attention to the set of sequential equilibria which satisfy the additional
restrictions of stationarity, monotonicity, pure strategies, and no free screening.’
Our main result then is the Silence Theorem: there exists a sufficiently short
(but still positive) time interval between successive offers such that the informed
party never makes any serious counteroffers in any of these equilibria.* All
information revelation then occurs only through passive responses by the
informed party to offers of the uninformed party.

Our result thus provides a justification for studying the bargaining game of
one-sided incomplete information in which only the uninformed party is permit-
ted to make offers. This game, while extensively and successfully studied in
earlier papers,” has also been criticized for artificially restricting the actions of
the informed party.® In contrast, our current result establishes that, for an
interesting class of equilibria, the outcome of an alternating-offer game is as if
the extensive form permitted offers only by the uninformed party.” Exogenously,
both traders are permitted to make offers; endogenously, equilibrium coun-
teroffers by the informed party degenerate to null moves.

There is a simple intuition for the Silence Theorem. Our restrictions on
sequential equilibrium mandate that, at each of his moves in the game, the

2 We introduced this terminology in Ausubel and Deneckere (1989b): k offers by the uninformed
agent are followed by ! counteroffers by the informed agent, whereupon the game repeats until
agreement is reached. The (1, 1) extensive form is the standard alternating-offer game introduced by
Rubinstein (1982).

The assumptions of stationarity, monotonicity, pure strategies, and no free screening were
introduced by Gul and Sonnenschein (1988). The structure in which informed agents’ valuations are
partitioned into exactly two subintervals at each informed agent move (which is implicit in the
assumptions of pure strategies and no free screening) was introduced earlier by Grossman and Perry
(1986); it is necessitated by their notion of perfect sequential equilibrium.

More precisely, the Silence Theorem holds both along the equilibrium path and after any
history in which the informed agent has not previously deviated from his equilibrium strategy.

Papers on the bargaining game with one-sided incomplete information where the uninformed
party makes all the offers, and the related problem of durable goods monopoly, include: Bulow
(1982), Stokey (1981), Fudenberg and Tirole (1983), Sobel and Takahashi (1983), Fudenberg,
Levine, and Tirole (1985), Gul, Sonnenschein, and Wilson (1986), and Ausubel and Deneckere
(1989a,b).

For example, see footnote 2 of Grossman and Perry (1986).

More precisely, we compare: the set of sequential equilibrium outcomes (that satisfy stationar-
ity, monotonicity, pure strategies, and no free screening) of the alternating-offer bargaining game
with time interval z between periods; and the set of stationary sequential equilibrium outcomes of
the seller-offer bargaining game with time interval 2z between periods. We show that, provided z is
sufficiently small, the two sets exactly coincide.
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informed agent partitions the interval of remaining possible valuations into two
subintervals (one possibly degenerate). In particular, at times when it is the
informed agent’s turn to make an offer, the remaining valuations partition into a
high subinterval (who speak by making a serious offer) and a low subinterval
(who effectively remain silent by making a nonserious offer). Now consider the
dilemma from the viewpoint of the informed party: you have the options of
speaking or remaining silent. Choosing to speak reveals a high valuation, which
is information that your bargaining partner can exploit in the ensuing negotia-
tions. Remaining silent indicates a low valuation, at the cost of delaying
agreement until the next round of offers. As the time between offers shrinks
toward zero, the terms of trade for a low-valuation type become increasingly
favorable: a la the Coase Conjecture, the seller’s price converges to zero.
Meanwhile, the cost of delay becomes arbitrarily low, whereas the revelation of
a high valuation becomes increasingly injurious (since the adverse information
can be exploited more quickly). Thus, silence becomes increasingly attractive
relative to speaking and, for sufficiently short time intervals, delay is preferable
to revealing the damaging information for all types of the informed party. In
other words, you recognize that “anything you say can and will be used against
you.” Therefore, regardless of valuation, you decline to speak, since “you have
the right to remain silent.”®

It is important to emphasize that the above logic, which may require all types
of the informed agent to pool together when making offers (therefore all
making a nonserious offer®), does not also require all types to pool in the course
of accepting offers. While accepting an offer may equally reveal that the
informed party’s valuation is high, there is a fundamental asymmetry between
offer and acceptance in a bargaining game: an acceptance has the effect of
immediately ending the game. There is no subsequent play in which the
uninformed agent can exploit the favorable information conferred by an accep-
tance (and a rejection conveys only unfavorable information).

The existing article most closely related to the present paper, and on which
we significantly rely, is that of Gul and Sonnenschein (1988). Gul and
Sonnenschein examined the standard (1, 1)-alternating-offer game under one-
sided incomplete information, for the case of a “gap” between the uninformed
party’s valuation and the (lowest possible) informed party’s valuation. They
formulated the four restrictions on sequential equilibrium and demonstrated

8 The two phrases quoted in this paragraph were taken from the standard “rights card” used by
the San Francisco Police Department in the aftermath of the Miranda decision. See American
Jurisprudence Proof of Facts, Bancroft-Whitney Co., San Francisco, 1967, Vol. 19, p. 80, and
Miranda v. Arizona, 384 U.S. 436 (1966).

® For the basic distributional assumption under which the Silence Theorem holds—namely, that
there is “no gap” between the uninformed party’s valuation and the (lowest possible) informed
party’s valuation—there cannot exist a fully-pooling serious buyer offer. This follows from the fact
that any serious offer must be individually rational for all types who make it, and so any
fully-pooling serious offer would need to be less than or equal to the valuations of all types of the
informed party. With “no gap,” this in turn is less than or equal to the uninformed party’s valuation.
However, in any equilibrium, the uninformed party rejects all such offers.
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that these imply the “no delay” result: for any & > 0, there exists a sufficiently
short (but still positive) time interval between offers such that the probability of
trade within time ¢ exceeds 1 — . Our departure from Gul and Sonnenschein is
two-fold. First, we prove a uniform version of the Coase Conjecture!® for
(k, 1)-alternating-offer games in the case of no gap.!! Second, we use the uniform
Coase Conjecture merely as an auxiliary result in proving our main theorem,
that the informed party never speaks.

Grossman and Perry (1986) examine alternating-offer bargaining in the case
of a gap and prove that there exists at most one ‘“perfect sequential equilibrium.”
Ausubel and Deneckere (1989b) characterize the entire set of sequential equi-
libria for the (k,[)-alternating-offer game in the case of no gap.!? Rubinstein
(1985) considers alternating-offer bargaining where the uncertainty concerns the
rate of time preference of the informed party. In a model with two types, he
shows that there is a continuum of sequential equilibria but generally a unique
“bargaining sequential equilibrium.” Admati and Perry (1987) examine a dif-
ferent alternating-offer, extensive-form game which circumvents the no delay
result.

The structure of our article is as follows. In the next section, we describe the
model and the equilibrium concept. In Section 3, we prove the Silence Theo-
rem. In Section 4, we discuss the relationship with finite-horizon bargaining
games and with the signaling literature. We conclude in Section 5 by showing
that silence is mandatory even when the time interval between offers is rela-
tively long (and so the Coase Conjecture has little force).

2. THE MODEL

Consider a situation where two parties are bargaining over the price at which
a single item is to be sold. The seller’s valuation for the object is common
knowledge, for convenience normalized to equal zero. However, the buyer’s
valuation is private information, drawn from the (commonly-known) distribution
function F(-). Let b and b, respectively, denote the lower and upper ends of

10 The no delay result is closely connected to the Coase Conjecture for durable goods monopoly
and bargaining where the uninformed seller makes all the offers. The Conjecture states that, for any
£ > 0, there exists a sufficiently short (but still positive) time interval between offers such that the
initial offer is always within & of the lowest buyer valuation.

Coase (1972) introduced the intuition for the Conjecture. Gul, Sonnenschein, and Wilson (1986)
proved the Coase Conjecture to hold for the case of “the gap,” and to be true for “no gap” under
an assumption of stationarity. In Ausubel and Deneckere (1989a), we showed the Conjecture to be
false for “no gap” without this additional assumption.

In the alternating-offer game, a Coase Conjecture type result (such as Theorem 3.2 below)
implies no delay—since the initial offer is very low, buyer acceptance occurs very quickly. For the
case of “no gap,” it can conversely be shown that a no delay result would imply the Coase
Conjecture.

U The no delay result of Gul and Sonnenschein was only proven for the case of a gap. In
addition, a uniform version of the Coase Conjecture (i.e., that prices are uniformly low, relative to
the state, as the game evolves) is required for proving the Silence Theorem.

2 We also proved that, for both the gap and no gap cases, the game where only the informed
party makes offers has a unique sequential equilibrium.
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the support of F(-), i.e., b =inf{b: F(b)> 0} and b =sup{b: F(b) <1}. Our
main substantive restriction on F(-) will be the assumption that there is no gap
between the seller’s and the lowest buyer’s valuation, i.e., b < 0. (In contrast,
Gul and Sonnenschein (1988) restrict attention to the case of a gap, i.e., b > 0;
we briefly discuss the case of a gap in footnote 30, below.)

In order to easily accommodate distributions containing mass points, it is
convenient to adopt the following transformation for the remainder of this
article.!* For every g €I1=1[0,1], define f(q)=inf{be<[b,bl: F(b)>1-gq}.
Then, without any loss of generality, we may assume that g is uniformly
distributed on the unit interval: ¢ may be viewed as the buyer’s type; each type
g has valuation f(q). Note that, by definition, f(-) is a left-continuous and
weakly-decreasing function. As a simple normalization, we also assume f(g) > 0
for ge€[0,1), f(0)=1, and f(1)=0."" The basic purpose of replacing the
distribution function F(-) with a valuation function f(-) is so that any trunca-
tion would be fully described by the endpoints of the truncated support.'®
Nonetheless, our transformed notation admits completely general distributions,
as f(-) is permitted to exhibit (right) discontinuities and flat regions.

The seller and buyer are both impatient; in fact, we assume a common
discount rate of r. Thus, if trade occurs at a price p at time ¢, the seller derives
a net surplus of pe~", and the buyer (of type g) earns [ f(g) —ple™"".

Players alternate in making offers at discrete moments in time, spaced z
apart. Thus, the discount factor between successive periods is 6 =e~"?. The
seller proposes in even periods (by convention, the initial period is taken to be
zero) and the buyer proposes in odd periods. Immediately after an offer has
been made, the other party can either accept or reject the offer. Acceptance
terminates the game; rejection yields the opportunity to make a counteroffer in
the next period. Let 4, denote an n-period history of prices and rejections, and
let H, denote the set of all 4,. Let /), denote A, followed by a price offer in
period n, and let H, denote the set of all #),. The strategy of the seller is a
sequence of functions o’ = {c,};_,, where o,: H, >R for n even and o;:
H,-{Y,N } for n odd. Slmllarly, the strategy for the buyer is a sequence of
functions o? ={a’¥_,, where o?: H, X1 —{Y, N} for n even and o;>: H, X I

13If F(-) is not strictly monotone within its support, the assumption of “no gap” should be more
precisely stated as: for every £ > 0, there exists b € (0,¢) contained in the support of F(-). The
transformatlon of the next paragraph will also require that b < .

4 The function f(+) is precisely the (inverse) demand function of the analogous durable goods
monopoly problem—see Gul, Sonnenschem and Wilson (1986) and Ausubel and Deneckere
(1989a)

Any buyer types with valuations less than or equal to the seller’s are not effective players in the
game and hence are deleted.

S A truncated distribution function F(-) is not fully specified by the endpoints of the support.
Indeed, suppose that F(-) has a mass point at be (b, b). Then the statement that “F(-) has been
truncated to the subinterval {b, 517 does not unambiguously describe the posterior distribution. We
need to additionally know what portion of the mass point remains and what portion is gone. In
contrast, if we had been told that the associated valuation function f(-) was truncated to a specified
subinterval, then the posterior would have been completely specified (up to sets of measure zero).

If F(-) has no mass points, then we do not require the transformed notation.
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— R for n odd. We assume that the buyer’s strategy is measurable in the second
argument (his type). A strategy profile is denoted by & = {¢*, o°%}.

Let W denote the set of probability distributions on I and let Z c W denote
the set of uniform distributions on intervals [a, b], where 0 < a <b < 1. Distri-
butions in Z will be denoted by the endpoints of their supports (e.g., (a, b) € Z).
Seller beliefs are defined for each history of the game by functions g,: H, - W
and g,: H, —» W. Specifically, g, denotes the seller’s beliefs at the start of
period n, and g, denotes her beliefs following the offer of the period n. We
require that these beliefs do not change after the seller’s own move, that is,
g,_1=8,=8, for n even. Finally, let g, ={g,, g/} and let g={g,J;_,.

We also require that, for every odd-numbered period n with beliefs g, =
g,(h,), the updated beliefs g/, (after the buyer names a price) be consistent with
Bayes’ rule as applied to the strategy o,” and the beliefs g,, even if the
beginning-of-period history &, is off the equilibrium path. For every even-num-
bered period, we analogously require Bayesian updating (after the buyer rejects
an offer), again even if 4, is off the equilibrium path.!” Furthermore, strategies
must be sequentially rational in the sense that, at every information set, a
player’s strategy maximizes his expected payoff, given his beliefs and his oppo-
nent’s strategy. Every pair [o, g] of strategies and beliefs with the above
properties will be referred to as a “sequential equilibrium.”!®

It is well known that in the seller-offer game, where the buyer has no
opportunities to make a counteroffer, the seller successively skims through the
buyer’s possible valuations. A somewhat analogous proposition remains true in
even periods of the alternating-offer game.!®

LemMmA 2.1: For any sequential equilibrium and any even number n there exists
a function Q: H), — I such that for all W, € H., a’(K,,q)=Y if and only if
q<QH).

7 For finite games, this property is implied by the consistency requirement in the definition of
sequential equilibrium (Kreps and Wilson (1982, p. 872)). We make essential use of this property in
the first paragraph of the proof of Theorem 3.3.

18 For finite games, Fudenberg and Tirole (1988) have called this concept a “perfect Bayesian
equilibrium.” The solution concept is weaker than Kreps and Wilson’s (1982) sequential equilib-
rium, since it does not constrain beliefs at period (n + 1) information sets which have zero
probability of being reached given the period n beliefs and equilibrium strategies. (Sequential
equilibrium does constrain these beliefs; for an illuminating example, see Fudenberg and Tirole
(1988, Section V).) Perfect Bayesian equilibrium also permits a type with zero prior probability to be
assigned a positive posterior probability following a zero-probability history

Nelther terminology is ideal in our context, as the bargaining game is an infinite game.

19 The proof of this lemma is standard; see, e.g., Fudenberg, Levine, and Tirole (1985, Lemma 1),
and Ausubel and Deneckere (1989a, Lemma 2.1). For expositional ease, the statement of the lemma
assumes that the buyer uses pure acceptance strategies and that buyer types with valuations equal to
f(Q(#),)) choose monotonically between acceptance and rejection. Without this restriction to pure
strategies, the reader should observe that any buyer type with valuation exactly equal to f(Q(#/,))
may respond “Y”, “N”; or randomize.
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While buyer accept/reject moves thus lead to a truncation of the seller’s
beliefs concerning the buyer’s type, the same need not be true about buyer
offers. Following Gul and Sonnenschein (1988) and Grossman and Perry (1986),
we will henceforth make two assumptions which guarantee that buyer offers also
truncate the seller’s beliefs.

A.1 (PURE STRATEGIES): After histories with no prior buyer deviations, the
seller’s offer and acceptance behavior is deterministic.”

A.2 (No FrRee ScREeNING): For all odd n, and for all h, € H,, let y(h,) =
{p: a’(h,,q) =p for some q € I}. Then if p, p' € Y(h,,) and g/(h,,, p) + g, (h,, D'),
either g (h,,p)=Yor o(h,,p')=Y.

A.1 guarantees that at any stage of the game both the seller and the buyer
make at most one serious offer (an offer which has positive probability of
acceptance). Indeed, for the seller, this assumption directly guarantees that no
randomization occurs, and hence that there is at most one serious offer. The
fact that the seller never accepts offers with a probability in (0,1) makes it
suboptimal for the buyer to make more than one serious offer in any given
period (the lowest acceptable offer always dominates). A.2 rules out cheap talk,
that is, non-payoff-relevant moves which reveal information. More precisely, the
seller is required to form the same update following different nonserious offers
(offers which have zero probability of acceptance). Without loss of generality,
we will henceforth assume that there is a unique nonserious offer in each
period. The two assumptions taken together imply that the equilibrium paths of
our equilibria display a simple and intuitive structure.

LemMa 2.2: For every sequential equilibrium (G, g) satisfying A.1-A.2, there
exists a unique nondecreasing sequence q,,q,,q,,--- called the states generated by
7, and for each i there exists a unique h; € H; (and if i is even a unique h; € H})
that occur with positive probability under &, such that:

G) if i is even, then oP(K,,q)=Y if g€ (q;,q;,,] and o’(H,q)=N if g€
(g;41,1);

(ii) if i is odd, then a(h;,q) =p; if q €(q;,q;,,] and p; is the unique serious
offer at i, and a(h;,q) =p; if q €(q;,,,1] and p; is the unique nonserious offer
ati. .

Furthermore, if i is even, then gh;) = g/(h}) = (q;,1). If i is odd, then g(h,) =
(g;,1); in addition, g/(h;, p,) =(a;,q;,,) and gi(h;, p;) = (q;,,1).

20 with the exception that the seller is permitted to use a mixed strategy in naming her first offer
following a deviation from the seller’s equilibrium strategy. Such mixing may be needed to per-
mit existence of equilibrium, once the subsequent stationarity assumptions are introduced. See
Fudenberg, Levine, and Tirole (1985, p. 80).
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Proor: See Gul and Sonnenschein (1988).

Equilibria satisfying A.1-A.2 may have players’ strategies depending on the
entire history of offers and counteroffers. In the bargaining context, many
authors (Gul, Sonnenschein, and Wilson (1986), Gul and Sonnenschein (1988),
Cho (1990)) have advocated restricting attention to equilibria in which the
buyer’s strategy is Markovian, i.e., where the buyer’s behavior is allowed to
depend on the previous history only insofar as it is reflected in the current state.
Stationary or Markovian equilibria have also been widely promoted in other
economic contexts, and generally two classes of defense are offered. First,
Markovian equilibria have been argued to be attractive on the grounds of
simplicity: use of stationary strategies may place fewer computational and
informational demands on players and the resulting equilibria may thus be
viewed as focal.?! Second, Markovian restrictions may be viewed as natural in
that they require players to pay attention only to the portion of history which is
payoff-relevant.?? While we do not find these arguments entirely persuasive, we
believe it is interesting to explore the consequences of stationarity.”>* We will
therefore follow Gul and Sonnenschein (1988) in making the additional assump-
tions:

A.3 (STATIONARITY OF THE BUYER’Ss OFFER BEHAVIOR). For every n and m
odd, q €1, and every h, € H, and h,, € H,, g,(h,) =g,(h,,) implies 0,(h,,q)
=ob(h,,,q).

21 For example, Maskin and Tirole (1988, p. 553) write: “We have several reasons for restricting
our attention to Markov strategies. Their most obvious appeal is their simplicity. Firms’ strategies
depend on as little as possible while still being consistent with rationality.” Myerson (1991, p. 112)
writes: “In repeated games, simplicity or stationarity of the strategies in an equilibrium may make
that equilibrium more focal, other things being equal.”

Perhaps the most alluring feature of stationary or Markovian equilibria is the apparent ease with
which agents can carry out their equilibrium strategies. In particular, agents do not find it necessary
to remember or analyze a potentially long history of actions; the current state is a sufficient statistic.

Stationarity is an implication of Harsanyi and Selten’s (1988) principle of subgame-consistency,
which requires that behavior in a subgame depend only on the structure of that subgame (and
should be independent of any larger game in which the subgame is embedded). A related condition
is invoked in Kalai and Samet (1985). Similarly, Maskin and Tirole (1988, p. 552) write: “We do not
accept any perfect equilibrium, however, but just those whose strategies depend only on the
“payoff-relevant” history. Specifically, at time ¢= 2k, the only aspect of history that has any
“direct” bearing on current or future payofs is the value of a%k_ 1, for only this variable, among all
those before time 2k, enters any instantaneous profit function from time 2k on.”

For example, some of our comments in Ausubel and Deneckere (1989a,b) are implicitly quite
critical of stationarity.

24 A third defense which has been advanced for stationarity restrictions is that they, in some
sense, confine attention to equilibria of the infinite-horizon game which are limits of equilibria of
finite-horizon versions of the same game. This also makes the computation of a stationary
equilibrium, via backward recursion, relatively easy.

The correspondence between limits of finite-horizon equilibria and stationary equilibria holds
true in many complete-information environments. In addition, in the bargaining game of one-sided
incomplete information in which the uninformed party makes all the offers, the limit of equilibria of
finite-horizon versions is a stationary equilibrium of the limit game (although there also exist others;
see Gul, Sonnenschein, and Wilson (1986, Section 4)). However, the correspondence is only
“half-true” for the alternating-offer game: it holds for only one of the two natural finite-horizon
versions. We will explore this in detail in Section 4a.
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A.4 (MONOTONICITY OF THE BUYER’Ss ACCEPTANCE BEHAVIOR): For every n
and m even, for every h, € H,, h,, € H,, and q,, <q,, such that g,(h,) =(q,,1)
and g,(h,)=(q,,1), and for every p €R, there exists p* >p such that
ab((h,,, p*), q) = 0;’(h,, p), q) for every g€ 1.?

Assumption A.4 is actually a hybrid assumption, requiring not only a certain
type of monotonicity in the buyer’s acceptance behavior as a function of the
current state, but also stationarity of his acceptance behavior. To understand
the precise meaning of A.4, let us define, for each n even and each h, € H,
with g,(h,) =(q,1), the acceptance function P(h,,x)=sup{p: Q(h,, p) >x}.
Thus, P(h,, x) is the highest price a buyer of type x will accept after history &,,.

It is straightforward to verify that if m is even, and if k,, € H,, is such that
g.(h,)=(q,1)=g,h,), then P(h,, )=P(h,, ). Thus, A4 implies that the
buyer’s acceptance is only a function of the current state. Furthermore, it is
straightforward to verify that if m is even and, instead, g,(h,,)=(q’,1) for
some g’ <gq, then P(h,,, -) > P(h,, ). Thus, the buyer’s acceptance behavior is
monotone in the sense that the presence of additional high-valuation buyer
types (those in the interval (¢’, g]) does not lead a particular buyer type to lower
his acceptance price.

One final remark: the reader should observe that, in any stationary sequential
equilibrium and in any “cycle” of offer and counteroffer, there must be a
positive probability of trade. Indeed, suppose that there were two consecutive
periods in which only nonserious offers were made. By stationarity, the buyer
would continue to make nonserious offers. The seller then must eventually
make a serious offer, since there always exists a positive price which has a
positive probability of acceptance. Note that she could have accelerated this
offer by two periods, and stationarity would have assured her the same continu-
ation profits. This contradicts the optimality of the seller’s strategy.

3. THE SILENCE THEOREM

In this section, we establish the main result of the paper. It is useful to begin
with two auxiliary results. The first is a lemma which is closely related to Lemma
3.1(iii) of Grossman and Perry (1986).2° Our lemma in effect states that, once
the seller has narrowed her beliefs on the buyer’s type to a subset of the interval
[0, 7], the most “pessimistic” equilibrium belief which can follow is that the

‘

A3 and A4 only need to be assumed for histories in which the buyer has not previously
deviated.

Our Lemma 3.1 treats all sequential equilibria, whereas Grossman and Perry’s Lemma 3.1
concerns only sequential equilibria which satisfy the so-called “support restriction.” According to
this restriction, a revision in beliefs should not increase the support of the distribution representing
the uninformed party’s beliefs (Grossman and Perry (1986, footnote 5)). While such a restriction
may seem natural (in particular, it must hold along the equilibrium path), it is actually very strong,
and prevents an equilibrium from existing in some contexts (see Madrigal, Tan, and Werlang
(1987)).
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buyer’s type equals g with probability one. Consequently, in equilibrium, the
seller never settles for less than the equilibrium offers of the Rubinstein (1982)
game between a seller of valuation zero and a buyer of valuation f(g). We have
the following lemma.

LemMma 3.1: For any valuation function f(-), consider any sequential equilib-
rium of the alternating-offer bargaining game. Suppose, after any history in which
the buyer has not previously deviated, the seller maintains beliefs that the buyer’s
type is at most g (and so the buyer’s valuation is at least f(q)). Then the seller will
reject any counteroffer less than (8 /(1 + 8))f(q) and will not offer any price less
than (1/(1 + 8)f(g).

Proor: Define p to be the infimum over all prices which the seller accepts or
offers in any sequential equilibrium, after any history in which the buyer has not
previously deviated and in which the seller maintains beliefs that the buyer’s
type is at most g. Since acceptance is individually rational, the seller never
accepts an offer (strictly) less than zero. It then follows from the reasoning in
Fudenberg, Levine, and Tirole (1985, Lemma 2) that the seller never offers less
than zero. This establishes that p > 0, a bound which we will now tighten.

In any even-numbered period, after any history as above, the surplus to buyer
g in the continuation game (following rejection) is bounded above by 8[ f(¢) — p].
Knowing this, all buyer types g € [0, g] accept offers p satisfying f(g) —p >
8[ f(g) — p] or, equivalently, p < (1 — 8)f(g) + 8p. Consequently, any seller offer
p satisfies p > (1 — 8)f(g) + ép.

Suppose that p < (8/(1 + 8))f(g). Then for any & > 0, there exists p satisfy-
ing p<p <p+e¢ such that after some history in which the buyer has not
previously deviated and in which the seller maintains beliefs that the buyer’s
type is at most g, the seller accepts or offers the price p. Consider

(1)@ -]

Observe that p <(1—8)f(g) + 8p; by the previous paragraph, p must be a
buyer offer. The seller has the option of rejecting p and counteroffering
p'=(1-08)f(g)+6p —e/8. Again by the previous paragraph, p’ is accepted
with probability one. Observe that 8p’'=p + & >p, so that the deviation is
profitable for the seller. We conclude that p > (8/(1 +8))f(g). Finally, since
any seller offer p satisfies p> (1 —8)f(g)+8p, we also have p>(1,/(1+
NS (@). Q.E.D.

e=4(1-5%)

For any distribution of types implied by f(-), any real interest rate r, and any
time interval between periods z, let 3(f,r,z) denote the set of sequential
equilibria of the alternating-offer game which satisfy Assumptions A.1-A.4. For
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0<M<1<L<wand 0<a<w, let & , , denote the set of all functions
f(-) such that M(1 —q)* <f(q)<L(1 q)® for all g <[0,1].2” This notation
permits us to state a theorem which is closely related to the main theorem of
Gul and Sonnenschein (1988), but instead treats the case of “no gap” and
establishes the same type of uniformity as in Theorem 5.4 of Ausubel and
Deneckere (1989a). Our theorem states that, as the time interval between offers
approaches zero, the introductory price converges to the seller’s valuation (.e.,
zero), uniformly over all valuation functions in the set %, ,/ ,.

THEOREM 3.2 (THE ALTERNATING-OFFER, UNIFORM CoOASE CONJECTURE):
For every 0 <M <1<L <o, 0<a<ow, and € >0, there exists Z(L,M, a,e) >0
such that for every f€ %, . for every z satisfying 0 <z <z(L,M, a,¢), and
for every equilibrium belonging to 3(f,r, z), the initial serious (seller or buyer)
offer is less than or equal to e.

Proor: See Appendix.?®

The intuition for the Coase Conjecture and the outline of its proof is as
follows: If the introductory price were high, then some substantial real time
would have to elapse before the price became low (or else a rational buyer
would wait to purchase). When the time between offers is made negligible, this
means that many successive prices are very close together, so that the seller is
excessively price discriminating. Given the stationarity and monotonicity as-
sumptions, the seller has the opportunity to accelerate sales from later periods
to earlier periods. In the formal proof, we show that the gains from accelerated
trade eventually exceed the losses from diminished price discrimination, imply-
ing that the seller could profitably deviate from the equilibrium, and generating
a contradiction.

An important observation should be made concerning Lemma 3.1 and Theo-
rem 3.2. Kreps and Wilson’s (1982) definition of sequential equilibrium for finite
games implies that whenever (after any history) the seller revises her beliefs
about the buyer, she posits a new distribution function that has its support
entirely contained in the support of the prior distribution of buyer types (i.e.,
the support of F(-)). While it may be desirable to also impose this restriction on
equilibria of infinite games, the proofs of Lemma 3.1 and Theorem 3.2 do not
depend on such a restriction and, therefore, we have not made such a restric-
tion in the current paper. Rather, we allow the seller’s beliefs to wander outside

27The reader may wonder whether there exist any valuation functions for the case of “no gap”
which are not elements of & s ,. The two simplest examples we know are f(g) =exp(—q/(1 —q))
and f(g)=1/(1-1log(1 —q)).
The proof of the theorem draws heavily on Gul, Sonnenschein, and Wilson (1986), and Gul
and Sonnenschein (1988). We learned a lot from these authors, and are glad to be able to
acknowledge our intellectual debt here.
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the initial support of buyer valuations, after histories which have zero probabil-
ity of occurrence.?’ In the proof of Theorem 3.3, below, this enables us to
restate a version of Theorem 3.2 which holds at the start of any (as opposed to
just the initial) period following any history in which no prior buyer deviations
have occurred (and where the seller may have narrowed her beliefs so that some
high-valuation buyer types have zero posteriors).

With our intermediate results in hand, we may now prove the main theorem:*°

THEOREM 3.3 (THE SILENCE THEOREM): Let f belong to %, ,, , and let r be
any positive interest rate. Then there exists Z> 0 such that, whenever the time
interval between offers satisfies 0 <z <Z and for every equilibrium belonging to
3(f, r, z), the informed party never makes any serious offers in the alternating-offer
bargaining game, both along the equilibrium path and after all histories in which
no prior buyer deviations have occurred.

Proor: We begin by demonstrating that a version of Theorem 3.2 also holds
after all histories with no prior buyer deviations: there exists Z > 0 such that for
every z (0 <z <Z) and for every (&, g) € 3(f, r, z), the next serious offer after a
state of q is at most £f(q), where g is any state entering an even-numbered
period after any history without prior buyer deviations induced by (&, g). The
proof is as follows. Let f,(-) denote the rescaled residual valuation function
from f(-) when the state is g €[0,1), i.e.,, f,(x) =flg + (1 —g)x]/f(g), for all
x €[q,1]. As in Lemma 5.3 of Ausubel and Deneckere (1989a), if f€ F; y .,
then f, € S\ ., Where L'=L/M and M'=M/L. At the same time, let
(o, g,) denote the continuation of (&, ) from the time that the state reaches
q. Importantly, observe that when all prices and valuations in (7, Eq) are
appropriately rescaled upward (via multiplication by 1/f(g)), (7, g,) becomes a

» Fudenberg and Tirole’s (1988) “perfect Bayesian equilibrium,” defined for finite games, also
permits a type with zero prior probability to attain a positive posterior probability following an
out-of-equilibrium histo1y.

A weaker version of the Silence Theorem also holds for the case of “the gap.” Let F(-) be a
distribution function whose support is the interval [b,b], 0 <b < %b, with the property that F(-)
is continuous in a neighborhcod of b. Then for any b € (2b, b), there exists Z > 0 such that in any
equilibrium with time interval z (0 <z <Z), the buyer never-reveals that his type is > b, for any
b>b.

This result in essence establishes that, for small z, the only messages that the buyer ever sends in
equilibrium are that his type is > b, for b € [b,2b]. Observe that the silence result is continuous as
we go from a small gap to no gap:'as b approaches zero, the interval of permissible messages
collapses to the singleton message “my type is > 0.” This is the only message transmitted in the
case of no gap; the message is obviously vacuous.

It may not be clear to the reader why a literal Silence Theorem fails in the case of a gap. The
simplest reason is that, under appropriate distributional assumptions, the bargaining has a final
period N < « (Fudenberg, Levine, and Tirole (1985)). Suppose that the informed party makes no
serious offers, that the truncated support entering the last period is (g, 1], and that the uninformed
party makes the final offer, py. Then it may also be an equilibrium for a// remaining types of the
uninformed party to offer p’ in period N — 1, where valuation f(gy) is indifferent between p’ today
and py tomorrow. (In contrast, in the case of no gap, there is no final period.)
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sequential equilibrium for valuation function f, (ie., (7,,8,) € 3(f,,r, )3t
Thus, for positive z < Z(L', M’, a, €), Theorem 3.2 implies that the initial serious
offer in (7, &,) is at most &. By rescaling, the next serious offer in (&, g) after g
is at most £f(q).

We may now easily establish the Silence Theorem. Suppose that the theorem
did not hold. Then for any z > 0, there would exist f€ & ,, ., positive time
interval z < Z, sequential equilibrium (&, g) € 3(f, r, z), and buyer types ¢ and
q' (0 <g <q' <1) with the property that, at some point in the equilibrium (or
after some history without prior buyer deviations), the interval (g, q'] of buyers
makes a serious counteroffer. To be more precise, there is an odd-numbered
period j such that, along a history without buyer deviations, the set of buyers
remaining at the start of period j is (g, 1]. In period j, the buyers partition into
two nondegenerate subintervals as follows: buyers in (g, q'] make a serious
counteroffer p; whereas buyers in (¢’, 1] make a nonserious counteroffer.

We now will show that buyer g’ can profitably deviate by mimicking (¢’, 1] in
making a nonserious counteroffer.>? Suppose that g’ follows the prescribed
equilibrium strategy. Since ¢’ reveals himself to be contained in (g, '] when he
offers p, the seller immediately comes to maintain beliefs that the valuation of
q' is at least f(q'). Since p is defined to be a serious counteroffer, it must be
accepted by the seller; by Lemma 3.1, p > (8/(1 + 8))f(q’'). Hence, the payoff
(evaluated in period j) to ¢’ from equilibrium play equals f(q’) —p, which is
bounded above by (1/(1 + 8))f(q’). Alternatively, ¢’ may deviate by making a
nonserious counteroffer. This deviation is undetectable and, hence, the state
entering period j+ 1 equals g’. By stationarity, the next serious offer must
occur in either period j+ 1 or j+ 2. Let Z be any positive time interval less
than zZ(L', M, a, %). By the version of Theorem 3.2 proven two paragraphs
above, the next serious offer will be at most +f(g'). Hence, the payoff from
deviating is bounded below by 87 f(g') — +f(q)] = 262f(q’). Let z also be
chosen sufficiently small that 8 =e™"? satisfies 262> (1/(1 + §)), whenever
0<z<Zz. Then the payoff from deviating exceeds the equilibrium payoff,
providing a contradiction. Q.E.D.

31 Observe that this is the sentence of the proof which necessitated our discussion, earlier in this
section, of not restricting sequential equilibria to have the property that the seller’s revised beliefs
be entirely contained in the support of the prior distribution of buyer types. If we had made that
restriction in our definition of “sequential equilibrium,” then it would not necessarily be the case
that (5, g,) is a sequential equilibrium for valuation function fq- The reason is that (7,, §,) was

derived from a sequential equilibrium (&, g) for valuation function f. In (&, g), after a history in
which beliefs are entirely contained in (g, 1], it is still possible (off the equilibrium path) for beliefs
subsequently to be revised outside (g, 1]. This translates to beliefs Z, possibly wandering outside the
support of the prior distribution from f,.

With the more restrictive definition of sequential equilibrium, in order to prove the analogue to
Theorem 3.3, it would be necessary to separately observe that Theorem 3.2 holds even if revisions
outside the support of the prior are allowed. We believe the present solution of not restricting the
definition of sequential equilibrium is superior on the grounds that it proves a stronger theorem,
and is more elegant.

Since ¢’ will strictly prefer to deviate and f(-) is left-continuous, it is in fact the case that a
Dpositive measure of buyer types in (g, ¢’'] can profitably deviate by mimicking types (¢q’, 1].
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A “silence equilibrium” of the alternating-offer game with time interval of z
between periods bears a close resemblance to an equilibrium of the seller-offer
game with time interval of 2z between periods. We can demonstrate a precise
equivalence between the equilibrium outcomes of the two games. Consider any
stationary sequential equilibrium of the seller-offer game for any time interval
2z>0 between periods. By a variant on Theorem 5.4 of Ausubel and
Deneckere (1989a), a uniform Coase Conjecture holds: for each & > 0, there
exists Z > 0 with the property that, for any z € (0, Z), every seller offer is less
than & times the highest remaining buyer valuation. Now consider the alternat-
ing-offer game with time interval z between offers and specify the following
description of strategies: In every even-numbered period, the seller makes the
same offer as in the stationary sequential equilibrium of the seller-offer game
(given the same beliefs); and each buyer type uses the same acceptance strategy.
In every odd-numbered period, the buyer counteroffers zero and the seller
rejects. If the buyer deviates by counteroffering a positive price, the seller
revises his conjectures to point beliefs that the buyer’s valuation equals the
highest valuation which remained in the market at the time the buyer deviated.
After such a deviation, the seller plays the strategy from the Rubinstein (1982)
complete-information game, and the buyer optimizes accordingly. For time
interval z sufficiently short, trading at & times the highest remaining buyer
valuation in the next period is more attractive than trading at §/(1 + §) times
the highest remaining buyer valuation in the current period, deterring the buyer
from speaking. It is straightforward to see that this construction yields a
sequential equilibrium satisfying A.1-A.4. Thus, we have just argued that every
stationary sequential equilibrium outcome of the seller-offer game with time
interval 2z between periods can be embedded as a sequential equilibrium
outcome (satisfying A.1-A.4) of the alternating-offer game with time interval z
between periods, provided z is sufficiently small.>

Conversely, consider any A.1-A.4 equilibrium of the alternating-offer game.
By Theorem 3.3, provided z is sufficiently small, the buyer remains silent even
after histories in which the seller has deviated (provided that the buyer has not).
Thus, it cannot be the case that the seller is deterred from deviating by the
prospect of a subsequent unfavorable buyer offer; the buyer is expected to
continue to make only nonserious offers. Thus, we are able to map the
alternating-offer equilibrium to a seller-offer equilibrium by specifying the
following strategies: in any period of the seller-offer game, the seller makes
the same offer as in (even-numbered periods of) the alternating-offer game
(given the same beliefs); and the buyer uses the same acceptance strategy. This
clearly yields a stationary sequential equilibrium for the seller-offer game.

3 Observe that this construction is similar to that of Fudenberg, Levine, and Tirole (1985,
Section 5.4), Gul and Sonnenschein (1988, Section 4), and Ausubel and Deneckere (1989b, p. 34).
However, unlike these previous constructions, the current construction satisfies the support restric-
tion: in every period, the support of beliefs about the buyer’s type is a subset of the support in the
previous period, even off the equilibrium path.
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Analogous to before, let 3'(f,r,22) denote the set of stationary sequential
equilibria of the seller-offer bargaining game. We have thus shown the following
theorem.

THeOREM 3.4: Let f belong to F; , , and let r be any positive interest rate.
Then there exists Z>0 such that, whenever z satisfies 0<z <z, the sets of
equilibrium outcomes associated with 3(f,r, z) and 3'(f,r,2z) exactly coincide.

Consider . arbitrary f€ & ,,, and r>0. By Theorem 4.2 of Ausubel and
Deneckere (1989a), the existence of a stationary equilibrium of the seller-offer
game is guaranteed for any time interval between offers. For z € (0, z), the
above logic assures that 3(f,r, z) is also a nonvacuous set; the existence of
“silence equilibria” in the alternating-offer game is guaranteed.

The Silence Theorem holds not only for the (1, 1)-alternating-offer game but,
in fact, for all alternating-offer games in which k (> 1) seller offers are followed
by / (> 0) buyer counteroffers. In (k, [)-alternating-offer games, the definition of
stationarity is appropriately modified by requiring the buyer’s offer behavior to
depend only on the current state and the period modulo (k +1), and the
definition of monotonicity is modified similarly.>* Let 3%!(f,r, z) denote the
set of sequential equilibria of the (k,[)-alternating-offer game which satisfy
stationarity, monotonicity, pure strategies, and no free screening. Then Theo-
rem 3.2 continues to hold for 3*!(f,r, z). Meanwhile, recall that Lemma 3.1
required that, for 8 =1, the seller reject counteroffers less than = 1f(g).
Similarly, for the (k,l)-alternating-offer game, an analogue to Lemma 3.1
requires the seller to reject counteroffers less than = (k/(k +1))f(g).>* Hence,
the logic behind the proof of Theorem 3.3 carries through for general (k, 1):

THeOREM 3.5: Let f belong to #, ., and let r be any positive interest rate.
Let k> 1 and 1 > 0. Then there exists Z > 0 such that, whenever the time interval
between offers satisfies 0 < z < Z and for every equilibrium belonging to 3*'(f, r, z),
the informed party never makes any serious offers in the (k,l)-alternating-offer
bargaining game, both along the equilibrium path and after all histories in which
no prior buyer deviations have occurred.

If k=0, then we actually find ourselves in the game where the buyer makes
all the offers. In Ausubel and Deneckere (1989b, Theorem 4), we proved that
this game has a unique sequential equilibrium. All buyer types pool by making
an offer demanding all the surplus; this offer is immediately accepted. The

34To be more precise, A.3 is modified to read: “For every n and m which are periods in which

the buyer makes offers and such that n=m (mod (k +1))....” Similarly, A.4 is modified to read:
“For every n and m which are periods in which the seller makes offers and such that n=m
(mgd (k+0D)....”

To be more precise, in period n =j (mod (k + 1)), where k <j <k +1— 1, the seller will reject
any counteroffer less than [6%*'~/(1 —8%)/(1 —8"+[)]f(¢7). In period n=i (mod(k + 1)), where
0<i<k—1, the seller will not offer any price less than [1 —&8*~(1 — ') /(1 — 6% *)]f(3). See
Ausubel and Deneckere (1989b, Theorem 5).
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Silence Theorem no longer literally holds in this case; nevertheless, the in-
formed party never reveals any information via his own offers.>®

4. REMARKS
a. Relationship with Finite-Horizon Bargaining Games

In many complete-information environments, the stationary equilibria of
infinite-horizon games correspond to limits of the equilibria of finite-horizon
versions of the same game (provided that the latter equilibria are unique). For
example, consider any stage game with a unique Nash equilibrium. Then the
stationary equilibrium of the infinite-horizon supergame is the limit of the
unique Nash equilibria of the corresponding finite-horizon supergames. Simi-
larly, restrictions to Markov strategies in infinite-horizon dynamic games with
Markov structures are partly motivated by reference to backward-induction
equilibria of their finite-horizon counterparts. An analogous observation holds
for the infinite-horizon bargaining game with one-sided incomplete information
in which the uninformed party makes all the offers. Each finite-horizon equilib-
rium is necessarily stationary®’ and is generically unique. Moreover, the limit of
the equilibria is a (stationary) equilibrium of the limit game.

The close connection between stationary equilibria of an infinite-horizon
game and limits of equilibria of finite-horizon versions of the same game may be
regarded as one of the best defenses (although, perhaps, also as one of the most
biting criticisms) of stationarity. It is thus interesting to explore this relationship
for the alternating-offer bargaining game.

Consider the family of distribution functions which are invariant under
rescaling. Let F(v)=v? for any a >0, so that the corresponding valuation
function is f(g)=(1 —q)'/® Observe that the rescaled residual valuation
function of f(-) at g is given by f (x)=(1 —x)/%; conditional distributions
formed by truncation are merely rescaled versions of the initial distribution.

We obtain a rather striking result for the 2 N-period, alternating-offer bar-
gaining game in which the uninformed party makes the last offer. For every
a € (0, ), there exists & < 1 such that, for any discount factor between & and 1
and for any positive integer N, this 2 N-period bargaining game has a unique
equilibrium outcome satisfying A.1-A.2. This equilibrium is again characterized
by silence: in every period, when it is the informed party’s turn to make an offer,
he gives up his move by making a nonserious offer. Moreover, in the limit as N
approaches o, the equilibrium becomes stationary, thereby automatically satisfy-
ing A.3-A.4. A proof is provided in the Appendix.3®

36 A result analogous to Theorem 3.4 also clearly holds for all (k,l)-alternating-offer games.
For finite-horizon games, stationarity should be taken to mean that players’ actions depend
only on the current state and the number of periods remaining in the game.

38 We conjecture that this result does not depend on the restriction to distribution functions
which are invariant under rescaling, but rather that (generic) uniqueness and silence hold at least
also for the set of all differentiable functions f(-) whose derivatives satisfy 0 <M < f' <L <. The
reason for our belief is that the following, hitherto undiscovered, finite-horizon version of the
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However, the relationship between stationary equilibria and limits of finite-
horizon equilibria is not so intimate as the above discussion may suggest.
Consider instead the 2 N-period, alternating-offer bargaining game in which the
informed party makes the last offer. Then for N > 2 it is straightforward to
demonstrate that: (1) the informed party is necessarily not silent in the third-
to-last period of any sequential equilibrium; and (2) there is a multiplicity of
equilibria satisfying A.1-A.2. This multiplicity, in turn, implies that the finite-
horizon equilibria no longer need to be stationary and, consequently, the limits
are not necessarily stationary.>

b. Relationship with the Signaling Literature

A bargaining game is in some ways reminiscent of a standard signaling game.
When a privately-informed buyer makes low offers, he indicates his willingness
to delay agreement and, hence, a low valuation. In games of this genre, the
common wisdom holds that, under any forward-induction type of refinement,*
separation will take place if it is at all possible.*’ Our equilibria, on the other
hand, have the informed party always pool by making nonserious offers. One
might therefore wonder whether our assumptions leave no room for this type of
refinement, or whether we obtain the Silence Theorem because (for small
discount rates) the cost of delay through nonserious price offers is sufficiently
small that silence (i.e., pooling) follows from incentive compatibility.

Within the confines of Assumptions A.1-A.4, incentive compatibility is the
driving force behind our pooling result. Observe that, in the bargaining game,
the low buyer type is the strong type. High (i.e., weak) buyer types would like to
mimic low types unless the cost of imitation (i.e., the cost of delay) is made
sufficiently great. However, under A.1-A.4, Theorem 3.2 shows that the Coase

uniform Coase Conjecture appears to hold: Consider the sequence of N-period, seller-offer
bargaining games of incomplete information in which the real time that elapses from period 1 to
period N is held fixed at T (ie., z=T/(N—1)). Then, for every T and in every sequential
equilibrium, the seller’s initial price converges to e "Tp*(f) as N — «, where p*(f) denotes the
monopoly price against f(-). [Note that: (a) this finite-horizon version of the Coase Conjecture has
the same content as the standard Coase Conjecture when T — o; and (b) the finite-horizon version
can also be verified computationally for distribution functions which are invariant under rescaling.]
Also consider the sequence of 2 N-period, alternating-offer bargaining games of complete informa-
tion (where the seller’s valuation equals zero and the buyer’s valuation equals one) in which the real
time that elapses from period 1 to period 2N is held fixed at T (i.e., z=T/(2N — 1)) and in which
the seller makes the last offer. As N — =, the initial price converges to %(1 +¢~'T). It should now
be observed that the buyer of valuation one prefers the former (silence) limiting price to the latter
(speaking) limiting price: e "Tp*(f) < 3(1 +e~"T), for all T > 0. Since the specified set of functions
f(-) is closed under truncation and rescaling, the highest remaining buyer type prefers the limiting
silence price over the limiting speaking price in each subsequent period as well.

3 The reader may liken this situation to a supergame in which the stage game has multiple
equilibria. Similarly, equilibria of the finitely-repeated version no longer need to be stationary in the
sense that history matters only insofar as the number of periods remaining; consequently, the limits
are not necessarily stationary in the standard sense.

40 gohlberg and Mertens (1986), Kohlberg (1989).

41 Banks and Sobel (1987), Cho and Kreps (1987), and Cho and Sobel (1990).
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Conjecture holds and, hence, that delay costs are insignificant when the time
interval between periods is relatively short. This explains why buyer offers are
always completely pooling; since the lowest buyer type always makes nonserious
offers (see footnote 9), pooling here is tantamount to silence.

More generally, simple incentive compatibility arguments show that separa-
tion requires real delay. Indeed, when the discount factor & is relatively close to
one, the (signaling) cost of delaying agreement by one period is too low to
permit instantaneous full separation. For consider buyer types q” <q' < 1. If ¢”
fully separates before trading, then g” obtains equilibrium utility of at most
(1/(1 +8))f(q") (Lemma 3.1, above). However, if ¢’ also separates in the initial
period, then g’ does no worse than trading at (§/(1 + 8))f(q’) two periods
hence (Grossman and Perry (1986, Lemma 3.1(ii))). For arbitrary fixed q” < 1, it
is therefore always possible to select type g’ (¢” < g’ < 1) with a lower valuation
such that g” would wish to mimic ¢’. Thus, incentive compatibility requires that
full separation cannot occur in a single period. In fact, a similar argument shows
that for any fixed, real time ¢ (such that e~"* > 1), it is impossible to have full
separation within time ¢ even as the time interval between periods is made to
approach zero.*> The reason for this is quite intuitive: delay is the signaling
device which enables separation, but once separation occurs, trade ensues
almost immediately. This means that separation must occur slowly, over an
extended period of time.

Since separation requires real delay, one must move away from the Coase
Conjecture (and hence the joint hypotheses of A.1-A.4) to obtain active
signaling in sequential equilibrium. The Coase Conjecture is intimately linked to
the notion of stationarity and, hence, this would seem to be the most obvious
hypothesis to relax. Indeed, we have shown elsewhere (Ausubel and Deneckere
(1989b)) that nonstationary equilibria may support delay.

The incongrnity of “separation” and “no delay” raises the issue of whether
the Coase Conjecture itself is compatible with forward induction. A direct
investigation of this issue in our model is problematic, as the extant definitions
pertain only to finite-horizon models. But it is feasible to investigate the
implications of forward induction for the finite-horizon versions of the alternat-
ing-offer bargaining games considered in Section 4a. For these finite-horizon
games, one can formally demonstrate that Assumptions A.1-A.2 are inconsis-
tent with forward induction.*?

21¢ buyer types monotonically separate over time, this argument can be repeated to show that
full separation cannot occur in any finite, real time.

In any finite-horizon version in which the seller makes the last offer, observe that for every
A.1-A.2 equilibrium in the case of “no gap” there are necessarily buyer types ¢” < ¢’ < 1 such that
the interval (q”,q’) purchases in the final period while the interval (¢’,1] does not trade at all.
Clearly, the seller’s offer, p, in the final period must equal f(q'). Consider now a deviating offer
D' € (8p, p) by the buyer in the next-to-last period. The seller must reject this offer, for otherwise all
buyer types g such that g > ¢’ but f(q) > p’ would strictly benefit relative to the equilibrium. Notice
however that in order to justify rejecting p’, the seller’s counteroffer after this deviation must be at
least p'/8, which in turn is strictly greater than p. Consequently every buyer type g € [0, ¢’) would
be strictly worse off from such a deviation. By forward induction, we can eliminate all such
type-message pairs. In the reduced game, however, any buyer type g such that g > ¢’ but fla)>p
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However, this argument is inconclusive on several grounds; ultimately, the
compatibility of the Coase Conjecture and forward induction must be consid-
ered an open question. First, it is likely that the hypothesis required for the
Coase Conjecture may be weakened; in particular, the full strength of A.1-A.2
may not be needed.* Second, since our argument relies crucially on the
presence of a final period, it is quite possible that forward-induction equilibria
of long, finite-horizon bargaining games would exhibit silence in all but the last
few periods. Finally, in the finite-horizon games, forward-induction type argu-
ments eliminate not only silence equilibria, but also some equilibria with nice
signaling structures. A resolution of this interesting question is hampered by the
fact that the bargaining game lacks the usual monotonicity*’ and single-crossing
properties*® of well-understood signaling games.

would then deviate by offering p’, which would have to be accepted in the reduced game, thereby
breaking the equilibrium.

In any finite-horizon version in which the buyer makes the last offer, every A.1-A.2 equilibrium
in the case of “no gap” necessarily has buyer valuations g” <q’ <1 such that the interval (¢”, q")
purchases in the next-to-last period while the interval (¢’, 1] trades at zero in the last period. Clearly
the seller’s offer, p, in the next-to-last period must make ¢’ indifferent between purchasing in the
next-to-last or last periods, i.e., f(q') —p = 8f(q’), implying p = (1 —8)f(q’). A similar argument as
above applies to a deviating offer p’ € (62p, 5p) by the informed party in the second-to-last period,
again showing that the equilibrium fails to survive forward induction.

For example, it is probably possible to obtain the Coase Conjecture after replacing A.1 with a
weaker assumption which still requires information revelation to occur in a convex fashion, but
which permits the seller to use mixed acceptance strategies in response to serious buyer offers.
Observe that a mixed acceptance strategy allows more separation to occur within each period,
because it provides the seller (i.e., the uninformed party) with a continuum of responses to the
buyer’s (i.e., the informed agent’s) offer. Pure strategies restrict the seller to merely a binary
response (i.e., “yes” or “no”).

45 A signaling game is defined to be monotonic if, for every message, all sender types have the
same preferences over the receiver’s mixed best responses (Cho and Sobel (1990, Section 3)). The
nonmonotonicity of many bargaining games derives from the fact that the sender (the buyer) has the
option of rejecting the receiver’s (the seller’s) counteroffer. For example, consider a two-period
bargaining model in which the buyer makes an initial offer, which the seller can either accept or
follow with a final (take-it-or-leave-it) counteroffer. This game reduces to a formal signaling game,
provided that the buyer’s weakly dominated actions in his accept/reject decision are eliminated,
and the seller’s accept/reject decision and counteroffer are collapsed into a single move. Now
suppose that the buyer sends a first-period “message” of offering to pay p, where p <é8. Two
available best responses for the seller are as follows. First, the seller may accept the buyer’s offer of
p with probability one; refer to this as response 4. Second, the seller may reject with probability
one and make a counteroffer of p’, where p’ > 8p, with probability one; refer to this as response B.
It should now be observed that high-valuation buyers (types g such that f(q) > p) strictly prefer
response A to response B, whereas low-valuation buyers (types g such that f(q) < p) strictly prefer
response B to response A. This observation follows from the fact that high-valuation buyers obtain
positive utility from response 4 but entounter higher prices and later trade under response B.
However, low-valuation buyers obtain negative utility from response 4; under response B, they can
reject the seller’s counteroffer and thus assure themselves at least zero utility. This establishes
nonmonotonicity.

A signaling game is said to satisfy the “single-crossing” property if, whenever two message-
response pairs yield the same utility to some type of sender and one message is greater than the
other, then all higher types prefer to send the higher message (Cho and Sobel (1990, p. 392)).
This condition is crucial in standard arguments for separation, as it guarantees that higher
types are more willing to send higher signals than lower types. The failure of the single-crossing
property in many bargaining games can again be traced to the buyer’s option of rejecting the seller’s
counteroffer. Consider, as in the previous footnote, the two-period, alternating-offer, bargaining
model in which the seller makes the final offer, and consider the following two message-response
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5. CONCLUSION

In this article, we have proven versions of the Coase Conjecture and the
Silence Theorem for alternating-offer bargaining games. Whereas the Coase
Conjecture concerns the limit as the time interval between offers approaches
zero, there is good reason to think that the Silence Theorem will hold quite far
away from the limit and, in that sense, is a more robust result. The intuition for
the greater robustness is that the Coase Conjecture establishes a bound, &, on
serious offers and speaks about £ converging to zero as the time interval
between successive offers approaches zero. However, the Silence Theorem does
not require ¢ to be close to zero, but (loosely speaking) only that ¢ be somewhat
less than %, so that the buyer will prefer waiting for an offer to revealing his
type. This suggests that the time interval between offers can be allowed to
become fairly long before the buyer finds it in his interest to speak. In this
Conclusion, we will explore how long the time interval between offers can
become before the buyer relinquishes his right to remain silent.

Let the distribution function be given by F(v) = v, for any a > 0, so that the
corresponding valuation function is f(g) = (1 — g)'/*. Following the discussion
of Section 4a, observe that conditional distributions formed by truncation are
merely rescaled versions of the initial distribution. We will refer to these
distributions as invariant under rescaling. For this family, it is natural to examine
sequential equilibria which not only satisfy A.1-A.4 but also are themselves
invariant under rescaling.*’ Additionally, it is sensible to restrict attention to
equilibria in which the seller’s beliefs are not permitted to wander outside the
support [0, 1] of the prior distribution F(-).

For the purposes of this Conclusion, let us redefine “state” to now denote the
highest remaining buyer valuation. Invariance under rescaling requires that the
continuation strategies, starting from any equilibrium state, look the same.
Therefore, all offers, counteroffers, acceptance functions, and value functions
must be linear in the state. Moreover, either there exists a serious buyer
counteroffer in every (odd-numbered) period or else the buyer never makes
serious counteroffers in any period.

pairs: (A) the buyer offers p, which the seller accepts with probability a and follows with the
counteroffer p” > 6~ !p in the event she rejects; and (B) the buyer offers p’, which the seller rejects
for sure and follows with the counteroffer 8 ~p’. Note that the utility from option A to a buyer with
valuation b is given by U(b, A) = a(b — p), if p <b <p”; and U(b, A) =a(b — p) + 6(1 —aXb —p"),
if b>p". The graph of this function in b — U space is piecewise linear, with a slope equal to the
(discounted) probability of trade, which equals a for p <b <p” and a + 8(1 —a) for b>p”. The
utility of option B to a buyer with valuation b is given by: U(b, B) = 8b —p’, for all b > 8~ p’. Since
the graph of the latter function is linear with slope equal to 8, the graphs of U(-, 4) and U(-, B)
will intersect twice provided that @ <& and the prices are chosen appropriately. For example, if
a=.5 86=6, p=.4, pP=4/15, and p”" =8/9, buyers with valuations b such that 2/3 <b<1
strictly prefer option B, whereas b such that .4 <b <2/3 or b > 1 strictly prefer option A.

Following the discussion of Section 4a, the reader should observe that the sequential equilibria
which are invariant under rescaling have an additional attractive property. They are the only
sequential equilibria of the infinite-horizon game which are limits of A.1-A.2 equilibria of the
finite-horizon game where the uninformed party moves last.
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Let us assume for the moment that there does exist a serious buyer coun-
teroffer in every odd-numbered period. (This will be true when & is sufficiently
far from one.) The offer /counteroffer structure along the equilibrium path can
be described as follows, using constants 0 < ¢,v,7,0,u <1. When it is the
seller’s turn to offer and the support of remaining buyer valuations equals the
interval [0, x), the seller proposes a price of ¢x. Buyers in the subinterval
[yx, x) accept, whereas buyers in [0, yx) reject. Of the rejecting buyer types, an
upper subinterval [6yx, yx) proposes a serious counteroffer of n6yx in the next
period, whereas the lower subinterval [0, 6yx) makes a nonserious counteroffer
and awaits the seller’s next offer. Finally, let V([a, b)) denote the seller’s
expected present value of continuing the game when it is her turn to move and
the set of remaining buyer valuations is the interval [a, b). Then V([0, x)) is
given by ux, where u = 1([0,1)).

The following conditions on the parameters {¢, n, 6, u} can easily be derived.
First, a buyer of valuation #yx should be indifferent between proposing the
counteroffer nfyx and awaiting the offer ¢6vyx one period later, i.e.,

(51) 1-n=56(1-¢).

Second, the counteroffer nfyx must make the seller indifferent between
acceptance and continuing the game with beliefs [6yx, yx):

(52) no=8V([0,1)).

Third, the seller must be optimizing when choosing p = ¢x:

(53)  w=v(0,1))

max p@([0(p), 1)) + 5n60(2)2([00( ). ())

+820([0,60(p)))V([0,6v(p)))},

where v(p) denotes the solution to v(p)—p =68lv(p) — n6v(p)] and where
®([a, b)) denotes the probability that the buyer’s valuation is contained in [a, b)
G.e., ?(a, b)) =b* —a* whenever 0 <a <b<1).

Let 8(a) denote the critical value at which the buyer stops speaking in the
class of equilibria we consider when the parameter is equal to «. Then for any
8 < 8(a), it must be the case that the subinterval [#yx, yx) is nondegenerate,
while for 8 > §(a), the subinterval [6yx,yx) is degenerate. Consequently, when
& = 8(a), the above system of equations must yield a solution with 6 = 1. Note,
then, that (5.2) reduces to 1 =48V([1,1) =(5/(1 +§)), Rubinstein’s (1982)
complete information solution.*®

“In any sequential equilibrium, after any history in which the seller’s beliefs are concentrated at
the upper bound of the support and in which it is the seller’s turn to move, she offers a price of
1/(1 + &), which is accepted immediately. This follows from Lemma 3.1, above, and equation (16) of
Ausubel and Deneckere (1989b).
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TABLE 1

CaLcuLATION OF §(a), THE MAXIMAL Discount FACTOR, AND z(a), THE MINIMAL TIME INTERVAL

BETWEEN SUCCESSIVE PERIODS, SUCH THAT THE INFORMED PARTY EVER SPEAKS IN THE RESCALE-

INVARIANT SEQUENTIAL EQUILIBRIUM, THE RATIO OF PROFITS AT §(a) To COMMITMENT PROFITS,

AND THE ExPECTED D1sCOUNTED PROBABILITY OF TRADE AT 8(a), WHEN F(v) = v® AND THE REAL
INTEREST RATE 7 = 10% PER YEAR.

Ratio of Profits Discounted

at §(a) to Probability
Commitment of Trade
a 8(a) z(a) Profits at §(a)
.10 .78805 28.58 months 75301 15169
25 .79891 26.94 months 74265 .31022
.50 .81458 24.61 months 12779 47569
1 .83929 21.02 months .70440 .64780
2 87271 16.34 months 67225 .78927
4 .90976 11.35 months .63469 .88425
10 95164 5.95 months .58665 95126

Also observe that ¢ is the maximizer of (5.3). Maximizing (5.3) and substitut-
ing 6 =1 and n =(5/(1 + &) yields

(54)  ¢=(1+8)"{(1+a)[1-as?(1+8)d/(1+a)]} "

Finally, from (5.1), we see that ¢ = 1 —[8(1 + 8)] 1. Substituting this into (5.4)
and rearranging terms yields

w(8) =ad[8(1+6)—1]""— (1 +a)[6(1+8) —1]* +8°=0.

Any solution to w(8) =0 must satisfy 8(1 +8)— 1> 0, that is, & > 3[V5 — 1.
Numerical simulations reveal that «(-) has a unique zero in (%[\/g — 1], 1); this
zero is tabulated for various a in Table 1.%°

The numbers in Table I should be interpreted as follows. Suppose that the
distribution function F(-) is linear and that the real interest rate is 10% per
year. Then & = .83929 is equivalent to saying that, in the sequential equilibrium
which is invariant under rescaling, the informed party exercises his right to
remain silent whenever the time interval between successive periods is less than
1% years. Since the extensive form has the parties alternate in making offers,
this means that the buyer is silent unless each party has an opportunity to speak
less than once every 3% years! As F(-) becomes arbitrarily concave, the
requisite time interval between offers expands to a limiting value of 29.80
months; as F(-) becomes arbitrarily convex, the requisite time shrinks at a very
slow rate toward zero. Even with the rather skewed distribution function

49 Wilson (1987) tabulates the parameters of the Grossman-Perry (1986) equilibrium at various
values of 8, for the case of the uniform distribution and assuming that the serious buyer
counteroffer takes the form n8yx =[8/(1 + §)]6yx. While there seems to be no justification for this
assumption (other than simulations), Wilson found the same critical discount factor of .83929. This
should not come as a surprise to the reader. First, the Grossman-Perry equilibrium satisfies
rescaling invariance. Second, at the critical 8, the subinterval [#yx, yx) collapses to a single point
and, then, Grossman-Perry’s support restriction justifies the choice n =8 /(1 + 8).



BARGAINING AND THE RIGHT TO REMAIN SILENT 619

F(v) =0 the buyer only speaks when the time interval between periods is
greater than half a year.

There is a fairly simple intuition as to why, in Table I, the requisite time
interval between periods is made shorter as the distribution function becomes
more convex. The force which discourages the informed party from speaking is
that making a serious counteroffer would reveal that he has one of the highest
remaining possible valuations. However, if the distribution function is very
convex, then the uninformed party already places a high probability on the
event that the informed party has one of the highest remaining possible
valuations. (For example, if F(v) = v'°, the buyer’s ex ante expected valuation is
already 0.909.) In other words, even when the distribution function is made
extraordinarily convex, the informed party retains the right to remain silent.
Unfortunately, against an opponent who holds a sufficiently unfavorable prior
distribution, silence becomes almost equally as incriminating as an admission of
guilt.

The comparison between the Coase Conjecture and the Silence Theorem is
all the more striking when we examine the seller’s equilibrium profits. A useful
index of the extent to which the Coase Conjecture bites at a given discount
factor is the ratio of equilibrium profits to “commitment profits” (i.e., the profits
which the seller could earn if she were able to precommit to a price path at the
start of the game). Commitment profits are easily computed for any distribution
of buyer valuations, as they equal the static monopoly profits against that
distribution (Stokey (1979)). As & approaches zero, the ratio of equilibrium
profits to commitment profits converges to one (since the second period is
pushed indefinitely far into the future); as & approaches one, the ratio con-
verges to zero.

In the fourth column of Table I, we report the ratio of equilibrium profits to
commitment profits, computed at the critical discount factor which makes the
Silence Theorem hold. Observe that the seller’s profits there are far removed
from those conjectured by Coase. At “ordinary” parameter values (e.g., a = 1),
silence prevails even while the seller earns fully 70% of the commitment profits.
Even if a equals 1000, the ratio of profits at §(a) to commitment profits is
.50299; in the limit as «@ approaches infinity, the profit ratio converges to %
Thus, regardless of «, the seller exercises significant market power at discount
factors which make silence mandatory for the buyer.

Finally, the Coase Conjecture can be rephrased as saying that one-sided
incomplete information does not cause delay in bargaining (Gul and
Sonnenschein (1988)). Hence, another good index of the extent to which the
Coase Conjecture bites at a given discount factor is the expected discounted
probability of trade, i.e., fe " dq, where t(q) denotes the time at which type
g trades in a particular equilibrium. In the fifth column of Table I, we report
this index, again computed at the critical discount factor which makes the
Silence Theorem hold. For example, at « = 1, the expected discounted probabil-
ity of trade is only 64.78%; this compares with 50% under unconstrained
monopoly pricing and 100% under the full Coase Conjecture. Even at a = 10,
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the expected discounted probability of trade (95.13%) is closer to that of
unconstrained monopoly pricing (90.91%) than to that of the Coase Conjecture.
Thus, silence prevails even while there remains substantial real delay.
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APPENDIX
Proor oF THEOREM 3.2

For any sequential equilibrium (&, g), define the effective price function &: [0,1] -[0,1] to
associate with every buyer q e [0,1] the price £(q) he pays to the seller in the equilibrium. (Under
the assumption of “no gap,” the buyer g =1 never purchases for convenience, always deﬁne
2(1)=0.) To be more precise, if the mterval (q* q"* ] of buyers purchases at price p*
equilibrium (&, g), we will say #(q) =p* for all g (q ,q**1]. Without loss of generality, we w111
assume that Z(-) is left continuous and nonincreasing (see Ausubel and Deneckere (1989a,
p. 516)).

Suppose that Theorem 3.2 does not hold. Then there exists & > 0, a sequence {f,};_; C F; 4 o
a sequence of positive time intervals {z,};_; | 0, and a sequence of stationary equilibria {7,,, 2.},
(with effective price functions {£};_,) such that £,0) > ¢ for all n > 1. Without loss of generality,
we may assume that {2} | converges pointwise for all rationals in [0, 1]. (This can be assured by
taking successive subsequences and applying a diagonal argument.) For every rational r € [0, 1], let
&(r) =lim,, _, , Z(r). Define £(0) = &(0) and, for every x €(0,1], define P(x)=Ilim, _,,, P(r;),
where each r is rational and r, 1 x. Observe that £(-) is well defined, left continuous, and
nonincreasing. In the second part of the proof, we will demonstrate that the Z£(-) so constructed is
necessarily continuous. Let us assume this fact for the moment and show that the supposition of
Z,0) > ¢ leads to a contradiction.

Assuming the continuity of (-), select ¢',¢” and rational x,, x, satisfying 0 <x; <x, <1 and
P0)>e>e > P(x) > P(x,)>e">0. By construction, there exists 7 such that Z(0) > e,
Z(x) <, and F(x,)>¢" for all n > #.

Define ¢ > 0 such that buyer g = 0 is indifferent between a price ¢ at time zero and a price ¢’ at
time ¢:

A1) f0)-e=e"[£(0)-¢],

where f,(0)= 1.

Observe that, in every equilibrium (&, ,) (n > 71), no offer less than &' can be accepted until
after time ¢. (Otherwise, buyer g =0, who purchases at time zero or later, would regret his
purchase.) Since price has not dropped below &’ at time ¢, all buyers g >x, remain in the market at
time ¢.

Following Gul and Sonnenschein (1988), we will now specify an “accelerated strategy” for the
seller which compresses sales from time interval [0, ¢] into the shorter interval [0, ¢ /2). For every n,
define N=|t/4z,]. Restrict attention to n>7 >, with 7i defined so that N> 1. Let I'=
[1- (j/N)(l -€),1-(j—-1/N)1-¢)), for j=1,...,N. For each such j, select the smallest
serious price offered in &, before time ¢ Wthh 1s contamed in I’ (if one exists). Denote the
resulting sequence of descendmg prices pL,...,p™ (1<m<N) and refer to these as the good
prices. For each i (1 <i<m), let (¢}, q5) denote the interval of buyers who purchased at p' in g,.

In the play of the accelerated strategy, let £k denote the current perlod and g* denote the current
state, i.e., the set of buyers remaining at the start of period k is (g%, 1] Our objectrve is to induce
each of the states g5 (1 <i <m) in at most the first 2/ periods. When qk> q7', the seller will have
completed the acceleration phase and continues by inducing exactly the same states as in the
original strategy from &,.
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We now describe the accelerated strategy for g% < gf". Define i(k) = min{i <m: g} > q*}. The
following prices, p* and O, can be defined if g* is an equilibrium state arising from (&, z)>0 If
p*® was named by the seller in the original equilibrium, let 5* be a seller offer which induces a
state of gi*¥) when the current state is g% If p“*) was named by the buyer in the original
equilibrium, let 5* be a seller offer which induces a state of gi*> when the current state is g*. (The
existence of p* is guaranteed by monotonicity; furthermore, p* > p*).) Also, let O* be the serious
buyer counteroffer when the state is g, if a serious counteroffer exists; otherwise, define 0% = 1.
The seller’s strategy when g* < g7 is defined to be:

(A2) If k is even:
e Offer p*.
If k is odd:
e Accept any counteroffer of at least O,
® Reject any lower counteroffer.

Observe, as in Gul and Sonnenschein (1988), that the following facts hold under the accelerated
strategy:

(i) All trades (with any buyer type) which would have occurred in time interval [0,¢) under
(&,, 8,) now occur no later and at prices no more than (1 —¢')/N lower.

(i) All trades (with any buyer type) which would have occurred in time interval [¢,%) under
(3, 8,) now occur at least ¢/2 sooner and at the same or higher prices.

Statement (i) follows from the fact that the states induced under the accelerated strategy are a
subsequence of the states under (&, Z,), and any trade which originally occurred at a price in
interval I’ still occurs at a price in the same (or higher) interval. Statement (ii) follows from the fact
that the state is brought beyond g5 in at most 2m periods and, hence, before a time of
2mz, < 2Nz, <t/2. Monotonicity guarantees that all sales beyond g% occur at the same or higher
prices (but are accelerated by time ¢/2).

The acceleration strategy thus entails a loss in revenues from buyers g € [0, ¢5*] but provides a
gain due to discounting from buyers g € (g}, 1]. Observe that g5 <x, for all n>7. By (i), the
monetary loss is less than (1 —¢’)/N and the probability of loss is less than x,. Hence, expected
losses are bounded above by x(1 —¢&')/N < [4x (1 —£&')/(t — 42,)]z,,.

Let V denote the seller’s expected payoff in (&,, g,,) starting from when the state is g5 V' can be
bounded below by e~ 2"n¢"[(x, — x;)/(1 —x,)), as follows. Let (¢’, ¢"] be the interval of buyers who
purchase with x, at the price Z(x,). When the state is ¢5* and it is the seller’s move, the seller has
the following option: if (x,) was a seller (buyer) offer in (&, ,), the seller charges a price
(> P(x,)) which induces a state of ¢” (¢'). In the latter event, buyers in (¢, ¢"] reject the seller’s
offer and counteroffer #(x,), which is accepted. This assures the seller an expected payoff of

e nP(x,)[ (¢~ a3") /(1 - a5)] > e e [(x2 = x1)/ (L = x1)].

Meanwhile, when the state is g but it is the buyer’s move, the seller can assure herself the same
payoff, only discounted by one period, giving the desired lower bound.

The ex ante probability that the state will reach g3* is greater than (1 —x,). The continuation
profits upon reaching g5* are accelerated from a time not earlier than ¢ to a time not later than ¢ /2,
and equal at least V. Hence, the expected gains are bounded below by

(e—rt/Z_e—n)(l —xl)V> (e"‘/z—e"‘)e‘z’zﬂe”(xz _xl)-

Since lim,, _,, z, =0, the expected gains from acceleration exceed the expected losses for suffi-
ciently large n, demonstrating that acceleration is a profitable deviation from &;,. Thus, our initial
assumption that Z(-) was continuous (and £(0) > 0) leads to a contradiction.

It remains to be shown that Z(-) is continuous. Suppose otherwise. Since Z(q) <f,(@) <
L(1—¢q)® for all n and g, it follows that (g) <L(1 —g)* and hence that &(:) is continu-
ous at 1. Therefore, there exists x (0<x<1) where £(-) is discontinuous. Define d=
[P(x)—lim,  , P(@))/3, é=P(x)—d, and &' = P(x)—2d. If x#0, select 7 (0 <m <x) such
that x —n is rational and %' (0 <7’ <min(n,1—x)) such that x + 7’ is rational. Also, for any

50 Observe that it is sufficient to specify the accelerated strategy only for states which arise if the
buyer does not deviate from his equilibrium strategy.
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v<€©,7), choose ratlonal qy e(x- 7/2 x) and rational q e(x,x + v/2). Meanwhile, if x =0,
merely select 7’ (0 <n' < 1) such that o’ is rational. Always choose q =0 and, for any It S (O ),
choose rational q7 (0, Y /2). By construction, for each v, there exists fi,, such that Z,(qy) > £ and
9(q,/)<e for all n > 7. Define ¢t by

(A3)  f0)-é=e"[f(0)-¢],

where f,(0) = 1. Observe that, in every equilibrium (7, 8,) (n>#,) a tlme interval exceeding ¢
must elapse from the moment that qi‘ purchases until the moment that q,/ purchases. ((A.3) implies
that £,(¢") - Z(a") <e (£, (a") < Z(a])])

We will now specify an accelerated strategy for the seller which compresses all sales from tlme
interval (¢,, ,, , , + t] into the shorter interval (¢, , ¢, , +¢/2), where ¢, , denotes the time that qy

trades in (5, g,,) Similar to the first part of the proof deﬁne N=lt/4z, J — 1 and restrict attention
ton>n, > A, with 7, defined so that N > 1. Define intervals I’ (j = ., N) exactly as before.

For each j, select the smallest serious price offered in &, during time mterval (t,, o t] which is
contained in I’ (if one exists). Denote the resulting sequence of descending prices pl,..., p™
(1<m <N) and define intervals (i, gi] as before. We will now induce each of the states a
(1 <i<m)in at most the first 2i + 1 perlods after ¢,

The seller’s accelerated strategy is as follows: durmg time interval [0, Lyy ], use the original
strategy from ,,. Beginning at time ¢, , + z,,, and until the state reaches q7’, follow the strategy of
(A.2). After the state has reached g%, the seller continues by inducing the same states as in the
original equilibrium (3, g,

Fact (i) from above now holds for time interval (¢, ,t, ., +t]. Fact (ii) now holds for time
interval (¢, ., +¢,%). Additionally, all trades which would have occurred in time interval [,¢,,]
under &, occur 1dent1cally under the accelerated strategy.

The accelerated strategy may entail a loss in revenues from buyers q€e (q.,, 7] but provides a
gain due to discounting from buyers g € (q{‘, 1). Observe that g5 < q and, hence, the probability
of loss is less than (g3’ —q; )<(q —q7)<y Hence, expected losses are bounded above by
y(1-¢)/N <4y - e’)/(t -8z )]z,,, discounted from time ¢,

Let V denote the seller’s expected payoff in (&, g,) when the state is g5*. V' can be bounded
below by

e~ n(1—e " )(M/2)[(1-x) /21 [(1 —x = v)/(1-x = v/2)],

as follows. When the state is g5, the seller has the option of waiting at most one period and offering
a price of (1 —e ") f,((1 +x)/2) > (1 — e "*»)M[(1 — x)/2])°. Buyers q € (¢3,(1 +x)/2] find this
to be an offer they cannot refuse, since the payoff from acceptance dominates obtaining the good for
free in the next period. The probability that g € (¢%*,(1 +x)/2], conditional on a current state of
g7, equals [(1 +x)/2—q%'1/[1 —q51>1/2X1 —x —v)/(1 —x —vy/2), yielding the desired lower
bound.

Since g2 is reached with a probability of greater than (1 — x — y/2) and subsequent revenues are
at least V and are accelerated by at least t/2, the expected gains are bounded below by
(e7r/2—e e (1 — e )X M/2I(1 —x)/2]*(1 —x — y), discounted from time ¢, . For suffi-
ciently large n, note that 1 —e~"%n > (r/2)z,,.

We conclude that there exist kq, k, (0 <k, k, <) such that losses are less than k,yz, and
gains are greater than k,z,,. Since y can be made arbitrarily small, the expected gains can be made
to exceed the expected losses, demonstrating that () cannot be discontinuous. Q.E.D.

.
Proor oF THE FINITE-HoR1ZON RESULT

The proof of silence and generic uniqueness of equilibria satisfying A.1 and A2 in the
finite-horizon game (in which the uninformed party makes the last move) depends on a comparison
of two extensive forms: (1) a 2 N-period, alternating-offer game where the time interval between
periods equals z (and in which the uninformed party makes the last move); and (2) an N-period
game in which only the uninformed party makes offers and where the time interval between periods
equals 2z. It will be important for the subsequent logic to observe that if, in an equilibrium of the
first extensive form, the informed party “speaks” for the last time in period 2n — 1, then the
equilibrium continuation beginning at period 2n corresponds to an equilibrium of the second
extensive form beginning at period n (with the same seller beliefs).
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Let a% N, - denote the equilibrium offer in period k of the 2 N-period, alternating-offer bargaining
game of complete information in which the buyer’s valuation equals one and the seller’s valuation
equals zero. It is easy to calculate that a§y ,=(8/(1 +8)X1+6*N7), if k is odd, and afy , =
(Q/(1+ 8)X1 + 62N -k+1) if k is even, where & =e "2 (As N approaches w, observe that these
values converge to the Rubinstein (1982) offers.)

Let s}f,,ZZ(x) denote the (highest) equilibrium offer in period k£ of the N-period, seller-offer
bargaining game of incomplete information in which the seller’s current beliefs are that the buyer’s
type q is contained in the subinterval (x,1). The offer s}f,’zz(x) may be determined by backward
recursion. We have the following proposition:

ProrosITION A.1: Suppose that for every n (1 <n <N):

(A4 aBI>1-5+5 swp {sf.(x)/f(0)}-

x€l[0,1)
Then an A.1-A.2 equilibrium outcome of the 2N-period version of the alternating-offer bargaining
game with incomplete information (in which the seller makes the last offer) exists, is generically unique,
and is characterized by silence.

Proor: First, we demonstrate that if (A.4) is satisfied, then a “silence” equilibrium exists.
Suppose that, at every time it is the buyer’s turn to make an offer, all types pool and name a price of
zero. Suppose also that the seller uses the following updating rule: if, at any stage, the seller’s beliefs
consist of the subinterval (x, 1] and the buyer offers more than zero, the seller infers that g =x (or
slightly above) and never updates her beliefs thereafter. A buyer of type g, when contemplating
whether to make an offer p in period 2n — 1, will refrain from doing so if

(AS)  f(a)-f(x)a3k ;<[ f(a) = sk,2:(x)],

since any counteroffer p < f(x)a%’,'\,,"z1 will be rejected by the seller. For every g €[, 1), inequality

(A.5) is implied by inequality (A.4).

Second, we argue that when (A.4) holds, any A.1-A.2 equilibrium must have the buyer making
exclusively nonserious offers in all periods of the game. Suppose to the contrary that there exists an
equilibrium of the 2 N-period game in which a serious offer is made, and let period 2n — 1 be the
latest period in which a serious offer is made (after some history with no prior buyer deviation).
Then there exists a nonempty subinterval (q,, _1,4,,] of types who make a serious offer of p in
period 2n — 1, while subinterval (g,,, 1] make nonserious offers in period 2z — 1 (and all subse-
quent periods). So we must have

(A6) f(qzn)_P=5[f(112n)‘51'\11,2z(‘12n)],

since the continuation is an equilibrium of the seller-offer game. Moreover, by the finite-horizon
analogue to Lemma 3.1, p > f(q,,)a3% ). Combining this inequality with equation (A.6) leads to a
contradiction of (A.4).

We conclude that if (A.4) is satisfied, then every A.1-A.2 equilibrium involves silence, and such
an equilibrium exists. The equilibrium path of offers (by the seller) and acceptances is also the
equilibrium path from the corresponding game where the seller makes all the offers and thus is
generically unique (see Fudenberg, Levine, and Tirole (1985)). Q.E.D.

We will now recursively calculate the (unique) sequential equilibrium of the finite-horizon,
seller-offer bargaining game when f(-) belongs to the parametric family of valuation functions
(@) =(1-g)/%, where a > 0, in order that we may verify that inequality (A.4) holds for sufficiently
short time intervals between periods. Let Q, denote the state at the beginning of period n.
Following essentially the same notation as Ausubel and Deneckere (1989a), let P,(Q,, ,,) denote the
reservation price of buyer type Q,, , ; in'period n, let R,(Q,) denote the seller’s net present value of
profits evaluated in period n, and let 7,(Q,) denote the highest buyer type sold to in period n. The
following three equations recursively define P,(-), R,(-), and T,(-), given P, (-), R, (), and
Tn+1(.):

(A7) P(Qna1) = (1=82)(1 = 0y s1)"/* +87P, (T, 41(Cns1))

(A'S) Rn(Qn) = argmax H,,(Q,,,Q),
QelQ,.1]

(A,Q) Tn(Qn) = Qen?ax ]Hn(Qm Q)9

n>
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where I1,(Q,, Q) ={(Q — Q,)P(Q) + 6%(1 - OR, . (Q)}/(1-Q,) and 82 has replaced the usual
& on account that the time interval between periods is now 2z.
The functional forms for P,(-), R,(), and T,(-) can be recursively shown to be

(Alo) Pn(Q)=An(l _Q)l/a; Rn(Q)=Bn(1_Q)l/a; Tn(Q)= 1 _Cn(l_Q)'
Using (A.7), (A.8), and (A.9), we obtain the following recursive relationships:

(A1 C ( ! ) A
1) " \1+a)\4,-8B,,,

(A1D)  By=A,CY/(1=C,) + %, L/

(A.13) a=1-82+8%,, ,Cla.

The terminal conditions are easily calculated to be: 4y =1; By = (a/(1 +a)X1/(1 +a))'/%; and
Cy=(1/(1 + a)). We may then determine A4, _, by (A.13), Cy_; by (A.11), and By_, by A 12),
etc., yielding the sequence {A,,, B,,C,}.

Observe that the ratio SN, 2Z(x)/f(x) is mdependent of x and is given by P, > (T, (0)) =A,,CL/*. For
each N and n (1 <n <N), there then exists a value 52 such that (A.4) is satlsﬁed with equahty, for
8 €(8),1), (A.4) holds with strict 1nequa11ty, and for 8 <8N, (A 4) is violated. Given any fixed
a >0, it can now be observed that 83 <8)_; < --- <8¥ <61 , and limy _,, 8; =8 < 1. Conse-
quently, for every 8 €[§,1), inequality (A.4) is satisfied for all n, and so the conclusion of
Proposition A.1 holds.
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