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Abstract In this paper we study the belief formation processes of a group of outside
observers making predictions about the actions of a player involved in a repeated
game. We document four main results. First, there is substantial heterogeneity in the
accuracy of our observers, with average accuracy being quite poor. Second, while
there is no difference between the most and the least accurate observer in their initial
beliefs, there are striking differences in their belief updating rules. The most accu-
rate observers have a well-formulated model of player behavior, are good at best
responding and quickly incorporate new information to their beliefs. The worst ob-
servers behave in an opposite manner on all three fronts. Third, when the game does
not converge, subjects look beyond historical actions to make predictions and place
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more emphasis on forgone payoffs. Finally, we document that a “collective wisdom”
emerges when our data are pooled across subjects and analyzed. Specifically, the ac-
curacy of the group estimates becomes much higher than that of the average observer.

1 Introduction

Predictions form an important part of every day economic life. Economists are con-
stantly making predictions about inflation, economic growth, the length of the current
recession, etc.; analysts are making predictions about which way a particular stock or
an entire market will go in both the near and far terms. Beyond that, a large part of
the value of a consultant is his/her ability to accurately predict how one’s competitors
will respond to a particular course of action. One common feature of all these exam-
ples is that the people who are making predictions are very often not the same people
who are making decisions based on those predictions. To take one example, analysts
studying individual stocks are, in principle, independent from the traders and brokers
who are acting on their research.

Our study is motivated by a number of very broad questions concerning the way
in which outsiders—people who observe the actions of others without also taking
an action—form and update predictions. First, are people any good at making pre-
dictions? Second, if some people are better at others at making predictions, what
explains the differences (e.g., initial beliefs, the updating rules, the level of sophis-
tication, etc.)? Third, how do people update their beliefs? That is, what information
do they make use of in their updating process (e.g., historical actions data and/or
payoffs)?

To investigate how subjects make predictions (i.e., form beliefs) we employ a rel-
atively new technique which is to bring subjects into the laboratory and show them,
period by period, the time series of a game that had previously been played by two
real subjects. In each round these subject-observers are then asked to assign proba-
bilities to the actions taken by one player in the next period of this interaction. They
are then rewarded for their predictions using a proper scoring rule which compares
their predictions to the actions taken by the players.

In answer to our opening question, our experiments would seem to indicate that,
no, individual subjects are not, on average, good at making predictions. First, not
surprisingly, there is a great deal of variation in the accuracy of beliefs of our ob-
servers. Some subjects predict actions very accurately, while others predict actions
very poorly. More surprisingly, we find that nearly half of the subjects would have
earned more money by reporting a uniform belief in every period. That being said,
there does appear to be some ability involved. Since, in our experiment, subjects pre-
dicted two different sequences of games, we can compare their relative performance
in the two sequences. We find a significantly positive correlation between one’s rank
(in terms of predictive accuracy) from the first sequence and their rank from the sec-
ond sequence.

Second, in an effort to understand the differences between the most accurate and
the least accurate observers, we show that there are no systematic differences between
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the two groups in their initial beliefs.1 Instead differences in accuracy are explained
by differences in their belief updating procedures, which we estimate by adapting
the methodology of Costa-Gomes and Weizsäcker (2008). We show that the best
observers are much more likely to best respond than the worst observers. At the same
time, the best observers view the person whose actions they are predicting as less
capable of best responding than do the worst observers. It is also shown that the most
accurate observers respond more quickly recent information than the worst observers.
There are other differences between the best and worst observers, such as how the two
groups incorporate payoffs (both real and imagined), but they are less systematic.2

The main punch line of this analysis is that the best observers have a well-formulated
model of the player whose actions they are predicting, have a high ability to best
respond and adapt quickly to recent information, while the worst observers behave in
the opposite manner.

Third, our results suggest that subjects do not enter the experiment with a sin-
gle model of beliefs to be applied independently of the precise sequence of actions
that they observe. In particular, when the game they are observing converges to the
Nash equilibrium fairly quickly, subjects stick with a historical model à la Cheung
and Friedman (1997). However, when the game does not converge, it appears that
subjects try to incorporate more information into their model of beliefs in order to ra-
tionalize and predict what they are observing—most notably, payoffs (both real and
foregone) are found to be much more prominent in subjects’ model of beliefs when
the game does not converge. Similarly, the fraction of subjects employing an EWA
belief-updating rule is higher in games that don’t converge. It is also interesting to
note that the use of a more complicated belief-updating rule to make predictions of-
ten does not lead to greater prediction accuracy. Indeed, it is generally the case that
subjects using a simpler rule for updating beliefs are less prone to mistakes and are
often more accurate than those using more complicated models.

Our final result shows that despite the large variation in accuracy and the poor
accuracy of the average observer, a kind of “collective wisdom” emerges when we
estimate belief models on the pooled data. That is, the average accuracy of estimated
beliefs from pooled data is substantially higher. Thus, while our results would suggest
caution in seeking out the advice of a randomly chosen “advisor”, they also seem to
suggest that there may be some benefit from seeking advice from a set of independent
advisors.

From a methodological perspective, we follow closely to and extend Costa-Gomes
and Weizsäcker (2008). They start from the premise (one that we share) that stated
beliefs need not coincide with a subject’s true beliefs and, therefore, the analysis
should account for this possibility. The authors then develop a model of stochastic
best response for stated beliefs in one-shot games and show how “true” underlying

1In particular, as we show in Sect. 3.2, most subjects report a nearly uniform (i.e., level-1) initial belief,
with a much smaller proportion of subjects reporting a level-2 initial belief and very few reporting an
level-3 initial belief. This result is consistent with the results of Haruvy (2002), though inconsistent with
Costa-Gomes and Weizsäcker (2008), who showed that subjects generally reported level-2 beliefs.
2Our result is that for the dominance solvable games, the best observers gave relatively little weight to
forgone payoffs, while in the non-dominance solvable games, they gave relatively more weight to forgone
payoffs. The worst observers had the opposite pattern.
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A1 A2 A3
A1 51,30 35,43 93,21
A2 35,21 25,16 32,94
A3 68,72 45,69 13,62

(1.a) DSG

A1 A2 A3
A1 12,83 39,56 42,45
A2 24,12 12,42 58,76
A3 89,47 33,94 44,59

(1.b) nDSG

Fig. 1 Games used in the experiments

beliefs may be estimated, possibly for a number of different types. They also estimate
models in which true beliefs are constrained to a parametric functional specification.
In this paper, we estimate the beliefs implied by a dynamic parametric functional
form, thus extending Costa-Gomes and Weizsäcker’s (2008) static parametric func-
tional form to a dynamic setting. We also directly apply their methodology to study
subjects’ initial beliefs.

The rest of the paper is organized as follows. In Sect. 2 we provide details of the
experimental design. Sections 3 and 4 contain our main results. In particular, we doc-
ument the great variation and, on average, poor quality of our observers’ predictions.
We also highlight the systematic differences between the most and least accurate ob-
servers, and we study in detail the belief formation processes used by our subjects
and show that the pooled estimations generate fairly accurate predictions of actual
behavior. Finally, Sect. 5 provides some concluding remarks.

2 The experiment

In the experiments of Hyndman et al. (2011), subjects were matched in fixed pairs
and played one of the games in Fig. 1 for 20 periods. In each period, the subjects
in that experiment chose an action and also stated a belief about the action that they
expected their opponent to take in the next period. At the end of 20 periods, subjects
were randomly rematched and then proceeded to play the other game for 20 periods—
again choosing an action and stating a belief in each period. As can be seen, each
game had a unique pure strategy equilibrium (highlighted) in which the payoffs were
on the Pareto frontier. Furthermore, the game labeled DSG is dominance solvable,
while the game labeled nDSG is not.

Hyndman et al. (2011) report that of the 17 of 32 pairs of subjects converged to the
Nash equilibrium for the DSG game, while 16 of 32 pairs of subjects converged to
the Nash equilibrium for the nDSG game. Furthermore, for those pairs that reached
the Nash equilibrium, convergence was somewhat faster in the dominance solvable
game than in the non-dominance solvable game.

In our experiments, new subjects were recruited and brought into the experimen-
tal lab at New York University’s Center for Experimental Social Science. On their
computer terminals, subjects saw the replay of action choices on period at a time for
one pair of subjects who had previously participated in the experiments of Hyndman
et al. (2011). In other words, we took the time series of actions of a pair in the pre-
vious experiment and played it out period by period. In the instructions, the subjects
were informed that the games they were about to see were played in the past by NYU
undergraduates so that ambiguity regarding the population was eliminated.
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The new experiment used the same language and followed the same basic proce-
dures as the old experiments on which they are based. That is, our observers knew
that the people they were observing played the game in a fixed pair for 20 periods and
that they could see the payoffs of both players. As with the original experiments, sub-
jects in our experiment saw two games—one dominance solvable and one not. Their
task was to predict the actions of one of the players in this game for 20 periods as the
actions in the time series were revealed to them period by period. Predictions were re-
warded with the same quadratic scoring rule used in the Hyndman et al. experiments.
The experiment was programmed in z-Tree (Fischbacher 2007).

Note that in this experiment subjects do not play a game but are spectators who
were asked to make predictions, period by period, about the actions of one of the
players whose behavior they were observing. The interesting feature of the experi-
ment was that since all subjects observed the same time series we are able to study
the belief formation process of subjects while controlling for the observed actions. In
most other belief elicitation experiments that we know of, beliefs are elicited from
subjects who are playing a game (i.e., choosing both actions and beliefs) so that the
observed actions are not controlled. Three exceptions to this are Palfrey and Wang
(2009), Huck and Weizsäcker (2002) and Offerman et al. (1996). In the first paper,
the authors show subjects sequences of choices made by subjects in the experiments
of Nyarko and Schotter (2002) and elicit beliefs using three different scoring rules.
They find that stated beliefs vary according to the scoring rule used and stress the
importance of using an incentive compatible mechanism for eliciting beliefs. Huck
and Weizsäcker (2002) conducted an experiment in which subjects were asked to
predict a second group’s choice frequencies in a set of lottery-choice tasks. Finally,
Offerman et al. (1996) had a group of spectators predict the contribution of a group
of participants in a public goods game; however, since spectators were “paired” with
a specific participant, each spectator was actually predicting the contributions of a
different group. In our design, the actions observed by all subjects are held constant
so we can study the belief formation process in isolation and the consensus (if any)
of observing subjects about beliefs.

The precise time series of games that subjects saw is reported in Fig. 2. In Table 1,
we also report whether subjects were asked to predict the actions of the row or col-
umn player as well as the number of subjects in each session. In choosing which of
the possible time series to use in our experiments, we tried to select time series which
were representative of what happened in the actual experiment. In particular, since,
for both the DSG and nDSG games, half the games converged and half did not, we
chose one of each type (i.e., DSG-C, DSG-NC, nDSG-C and nDSG-NC).3 Further-
more, as mentioned above, since players converged more rapidly in the DSG game
than in the nDSG game, the DSG-C game that we chose converged in period 6, while
the nDSG-C game that we chose converged in period 17. Finally, since subjects in
the original experiment played one DSG and one nDSG game, it was also decided
that subjects in the current experiment should observe one DSG game and one nDSG
game.

3The “C” suffix indicates convergence and the “NC” suffix indicates non-convergence.



Belief formation: an experiment with outside observers 181

F
ig

.2
T

im
e

se
ri

es
of

ga
m

es
us

ed
in

ex
pe

ri
m

en
ts



182 K. Hyndman et al.

Table 1 Summary of
experimental sessions Prediction Session 1 Session 2

DSG-NC nDSG-NC DSG-C nDSG-C

Column Row Column Column

N 38 38 53 53

Table 2 The average accuracy
of stated beliefs DSG-C nDSG-C DSG-NC nDSG-NC

Average (ᾱ) 0.820 0.656 0.644 0.642

Std. dev. 0.091 0.075 0.070 0.061

Min 0.415 0.431 0.458 0.424

25th %ile 0.803 0.609 0.599 0.618

50th %ile 0.841 0.661 0.654 0.653

75th %ile 0.897 0.716 0.695 0.669

Max 0.925 0.807 0.742 0.736

3 Results

3.1 Accuracy of stated beliefs

In this section, we briefly examine the accuracy of our observers’ stated beliefs. We
measure accuracy of observer j ’s stated belief in period t by:

α
j
t = 1 − 1

2

3∑

i=1

(b
j
i,t − I(at = i))2 (1)

where I(at = i) is an indicator variable taking value 1 if the observed action in period
t was i ∈ {1,2,3}. Note that this measure is merely a renormalization of the quadratic
scoring rule used to reward subjects stated beliefs, in order to ensure that accuracy
is between 0 and 1. Here α

j
t = 0 means that observer j reported a degenerate belief

on an action that was not chosen, while α
j
t = 1 means that observer j reported a

degenerate belief on the action that was actually chosen.
In Table 2 we report some summary statistics of accuracy of stated beliefs, av-

eraging over 20 period histories and then across all observers for each game. That
is,

ᾱ = 1

N

N∑

j=1

[
1

20

20∑

t=1

α
j
t

]
.

As can be seen, the accuracy of the belief reports varies substantially in four
games. First, notice that an observer who merely expressed uniform beliefs of
( 1

3 , 1
3 , 1

3 ) would have received an accuracy score of 0.667, and that except for the
game DSG-C, the average accuracy was actually below what one could have easily
obtained with no cognitive effort. Observe also that the mean and median are very
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close, which indicates that, for these three games, about half of the subjects would
have been better off simply stating uniform beliefs and half would have been worse
off stating uniform beliefs.

The fact that many subjects would have been better off reporting uniform beliefs
suggests subjects did not suffer greatly from risk aversion. Indeed, if we take a neigh-
borhood around the uniform belief such that bi ∈ [0.3,0.35] for all i = 1,2,3, then
79% of our subjects reported beliefs in this neighborhood in only 2 or fewer rounds,
while only 3% of our subjects (6 in total) reported beliefs inside this neighborhood
for 10 or more rounds. Observe also that a risk averse observer, whose true belief was
non-degenerate, would never report a degenerate belief. Therefore, observing a high
frequency of degenerate beliefs is supportive of the claim that subjects did not suf-
fer greatly from risk aversion.4 Indeed, for subjects who saw the convergent games,
86.8% of them reported a degenerate belief at least once among all the choices that
they made. For those subjects who saw the non-convergent games, the frequency is
(not surprisingly) lower at 63.2%, but still non-negligible.5 To be sure, we cannot
rule out the possibility that some subjects suffered from a milder form of risk aver-
sion and partially hedged their belief statements, just not going as far as reporting
uniform beliefs.6

Merely studying the accuracy of our outside observers is of little value if prediction
accuracy is simply good luck and inaccuracy is simply bad luck. Recall that subjects
in our experiments observed two separate sequences of actions (either two convergent
games or two non-convergent games). Therefore, if accuracy is governed by more
than just luck, we would expect a positive correlation between accuracy in the two
games subjects formed predictions for. In Fig. 3, we compare subjects’ ranking (in
terms of accuracy) across games that they saw. As can be seen, for both convergent
and non-convergent games, there is a positive relationship between one’s rank in
the two games. For the non-convergent games, the slope of the best-fitting line is
0.284 (p = 0.078), while for the convergent games, the relationship is much stronger,
with the slope of the best-fitting line being 0.455 (p < 0.01). Therefore, although not
perfect, subjects who were good at making predictions in one game were more likely
to make good predictions in the other. This suggests that it is worthwhile to study the
belief formation processes of the most accurate observers and to compare it with the
belief formation process of the least accurate observers to see what distinguishes the
two groups.

Finally, we look at the question of whether or not subjects’ predictions were be-
coming more accurate as the experiment progressed. To do this, for each game, we
estimated a random effects Tobit model of accuracy on period. As can be seen in
Table 3, except for the nDSG-NC treatment, the accuracy of subjects’ belief reports
significantly increased as the experiment progressed. In contrast, if we look at the

4Even allowing for subjects to make errors in their belief reports, as our subsequent analysis does, it is an
extremely low probability event that a subject would erroneously report a degenerate belief when their true
belief was non-degenerate.
5If we restrict attention to the first five periods, these frequencies are 50.9% and 31.6% respectively.
6Nor can we rule out that subjects did not understand that the best strategy to avoid risk is to submit
uniform beliefs.
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Fig. 3 Comparison of performance by subjects across games

Table 3 Do subjects’ beliefs become more accurate? (Random-effects Tobit)

DSG-C nDSG-C DSG-NC nDSG-NC DSG-C nDSG-NC

Period 0.0459a 0.00456b 0.0151a -0.00526a 0.0687a 0.0142c

[26.73] [2.173] [8.812] [−2.916] [11.20] [1.886]

Period2 −0.00117a −0.000929a

[−3.921] [−2.660]

Constant 0.456a 0.621a 0.487a 0.697a 0.378a 0.626a

[17.30] [24.86] [22.40] [32.36] [11.53] [18.23]

N 1060 1060 760 760 1060 760

LL −268 −636.7 −171.2 −198.6 −260.6 −195.1

z-Statistics in brackets
asignificant at 1%; bsignificant at 5%; csignificant at 10%

linear specification, subjects actually became less accurate in the nDSG-NC game,
where the game did not converge and no discernible pattern emerged. For both the
DSG-C and nDSG-NC treatments, it turns out that a quadratic specification fits the
data better, though the reasons are very different. In the DSG-C treatment, the game
converged very early, making it quite easy to accurately predict actions. Therefore,
by the end of the game, most subjects were making perfect predictions. In the nDSG-
NC treatment, sequence of actions had no apparent pattern. Therefore, despite some
improvement in accuracy at the beginning, the erratic play of the actual player, led to
subject’s predictions eventually becoming less accurate.
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3.2 Initial beliefs

3.2.1 Descriptive analysis

We now examine subjects’ initial beliefs. Our main purpose is to understand the pro-
cess underlying the formation of initial beliefs. We organize our discussion around
the so-called level-k theory, which has been used in many forms by Stahl and Wil-
son, Stahl and Wilson (1994, 1995), Costa-Gomes et al. (2001), Haruvy (2002) and
Costa-Gomes and Weizsäcker (2008), among others. This theory posits that decision
makers are limited in the number of steps of reasoning that they can do. Accord-
ingly, in terms of actions, the level-0 type corresponds to random behavior, while the
level-1 type best-responds to level-0 behavior. Similarly, the level-k type plays a best
response to the behavior of the level-k − 1 type.

According to the level-k theory, a level-1 belief corresponds to ( 1
3 , 1

3 , 1
3 ). That

is, the subject believes that the player she is observing is a level-0 type (who will
behave randomly), making a uniform belief a best response. Similarly, a level-2 belief
corresponds to a best-response to level-1, and so on. For example, in the game DSG,
a level-2 initial belief for the column player would correspond to (0,0,1) since A3
is the best response to a uniform prior over the row player’s choices, while a level-3
belief would correspond to (0,1,0).

In Fig. 4, we provide a scatter plot of the initial belief statements by our observers,
organized by level of reasoning and pooled across all four games. The horizontal axis
measures the weight placed on the level-2 action (i.e., the best response to the other
player being a level-1 type), while the vertical axis measures the weight placed on
the level-3 action (i.e., the best response to the other player being a level-2 type). The

Fig. 4 Scatter plot of initial beliefs: organized by level. The numbers correspond to the number of times
a particular belief was observed in our sample
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origin of the figure corresponds to a degenerate belief that the player will choose the
Nash action. As can be seen, there appears to be a large cluster of reported beliefs
in the neighborhood of the level-1 belief: ( 1

3 , 1
3 , 1

3 ) as well as a smaller cluster of
beliefs in the neighborhood of the level-2 belief. Notice also that the smallest circle
containing at least half of the observations is centered very close to the level-1 belief,
biased slightly in the direction of level-2 beliefs.

3.2.2 Estimating models of initial beliefs: methodology

Costa-Gomes and Weizsäcker (2008) extend the standard stochastic best-response
model of action decisions to the continuous response set of stated beliefs for a series
of one-shot games. For completeness, we provide a brief summary of this method-
ology. In the next subsection, we will apply their methodology directly using initial
beliefs. Later we will extend it to analyze models of beliefs in finitely repeated games.

Using their notation, let yg denote a generic belief statement and bg denote a
subject’s true belief. In this case, the expected payoff from reporting yg when the
true belief is bg is:

v̄(yg, bg) = A − c
[
bg,1[(yg,1 − 1)2 + y2

g,2 + y2
g,3]

]

− c
[
bg,2[y2

g,1 + (yg,2 − 1)2 + y2
g,3]

]

− c
[
bg,3[y2

g,1 + y2
g,2 + (yg,3 − 1)2]

]
. (2)

It is assumed that the true belief is unobserved, but that players state a probabilistic
payoff maximizing response, which follows a logistic distribution with parameter
λb ≥ 0. The density, therefore, of stating belief yg is then:

rg(yg, bg, λ
b) = exp[λbv̄(yg, bg)]∫

s∈�2 exp[λbv̄(s, bg)] (3)

Let bk
g denote the “true” initial belief of a type k individual. In this case, the like-

lihood function is given by:

L(�,ρ) =
N∏

i=1

(
K∑

k=1

ρkrg(y
i
g, b

k
g, λ

b)

)
, (4)

where � denotes the parameter vector and ρk is the probability of type k in the
population. Depending upon one’s wishes, bk

g may be directly estimated or, more
parsimoniously, one can make assumptions about the underlying types (e.g., level-n)
and simply estimate rationality parameters as well as the proportion of each type. We
take both approaches in the next section.

3.2.3 Estimating models of initial beliefs: results

In Table 4, we report results of estimated beliefs using the methodology of Costa-
Gomes and Weizsäcker (2008), as described above. As can be seen, whether or not
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Table 4 Initial belief estimates

Beliefs λ Prob. LL BIC

Beliefs estimated (0.436,0.232,0.332) 3.519 0.853 −1517.8 3072.0

L2: (1,0,0) 20.000 0.147

Beliefs specified L1: (1/3,1/3,1/3) 3.649 0.837 −1521.9 3059.4

as L1 or L2 L2: (1,0,0) 20.000 0.163

Beliefs estimated (0.416,0.215,0.370) 6.784 0.789 −1502.9 3063.0

L2: (1,0,0) 19.985 0.164

L3: (0,1,0) 19.991 0.047

Beliefs specified L1: (1/3,1/3,1/3) 6.191 0.792 −1513.7 3053.4

as L1, L2 or L3 L2: (1,0,0) 20.000 0.175

L3: (0,1,0) 20.000 0.03

The λ parameters were restricted to the interval [0,20]; allowing the λ parameters to be unrestricted led
to estimation problems because the λs on L2 and L3 types blew-up. The results do not change in any
appreciable manner, either qualitatively or quantitatively if the upper bound is changed slightly

beliefs are estimated, a three-type model outperforms a two-type model. However,
rather than comparing based on log-likelihoods, if we use the BIC, which includes
a penalty that increases as additional parameters are included, then we see that there
is actually no benefit to estimating beliefs. This is likely because the beliefs that we
estimate are, in fact, already very close to level-1, -2 and -3 beliefs. The table also
shows that the dominant type, by far, is (essentially) the level-1 type, with fewer level-
2 types and a very small proportion of level-3 types. Our results here are consistent
with Haruvy (2002) who argues that the dominant mode in the distribution of beliefs
is at the level-1 type and inconsistent with those of Costa-Gomes and Weizsäcker
(2008) who argue that subjects generally report level-2 beliefs.

4 Belief-formation models

4.1 Methodology

4.1.1 A stochastic best-response model of stated beliefs for games with multiple
periods

We begin by describing how we extend the methodology of Costa-Gomes and
Weizsäcker (2008) for one-shot games to the finitely repeated games of our exper-
iment. Just as they estimate a “true” static belief that is constrained to a parametric
functional form (e.g., logit QRE, noisy introspection), we can estimate the beliefs
implied by a dynamic parametric functional form. That is, we model bg(t) as coming
from some underlying model of belief learning. Two that we will focus on are Che-
ung and Friedman’s (1997) model of γ -weight beliefs and also Camerer and Ho’s
(1999) model of Experience Weighted Attraction (EWA).
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Consider first the γ -weighted beliefs model, which is usually expressed as:

b
γ

g,k(t + 1) = 1t (a
k
j ) + ∑t−1

u=1 γ u1t−u(a
j
k )

1 + ∑t−1
u=1 γ u

(5)

where k indexes the particular action and the parameter γ captures the relative weight
of history. When γ = 0 (fictitious play), a decision maker only cares about last pe-
riod’s chosen action, while when γ = 1 (Cournot), a decision maker gives equal
weight to the entire history of play. For any γ ∈ (0,1) a subject cares about history,
but gives declining weight to more distant observations. Note that if subjects form
beliefs according to this model, then the only relevant information is the observed
history of actions. In particular, the payoffs obtained by either player do not matter.

Of course, payoffs might matter, which is why we also consider the EWA model.
While this is formally a model of action decisions, it can easily be reinterpreted as
one of belief formation. For example, like the sophisticated types of Camerer et al.
(2002), suppose that our observers view the player whose choices are being studied
as being governed by the EWA choice probabilities. In this case, the estimated choice
probabilities from that model simply become our observers’ beliefs over the player’s
three possible actions.

Attractions are given by7:

Ak(t) = φN(t − 1)Ak(t − 1) + [δ + (1 − δ)I(sk, s(t))]π(sk, s−i (t))

φN(t − 1) + 1
. (6)

Payoffs are captured via the parameter δ, which captures the weight of foregone pay-
offs. In particular, the attraction on the actually chosen action changes in proportion
to the payoff received, while the attractions on those actions which were not chosen
change in proportion to δ times the foregone payoff. If δ = 1, then the belief on the
action that would have received the highest payoff will increase and the belief on the
action that would have received the lowest payoff will decrease, whether or not either
action was actually chosen.

Given attractions Ak(t), the estimated choice probability is given by the usual
logistic stochastic response function:

bEWA
g,k (t + 1) = exp[λa

EWAAk(t)]∑
j exp[λa

EWAAj (t)] (7)

where λa
EWA captures observers’ perceptions of the rationality of the player whose

actions they are predicting.
The likelihood function is formed by substituting (5) or (7) (depending on the

model one wishes to estimate) in place of bg in (3) for each observer at each time
period and then taking the product over all time periods and observers.

7Our formulation differs from the original EWA model in one way. As originally specified, the denomi-
nator of the attractions function is given by ρN(t − 1) + 1, where ρ ∈ [0,1] is an additional parameter to
estimate. By restricting ρ = φ, we force attractions to remain bounded with the set of feasible payoffs. See
Camerer and Ho (1999) for more details.
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4.1.2 Mixture models with multiple types

In order to account for heterogeneity, we can also easily extend the above model of
stated beliefs to a mixture model with multiple types. Denote a generic type by τ (we
will restrict attention to γ -weighted types and to EWA types). Then the likelihood for
player i, conditional upon being type τ can be written as:

Li(τ ;�) = �20
t=1 Pr(yi,t |τ ;�)

where, � is the parameter vector that will be estimated, yi,t is the stated belief vector
reported by observer i at time t and Pr(yi,t |τ) is defined by (3), with, of course, the
appropriate substitutions for type made.

Given the conditional likelihoods for observer i, we may then easily write the
unconditional likelihood function as:

Li(�,ρ) =
K∑

j=1

ρjLi(τj ;�)

where ρj is the probability of type τj and ρ = (ρ1, . . . , ρK). Finally, taking the prod-
uct over all observers, i, we have the likelihood function:

L(�,ρ) = �N
i=1Li(�,ρ).

4.2 What explains the differences between the most and least accurate observers?

Recall from Table 2 that there is a great disparity between the least accurate and the
most accurate observers in our experiments. In this section, we seek to gain insight
into what explains the stark differences. One could imagine at least three different ex-
planations for this phenomenon. First, it could be that the most and the least accurate
subjects are equally prone to errors in their belief reports (i.e., λB is the same) but
that the more accurate observers simply have a more accurate model of the behavior
of the player they are observing. Second, it may be that the best and worst observers
have the same model of player behavior, but that the least accurate observers are sim-
ply more prone to mistakes in their belief reports. Third, it could be that the best and
worst subjects have similar models of beliefs, but that initial beliefs differ.

4.2.1 Initial beliefs

In Fig. 5 we show a scatter plot of the initial beliefs for the ten best and ten worst
observers pooled across all four games and organized by level of reasoning. The
2s represent the initial beliefs of the best 10 observers, while the Fs represent the
initial beliefs of the worst 10 observers. The 2 and F in the larger font size represent
the average belief of the best and worst 10 observers, respectively. As can be seen,
there do not appear to be any systematic differences in the initial beliefs of the best
and worst observers. The average belief of the best and worst observers are nearly
identical (and skewed slightly away from level 1 and towards level 2). Moreover,
a bivariate Kolmogorov-Smirnov test indicates that the distributions of initial beliefs
are not statistically different (d = 0.1625, p = 0.74).
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Fig. 5 Initial beliefs of best and worst observers: pooled across games and organized by level

4.2.2 Belief updating

We now turn our attention to differences in the updating rules used by the best and
worst observers. To do so, we estimate our model of belief formation with stochas-
tic best response, assuming a that subjects’ model of beliefs are drawn from the
EWA family, using the most accurate and the least accurate observers as given by
(1).8 Because we want to understand the differences between the best and worst ob-
servers, and in particular, whether they use a different model of belief formation,
we report results only for the EWA model, which is flexible enough to detect such
differences. Given that, as Table 4 indicates, most subjects had a level-1 initial be-
lief, we directly impose this on the initial attractions; this has the added advantage
of making the γ -weighted beliefs model nested inside of EWA. Our results are re-
ported in Table 5. The table also reports (in panel (C)) p-values of likelihood ratio
tests in which we test whether the parameters are identical across the best and worst
observers. In panel (D), the table also provides p-values for likelihood ratio tests
in which we restrict the parameters to be equal for convergent and non-convergent
games.

There are a number of very striking results here. First, the 10 best observers al-
ways had substantially higher estimates of λb

EWA (in all cases p � 0.01). This sug-
gests that they were significantly better at accurately stating their true beliefs than
were the 10 worst performers. Second, the 10 best performers always appeared to
be somewhat less charitable in their view of the actual player’s ability to best re-
spond to the underlying attractions; that is λa

EWA is always estimated lower for the

8Obviously, the validity of our conclusions depend on this assumption.
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Table 5 Estimation results: 10
most accurate and 10 least
accurate observers

DSG-C nDSG-C DSG-NC nDSG-NC

(A) 10 most accurate observers

λb
EWA

9.450 4.133 2.272 3.638

δ 0.000 0.526 0.729 0.895

φ 0.741 0.389 0.666 0.099

λa
EWA

0.083 0.125 0.401 0.170

LL −1430.4 −1569.0 −1625.0 −1618.2

(B) 10 least accurate observers

λb
EWA

1.755 1.533 0.577 1.571

δ 0.516 0.000 0.981 0.392

φ 0.940 0.852 0.986 0.741

λa
EWA

0.162 0.145 10.000 5.548

LL −1664.7 −1663.5 −1695.8 −1658.6

(C) p-Value of hypothesis test: H0 : parambest = paramworst

λb
EWA

≈ 0 ≈ 0 ≈ 0 ≈ 0

δ ≈ 0 0.18 ≈ 0 ≈ 0

φ 0.16 ≈ 0 ≈ 0 ≈ 0

λa
EWA

0.13 0.70 ≈ 0 0.013

(D) p-Value of hypothesis test: H0 : paramsC = paramsNC

DSG nDSG

10 most accurate observers ≈ 0 ≈ 0

10 least accurate observers ≈ 0 0.10

10 best performers than for the 10 worst performers, though this is only signifi-
cant for our two non-convergent games. The other consistent difference is that the
10 best performers always had lower estimates of φ (but for DSG-C, in all cases
p � 0.01). This suggests that they were much quicker at responding to new infor-
mation. Finally, with regard to the estimates of δ, which accounts for the weight of
foregone payoffs, the only consistent difference would seem to be that for the dom-
inance solvable games, the best performers gave relatively little weight to forgone
payoffs, while for the non-dominance solvable games, they gave relatively more
weight to forgone payoffs. On the other hand, the worst performers had the oppo-
site pattern. Using the 10% level, the difference is significant in all cases except
nDSG-C.

One other thing to note is that in all cases, the data generated by the 10 most accu-
rate observers would seem to be better explained by the EWA model of beliefs than
are the data generated by the 10 least accurate observers. That is, it would seem that
another difference between the most and the least accurate observers is that the most
accurate observers formulate a model of the player whose actions they are observing,
stick with it, and best respond quite accurately. In contrast, the least accurate ob-
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servers do not appear to formulate as precisely a model of the person whose actions
they are observing.9

Next, observe that there is no reason to expect that subjects would use a different
model of beliefs for two different sequences of observed actions for the same normal
form game, but that is precisely what we see. Indeed, as can be seen in panel (D), we
can always reject at the 10% level of significance that the estimated coefficients are
the same for convergent and non-convergent games. Specifically, compare the results
of the convergent and non-convergent games for each of the dominance solvable and
non-dominance solvable games, and also for the 10 most accurate and the 10 least
accurate observers. The results of Table 5 suggest that δ is consistently higher in
games that do not converge to the Nash equilibrium, and the difference between the
parameter estimates appears larger the earlier that the game converged. This suggests
that subjects, when they see the game failing to converge to the equilibrium, seek out
alternative ways to rationalize and predict what they are observing. More precisely,
when the game fails to converge, they place increased weight on foregone payoffs in
their belief updating rules. This finding appears to be very robust, and it is one that
we will point out again below.

4.3 Estimates of belief formation models using pooled data

The differences between the best and worst observers led to a number of interesting
findings. However, ex ante it is difficult to know whether one has chosen one of the
“best” observers. To be sure, past performance does appear to provide some indi-
cation of future performance (cf. Fig. 3); however, the relationship is by no means
perfect. Therefore, it is of independent interest to examine the performance of belief
formation models based on pooled data. This exercise also sheds light on our final
question, which is,“if individuals do such a poor job at predicting actions, do pooled
estimates of beliefs do a better job of predicting actions?” We first address this ques-
tion with single-type models and then come back to the question of heterogeneity by
estimating some mixture models with multiple types. Here we report results for both
the EWA and γ -weighted beliefs models. This allows us to see whether simpler mod-
els (i.e., γ -weighted beliefs) lead to more accurate predictions as well as the fraction
of subjects who use each of the two models.

4.3.1 Single-type models

In this section we we estimate models of beliefs using the empirical methodology
of Sect. 4.1.1. In particular, we separately estimate the γ -weighted beliefs model of
Cheung and Friedman (1997) and the EWA model of Camerer and Ho (1999). For
both the γ -weighted beliefs mode and the EWA model, as suggested by Table 4, we

9Although the EWA model encompasses a fairly large family of different learning models (see, e.g., the
EWA cube and the surrounding discussion in Camerer (2003, Chap. 6), it does not encompass the entire
universe of possible models. It is possible the least accurate observers use a different model of belief forma-
tion, so the EWA model is misspecified for their stated beliefs, thus invalidating the inference. Therefore,
one should be careful in drawing too strong of conclusions.
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Table 6 Estimation results for
γ -weighted beliefs and EWA
models

DSG-C nDSG-C DSG-NC nDSG-NC

(A) γ -Weighted beliefs

λb
γ 5.280 2.037 1.472 3.234

γ 0.599 0.475 0.784 0.856

LL −8089.0 −8807.5 −6424.3 −6332.5

(B) Experience weighted attraction—Level 1 Prior

λb
EWA

5.663 2.118 1.175 2.671

δ 0.000 0.519 0.981 0.491

φ 0.805 0.666 1.000 0.695

λa
EWA

0.084 0.188 2.257 0.152

LL −8056.9 −8685.2 −6378.6 −6268.3

(C) p-Value of hypothesis test: H0 : paramsC = paramsNC

DSG nDSG

γ -Weighted ≈ 0 ≈ 0

EWA ≈ 0 0.25

assume level-1 (i.e., uniform) initial beliefs/attractions.10 Therefore, EWA nests the
γ -weighted beliefs model as a special case. Estimation results for both are reported
in Table 6. We restricted the parameters γ , δ and φ to [0,1] and the λ parameters to
[0,10]. The parameters were estimated in MATLAB using the Differential Evolution
algorithm proposed by Storn and Price (1997).

Consider first panel (A), which provides results for the γ -weighted beliefs model.
Comparing the convergent and the non-convergent games, it appears that the esti-
mated γ are generally lower in the convergent games. Most likely owing to the rel-
atively early convergence of the game DSG-C, the estimate of λb

γ is substantially
higher than in the other games.

Consider next panel (B), which provides results for the EWA model under the
assumption of a level-1 prior. A similar pattern emerges: for the game DSG-C, which
converged very early, the estimate of λb

EWA is much larger than the same parameter
for the other games; across the other games, the estimates are fairly similar. Indeed,
for the two non-dominance solvable games, all parameters are nearly identical. In the
dominance solvable games we estimate δ = 0 when the game converged, suggesting
that players did not make use of payoffs, focusing entirely on the observed history
of play, while when the game did not converge, we estimate δ > 0 and quite large.
Thus, also with the pooled data, subjects appear to place more weight on foregone
payoffs when the game does not converge. We also see that for the game DSG-NC,
the estimate of λa

EWA is quite a bit larger than the same estimates for the other games.
We do not have a clear understanding as to why this is the case, but we note that

10We also estimated the EWA model under the assumption of a level-2 prior. With the exception of the

estimate for λb
EWA

, all parameter estimates are nearly identical to the corresponding parameter estimates
from the level-1 prior. The results of this estimation are available upon request.
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it indicates that our observers were very likely to report degenerate (or nearly so)
beliefs.

We also see that the fit appears to be better for the EWA model than for the
γ -weighted beliefs model. Of course, we know that the EWA model includes γ -
weighted beliefs as a special case, and so this result is to be expected.11 Although the
fit must be improve when switching from the γ -weighted beliefs model to the EWA
model, it does not necessarily follow that the estimated beliefs underlying the above
estimates are more accurate. We turn our attention to this presently.

Finally, as was the case with the best and worst observers, we can always reject
that the estimated coefficients are the same for DSG-C and DSG-NC, while we can
only reject that the coefficients are the same for nDSG-C and nDSG-NC in our γ -
weighted beliefs specification. Also, similarly to the best and worst observers, for
our DSG games, we see that δ is higher for the non-convergent game. As we have
previously mentioned, our conjecture is that when subjects see a game that is not
converging, they seek out alternative ways to rationalize the data they are observing;
one way to do so is to incorporate payoffs (real and foregone) into one’s model of
belief updating. That we do not observe a difference between the coefficients for
nDSG-C and nDSG-NC likely owes to the fact that the nDSG-C game converged
only in period 17; hence, for most of the game, subjects saw something that was not
converging.

4.3.2 The accuracy of estimated beliefs

We now turn briefly to a discussion of the accuracy of the estimated beliefs. One can
think of this exercise as providing a further consistency check for the performance of
our models. In particular, a model is not very useful if it leads to wildly inaccurate
predictions.

For each of our models, we measure accuracy as in (1), where we use b̂i,t is the
implied belief on action i in period t given the parameter estimates of the model. For
each of the models estimated, Table 7 reports the accuracy of the underlying beliefs
averaged over the 20 period history. We also the accuracy achievable by simply re-
porting uniform beliefs of ( 1

3 , 1
3 , 1

3 ) in each period, as well as the empirical average
accuracy of the observers, which was reported earlier in Table 2.

Look first at the accuracy of γ -weighted beliefs. Except for the game nDSG-NC,
such beliefs are better than reporting uniform beliefs. It is also seen that γ -weighted
beliefs are also more accurate than EWA beliefs (despite the latter’s higher likelihood)
across all four games, although the difference is not statistically significant. Turning
now to EWA beliefs, we see that for the DSG games, they are more accurate than
reporting uniform beliefs, while for the nDSG games, they are less accurate than
uniform beliefs. Interestingly, for the game DSG-NC, estimated EWA beliefs were
very often degenerate on one of the actions, which means that beliefs were either
nearly always perfectly accurate or perfectly inaccurate.

11Even if we penalize EWA for the extra parameters that it has, the fit is still better than the γ -weighted
beliefs model.
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Table 7 The average accuracy of estimated beliefs

DSG-C nDSG-C DSG-NC nDSG-NC

γ -Weighted 0.8823
(79.6)

0.7138
(72.2)

0.7113
(84.6)

0.6476
(43.6)

EWA (Level 1 prior) 0.8552
(63.0)

0.6415
(40.7)

0.6855
(69.2)

0.5944
(15.4)

Empirical average 0.820 0.656 0.644 0.642

Uniform beliefsa 0.6667 0.6667 0.6667 0.6667

aRefers to stating a belief of ( 1
3 , 1

3 , 1
3 ) in all periods

In parentheses we report the percentile that the estimated average accuracy would fall into based on the
population of observers

One can also ask how the accuracy of estimated beliefs fits in with the empirical
distribution from the population of observers. The numbers in parentheses below each
entry of Table 7 tries to get at this. For example, consider the DSG-C game and the
γ -weighted beliefs model. The estimated average accuracy is 0.8823, and 79.6% of
the actual observers had an average accuracy below this number. Indeed, for three
out of four games, the estimated accuracy is above the 72nd percentile for the γ -
weighted beliefs model. The only exception is the nDSG-NC game, and as can be
seen, all three models of beliefs lead to extremely inaccurate predictions. It is in this
sense that we say that a “collective wisdom” emerges: often, and especially with our
γ -weighted beliefs model, the average accuracy of estimated beliefs is well into the
upper tail of the distribution.

4.3.3 Two-type mixture models

Recall that many of our results indicate that different subjects incorporate real and
imagined payoffs into their belief updating rules differently, with similar differences
in the weight of recent history. In this section, we estimate a two-type mixture
model under the assumption that one of the types focuses only on history (i.e., is
a γ -weighted beliefs type), while the other type uses both history and payoffs (i.e., is
an EWA type). We also estimate a model in which there are two EWA types, but that
the two types update differently.

Estimation results of this exercise are reported in Table 8. First consider panel (A),
which shows results for the case of one EWA type and one γ -weighted beliefs type.
In all cases, we are able to reject both the hypotheses that Pr[EWA] = 0 and that
Pr[EWA] = 1.12 Therefore, there is strong evidence in favor of these two types for
all games.

Regarding the types, it would appear that slightly less than half of the subjects
are EWA types in the dominance solvable games, while slightly more than half are
EWA types in the non-dominance solvable games. Next observe that the magnitudes
of λb

γ and λb
EWA are directly comparable and provide an indication of the frequency

12Twice the difference in the likelihoods is, in the worst case (i.e., DSG-NC), 67.2, with a corresponding
p-value less than 0.01. In all other games, we can reject the null hypothesis of a single type at an even
higher level of significance.
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Table 8 Estimation results for
mixture models DSG-C nDSG-C DSG-NC nDSG-NC

(A) γ -Weighted beliefs & EWA types

λa
EWA

0.768 0.353 8.456 0.451

δ 0.725 0.580 0.904 0.818

φ 0.000 0.341 0.983 0.208

λb
EWA

1.815 1.624 1.189 2.070

γ 0.630 0.774 1.000 1.000

λb
γ 9.589 6.105 4.871 10.000

Pr[EWA] 0.246 0.506 0.721 0.611

LL −7887.1 −8639.9 −6345.3 −6154.5

(B) Two EWA types

λaEWA,1 0.083 0.101 0.011 0.073

δ1 0.000 0.107 0.308 0.510

φ1 0.830 0.773 0.971 0.898

λbEWA,1 10.000 4.013 10.000 9.986

λaEWA,2 6.204 7.230 9.328 1.203

δ2 0.161 0.537 0.898 0.822

φ2 0.477 0.214 0.983 0.188

λbEWA,2 1.515 1.317 1.379 1.922

Pr[Type1] 0.745 0.531 0.227 0.479

LL −7809.4 −8571.1 −6292.7 −6153.7

of mistakes made in the belief reports by the two types. It is somewhat remarkable
to see that λb

γ � λb
EWA for 3 of the 4 games, which could suggest that those subjects

who employed a more simple model of belief formation were less prone to mistakes
than those who adopted a more complicated model. Consistent with out single-type
model, the estimates of γ are lower in the convergent games and, indeed, beliefs are
very sluggish in the non-convergent games.

In panel (B) we report results where we allow both types to be form beliefs accord-
ing to the EWA model. For 3 out of 4 games, this leads to a significant improvement in
fit relative to panel (A). Generally, it appears that one of the EWA types corresponds
quite closely to the γ -weighted type, though with the addition of a small amount of
imagination (i.e., δ > 0).

The accuracy of estimated beliefs We now look once more at the accuracy of the
underlying beliefs estimated in the two-type mixture models of this section. We plot
the results in Fig. 6 based on the results reported in Table 8(A). The solid line rep-
resents the γ -weighted beliefs type while the -·- line represents the EWA type. As
can be seen, the estimated beliefs for the γ -weighted beliefs type is generally fairly
stable and more accurate. In contrast, the EWA type appears to be somewhat less
accurate. In part, this would appear to be due to the fact that the EWA type is more
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Fig. 6 Accuracy of estimated beliefs for the two-type mixture model

likely to report degenerate beliefs, which often turn out to be incorrect (especially in
the DSG-NC game).13

In Table 9 we compute the average accuracy of estimated beliefs across the 20
period histories of the games that we considered. We see that, except for the game
nDSG-C, the estimated beliefs of the γ -weighted type are generally more accurate
than those of the EWA type (except in nDSG-C), and are generally more accurate than
simply reporting uniform beliefs (except in nDSG-NC, which is slightly worse than
uniform) Interestingly, not only are subjects who form beliefs according to history
only less prone to mistakes, but they are also generally more accurate in their belief
statements than are the EWA subjects who incorporate more information in their
model of beliefs.14

Another striking finding is that although the model with two EWA types would
seem to “fit” the data better in terms of the log-likelihood, in terms of accuracy of
estimated beliefs, the simpler model consisting of one EWA type and one γ -weighted
type actually leads to more accurate predictions.

13For the γ -weighted beliefs model, unless γ = 0, beliefs will generally be non-degenerate. In contrast,
because of the extra parameters (cf. (6)), the EWA attractions can adjust more quickly. Combined with a
suitably high value of λa

EWA and it is more likely that beliefs will be degenerate.
14Although, as we have seen, the EWA model generally has a higher log-likelihood, the accuracy of beliefs
is somewhat lower. In our view, these are not inconsistent results. It suggests to us that those subjects using
the EWA model are not actually using the correct model. For example, in the recent housing crisis, it
appears that many people believed that housing prices would continue to rise indefinitely, and took actions
consistent with these beliefs. We have subsequently learned that these people’s underlying beliefs were
mistaken.
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Table 9 The average accuracy
of estimated beliefs for the
two-type mixture models

aPooled beliefs given by
Pr[EWA]EWA +
(1 − Pr[EWA])γ
bRefers to stating a belief of

( 1
3 , 1

3 , 1
3 ) in all periods

DSG-C nDSG-C DSG-NC nDSG-NC

(A) γ -Weighted & EWA types

γ 0.8832 0.6900 0.7288 0.6573

EWA 0.7950 0.7952 0.5674 0.6146

Pooleda 0.8751 0.7795 0.6564 0.6641

Uniform beliefb 0.6667 0.6667 0.6667 0.6667

(B) Two EWA types

EWA1 0.8597 0.6828 0.6851 0.6621

EWA2 0.8000 0.7499 0.5638 0.6014

Pooled 0.8537 0.7681 0.6416 0.6689

Uniform beliefa 0.6667 0.6667 0.6667 0.6667

5 Conclusions

In this paper we have reported the results of an experiment in which subjects acted as
outside observers and predicted the actions of a different group of experimental sub-
jects. Our analysis has provided us with insight into the differences between the best
and worst observers. In particular, there are a number of stark differences between the
two groups. First, the most accurate observers appeared to be those who responded
more quickly to new information, rather than continuing to dwell on the past. Sec-
ond, the best observers were also the ones who were less prone to making mistakes,
even if they also believed that the player whose actions they were predicting was
more likely to make mistakes than did the worst observers. While there were other
differences, our main conclusion is that the best observers had well-formulated mod-
els of the player whose actions they were predicted, made few mistakes and quickly
incorporated new information when updating their beliefs.

The next main result is that aspects of subject’s belief updating rules depend on
the specific properties of the sequence of actions they are observing. A very robust
finding is that in games that don’t converge, subjects appear to place more weight on
forgone payoffs than do subjects in games that converge. Our conjecture is that non-
convergent games are inherently harder to predict than convergent games. Therefore,
the frustration with not being able to discern a pattern to the observed behavior causes
them to look beyond updating rules based on historical actions. The next logical step
is to start looking at payoffs, and this is exactly what appears to happen. Moreover,
there is some evidence that the proportion of subjects using an EWA updating rule,
which incorporates forgone payoffs, increases in the latter half of the game.15

15For our two non-convergent games, we estimated the same model as in Table 8(a), but we allowed
Pr[EWA] to be different in the first 10 periods (denote this by p1−10) than in the last 10 periods (denote
this by p11−20), while keeping all other parameters identical across rounds. For the DSG-NC game, we
estimated p11−20 > p1−10 with an LR statistic of 6.58, which just misses the 1% level of significance.
For the game nDSG-NC, we did not estimate a significant difference in the fraction of subjects using an
EWA updating rule.
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The paper also showed three other interesting results. First, the prediction accu-
racy of many subjects was poor. Except for one game where a clear pattern of con-
vergence emerged fairly early, most of our subjects would actually have earned more
had they simply reported uniform beliefs in each period. Second, despite the poor
prediction ability of the average observers, the pooled estimates of beliefs lead to
very accurate predictions. That is, there is a collective wisdom that seems to emerge.
Along the lines of Palfrey and Wang (2009), it would be interesting to give subjects
the opportunity to interact (i.e. share their predictions) and then study how they in-
corporate this new information into their predictions. Finally, our results show that
subjects who use simpler rules for belief updating less frequently make mistakes and,
somewhat surprisingly, are often more accurate than those using more complicated
models. Indeed, while estimating more complicated models generally led to a signif-
icantly higher log-likelihood, the predictive accuracy of such models often suffered
in comparison to their “simpler” counterparts.
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Appendix A: Instructions

The following are the instructions used in the experiment reported in the paper.

A.1 General instructions

Welcome and thank you for coming today to participate in this experiment. The pur-
pose of this experiment is to learn how people make decisions in certain very simple
settings.

After this experiment, another experiment will take place. The precise details of
that experiment will be explained to you at the appropriate time. Depending on your
choices you will earn money, which will be paid at the end of the experiment. The
exact method of calculating your final payment will be described below.

We ask that you remain silent throughout the experiment. If, at any time, you
have a question, please ask the session coordinator. Failure to comply with these
instructions means that you will be asked to leave the experiment and all earnings
will be forfeited.

In the experiment it is more convenient to work with points rather than dollars.
At the end of the experiment, the total number of points earned will be converted to
dollars. The exact conversion factor is the following:

20 points = $1.00



200 K. Hyndman et al.

A.2 A previous experiment

In a previous experiment, we had two subjects play the following game for 20 periods.

A1 A2 A3

A1 51,30 35,43 93,21
A2 35,21 25,16 32,94
A3 68,72 45,69 13,62

One of the subjects had the role of the row player, while the other had the role
of the column player. In each of 20 periods, the two subjects simultaneously chose
an action—either A1, A2 or A3. The actions taken by the row and column players
in each period determine the payoffs for that period. Each of the nine boxes above
represent the nine possible action combinations. In each box, the first entry represents
the payoff for the row player, while the second entry represents the payoff for the
column player.

To understand how to calculate the payoffs for this game, suppose that the row
player chose A2 and the column player chose A3. In this case, the row player would
have earned 32 points and the column player would have earned 94 points.

The subjects who have played this game before were recruited just as you were
today by the CESS lab recruiting program. Hence they are NYU undergraduates just
as you are. They played the game for 20 periods and we have recorded their choices
in each of the 20 periods of their interaction. That means that in each of the 20 periods
the row player has made one of his or her three possible choices A1, A2, or A3 as
has the column chooser. Your task in this experiment is to predict the actions of the
COLUMN player in each of the 20 periods of his or her interaction with the row
player he or she was matched with. We stress that these two subjects were paired
with each other for the entire 20 periods. We will now explain this task to you in
more detail as well as how you will be paid for your decisions.

A.3 Predicting other people’s choices

In each period, but before learning what actually happened, you will be asked the
following three questions which will appear on the computer screen in front of you:

• On a scale from 0 to 100, how likely do you think it is that the COLUMN player
will take action A1?

• On a scale from 0 to 100, how likely do you think it is that the COLUMN player
will take action A2?

• On a scale from 0 to 100, how likely do you think it is that the COLUMN player
will take action A3?

Your response to each question must be a number between 0 and 100. Moreover,
the sum of the three numbers that you provide must be exactly 100.

For example, suppose that you think there is a 30% chance that the COLUMN
player will take action A1, a 25% chance that the COLUMN player will take action
A2 and a 45% chance that the COLUMN player will take action A3. In this case, you
will enter 30 in the first box on the left-hand side of the screen, 25 in the second box
and 45 in the and third box. The exact computer screen you will see is given below.
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After you have submitted your predictions, you will be taken to a waiting screen on
which you will see the actions actually chosen by both the ROW and the COLUMN
players. Based on your predictions and the action actually chosen by the COLUMN
player, you will earn experimental points according to a specific payoff function,
which we now explain. Suppose your predictions are as in the above example. Fur-
thermore, suppose that in the current period the COLUMN player actually chose A2.
In that case your payoff for predicting the COLUMN player’s action will be:

Payoff = 5

[
2 −

(
30

100

)2

−
(

1 − 25

100

)2

−
(

45

100

)2]

In other words, we will give you a fixed amount of 10 points from which we will
subtract an amount which depends on how inaccurate your prediction was. To do this,
we find out what choice the COLUMN player made. We then take the number you
assigned to that choice—in this case 25% on A2—subtract it from 100%, square it
and multiply by 5. Next, we take the number you assigned to the choices not made
by the COLUMN player—in this case the 30% you assigned to A1 and the 45% you
assigned to A3—square them and multiply by 5. These three squared numbers will
then be subtracted from the 25 points we initially gave you to determine your final
point payoff. Your point payoff will then be converted into dollars at the conversion
factor as given above.

Note that since your prediction is made before you know the choices of both the
row and column players, the best thing you can do to maximize the expected size of
your prediction payoff is to simply state your true prediction about what you think
the COLUMN player will do. Any other prediction will decrease the amount you can
expect to earn as a payoff.

Note also that you cannot lose points from making predictions. The worst thing
that could happen is you predict that the COLUMN player will choose one particu-
lar action (e.g., A2) with 100% certainty but it turns out that the COLUMN player
actually chose a different action (e.g., A3). In this case, you will earn 0 points. In all
other situations, you will earn a strictly positive number of points.

A.4 The computer screen

On your computer screen, in each period you will see screen displayed in Fig. 7.
You make your predictions by entering a response to each question on the bottom

left-hand side of the computer screen. To submit your predictions simply press [OK];
you will then be taken to a waiting screen, which will be shown below.

Your responses to these three questions must each be numbers between 0 and 100
and the three numbers must sum to 100. Your response may contain at most 1 number
after the decimal point.

On the bottom right-hand side, you will see a reminder message as well as all of
your previous predictions and a calculator button, while on the upper right-hand side
of the computer screen you will see the actions chosen by the ROW and COLUMN
players in each of the previous periods as well as your past prediction.

After you have made your predictions, you will be taken to a waiting screen
(Fig. 8). On this screen, you will see the actions that the ROW and COLUMN play-
ers actually made for that period as well as the number of experimental points they
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Fig. 7 Screenshot indicating where decisions are made

Fig. 8 Screenshot indicating the decisions made by the actual players as well as the subject’s earnings
based on their decision
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earned for that period. You will also see the number of points that you earned for
making your predictions.

In this example, the row player chose action A1 and the column player also
chose A1. For this period, the ROW player earned 51 points while the COLUMN
player earned 30 points. At the beginning of the next round, at the right-hand side of
the screen, it will be marked that each player chose A1 in period 1.

This concludes one round. In every round, except the 20th, a new round will pro-
ceed in exactly the same manner.

A.5 Final payment

Your final payment for the experiment will be determined as follows. We will sum
the number of points you earned in each of the 20 rounds that you played. This
number will then be converted back into dollars at the rate of $1 = 20 points. This
will be combined with your $7 participation fee to come up with your final payment.
Payments will be made privately at the conclusion of the two experiments.
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