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1 Introduction

“......decline in the death is an indispensable prerequisite for modern economic growth. ”

Simon Kuznets (1973).

Two of the most salient aspects of the process of economic growth are the decline in

mortality and the growth of investment in human capital. These phenomena are visible in

both long-term historical data for the countries that developed early as well as broadly, and

in more accelerated form, in the post World War II period. Over the nineteenth century,

for example, life expectancy at birth in England rose from 37.3 years to 48.2 years, and by

1930 it had reached 60.8. The average number of years of schooling rose from 2.3 for the

cohort born 1801-5 to 9.1 for the cohort born 1897-1906.1 Averaging across lower income

countries, life expectancy at birth rose from 42.2 in 1950 to 63.3 in 1990. Gross secondary

school enrollment increased from 17.1% in 1960 to 46.9% in 1990.2

Both the decline in mortality and the increase in schooling are intimately related to several

aspects of the growth process. Mortality fell both directly because of higher incomes (which

led to better nutrition) and because of advances in health technology. Mortality decline, in

turn, triggered the process of demographic transition, in which, with a varying lag, fertility

rates fell.3 The increase in human capital accumulation has been attributed to a increase in

the return to schooling (Foster and Rosenzweig, 1996; Mincer, 1996). Higher investment in

human capital has in turn been linked to changes in fertility behavior, via a quality-quantity

tradeoff (Becker and Lewis, 1973); to an increase in the growth rate of technology (Lucas,

1988); and directly to a higher level of output (Mankiw, Romer, and Weil, 1992).

In this paper we look at a direct relationship between mortality and human capital ac-

cumulation. Specifically, we study the effect of mortality decline in raising human capital

accumulation by increasing the horizon over which investments in schooling will be paid off.

Although much of the decline in mortality has been in infancy, before any investment in

schooling will have taken place, there have also been significant declines in mortality later in

life. For example in Sweden, male life expectancy at age five rose from 48.3 to 57.7 between

1800 and 1900. Over the same period life expectancy at birth rose from 35.9 to 54.3. In

1Livi-Bacci (1997), table 4.3. Matthews, Feinstein, and Odling-Smee (1982), table E.1.
2Life expectancy is from Schultz (1997). School enrollment is from World Bank (1998). The samples used

in the two sources differ slightly.
3See Easterlin (1996), ch. 6, for a discussion of these issues.
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India, male life expectancy at age 10 rose from 39.0 to 48.8 over the period 1951-71. Over

the same period, male life expectancy at birth rose from 32.4 to 46.4.4

The effect of mortality on education has been investigated both empirically and theoret-

ically. Ram and Schultz (1979) argued that improvements in mortality were an important

incentive to increase investment in education, and that the post-war experience of India was

consistent with this incentive effect being significant. Preston (1980) calculated the degree

to which reductions in mortality raised the internal rate of return to investments in educa-

tion, but found that increases in the return to schooling were not sufficient to explain large

increases in enrollment. Meltzer (1992) extended Preston’s work, arguing that the elasticity

of enrollment with respect to rate of return was sufficiently large that mortality-induced in-

creases in returns could indeed explain large movements in enrollment. Meltzer also argued

that reductions in morbidity which have accompanied declining mortality have further raised

the return to investments in schooling.

Two papers have incorporated this effect of life expectancy into general equilibrium mod-

els. Ehrlich and Lui (1991) embedded the effect of changing mortality in an overlapping

generations model in which children provide old-age support for their parents. In the model,

improvements in longevity lower fertility, raise educational investment, and raise the long run

growth rate of output. Ehrlich and Lui also presented evidence on the effects of mortality

on growth and fertility that is consistent with their model. Meltzer (1992) extended Becker,

Murphy, and Tamura’s (1990) model of human capital, fertility, and growth by introducing

a relationship between mortality and human capital investment. He showed that mortality

decline may promote economic growth through an increase in the educational investment. In

both the Ehrlich-Lui and Meltzer models, time is discrete, and individuals live a maximum

of three periods.

In this paper we examine the relation between mortality and human capital investment

using a variant of the continuous time, overlapping generations model of Blanchard (1985).

Individuals face a constant probability of death, and choose an optimal level of schooling to

maximize the discounted value of expected consumption. By using a simple demographic

structure we are able to aggregate across generations and solve for general equilibrium. We

can thus sort out the direct effects of mortality decline on capital accumulation, interest rates,

and labor supply from the effects of increased schooling that is induced by mortality decline.

4Keyfitz and Flieger (1968), Ram and Schultz (1979).
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Further, by using a model with realistic time periods, we are able to use estimates of the

return to schooling in a calibrated version of the model.

The rest of this paper is structured as follows. In Section 2, we introduce our model of

schooling and growth. We first analyze the model in partial equilibrium, with constant wage

and interest rates, and then turn to general equilibrium analysis, concentrating on the steady

state. In Section 3 we conduct comparative static analyses of the effect of mortality change

on the steady state, comparing the case where schooling responds to changes in mortality

to the case where schooling is fixed. We present analytic results, followed by results from a

calibrated version of the model using realistic estimates of the return to schooling. Section 4

concludes.

2 A Model of Schooling and Growth with Finite Horizons

2.1 The Structure of the Model

We consider a continuous time, overlapping generations model. Individuals face a probability

of dying per unit time, ρ, which is constant throughout life. Similarly, an individual’s life

expectancy, 1/ρ, is constant.

There are two important aspects to our approach to modeling mortality. The first is that

the probability of death is constant at all ages, which is obviously unrealistic, since it fails to

capture some life-cycle aspects of human experience, but is made for analytic convenience.

The second is that reductions in mortality take the form of a lowering of death probabilities

at all ages (not just in old age, for example). This aspect of our approach is more consistent

with the data.5

At every instant of time a new cohort is born. Even though there is individual uncertainty

about the time of death, it is assumed that population is large enough that the size of a

cohort can be viewed as declining deterministically through time. To normalize the size of

population, we assume the size of a new cohort is also ρ. A cohort born at time b has a

5In Sweden, for example, the probability of death at age 25 fell from .044 in 1800 to .023 in 1900 (a
reduction of 48%) and to .005 in 1985 (a further reduction of 78%). The probability of death at age 45 fell
from .093 in 1800 to .026 in 1900 (72%) and to .018 in 1985 (31%). At age 65 the probability of death fell
from .236 to .140 (41%) to .127 (9%). In Chile, the probability of death at age 25 fell from .099 in 1909 to
.011 in 1980 (a reduction of 89%). The probability of death at age 45 in the same years fell from .120 to .038
(68%)and the probability of death at age 65 fell from .244 to .174 (29%) (Keyfitz, Preston and Schoen (1972)
and Keyfitz and Flieger (1968, 1990).
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size as of time t equal to ρe(−ρ(t−b)), and the size of the total population at any time t is
t∫

−∞
ρe(−ρ(t−b))db = 1.6

Individuals are born with no wealth. They are endowed with one unit of time per period,

and receive utility only from consumption. They invest in education at the beginning of

their lives, then work until they die.7 Their wages depend on their human capital, which is

a function of schooling. The only cost of schooling is the foregone earnings.8

The earnings of an individual who is no longer in school are given by

E = wh(s), (1)

where w is the wage per unit of human capital and h() gives the quantity of human capital

as a function of schooling. The standard analysis in the labor literature is to estimate a

“structural earnings function” of the form

ln(E) = constant + f(s). (2)

These two equations imply that human capital will be given by h = ef(s), while the

constant term in equation (2) will correspond to ln(w). The standard assumptions about the

f() function (Willis, 1986) are that

fs > 0, fss < 0. (3)

As in the models of Yaari (1965) and Blanchard (1985), uncertainty about the date of an

individual’s death creates the need for an annuity contract. Older individuals who have ac-

cumulated wealth face the possibility of dying before they can spend it. Insurance companies

will allow individuals to trade claims on their wealth in the event that they die for payments

if they live. Under the assumption that the annuity business is perfectly competitive, and

that the market interest rate is r, the interest rate paid on these annuities will be r + ρ.

6Introducing exogenous population growth in the form of larger new cohorts over time would be
straightforward.

7In the model there is no constraint that prevents individuals from going to school part time and working
part time, but such behavior can be shown not to be optimal.

8In a more complex model, education choices would be made by parents who maximize an intergenerational
utility function, and choices over education would be integrated with the fertility decision. The key effect on
which we focus − that increasing life expectancy would raise the period over which investments in schooling
are paid off, and thus raise the optimal quantity of schooling − would still be present in such a model.
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In addition to these standard annuity contracts, however, there is a second sort of annuity

in this model. Individuals must borrow in the early part of their lives to pay for consumption

while they are getting an education, and there is a risk that they will die before they are able

to repay their loans. Thus there will be a market for annuitized loans, in which borrowers

will pay an interest rate of r + ρ, but in which the loan will be forgiven if the borrower dies.9

2.2 Individual’s Maximization Problem

Denote consumption, assets and human capital of an individual who born at time b as of time

t as c(b, t), k(b, t) and h(b, t) respectively. Individuals born at time b belong to generation b.

Until aggregation over individuals in different generations, we can drop b index and focus on

individual consumption, assets, and human capital.

Individuals maximize expected utility from consumption.

max

∞∫
b

[
ln(c(z))e−(θ+ρ)(z−b)

]
dz, (4)

where θ is the pure rate of time discount and e−ρ(z−b) is probability of being alive at time z.

We assume log utility for convenience.10

The accumulation of assets is described by the equations:

k̇(z) = (r + ρ)k(z)− c(z) z ∈ [b, b + s]. (5)

k̇(z) = (r + ρ)k(z) + hw − c(z) z ∈ [b + s,∞]. (6)

k(b) = 0. (7)

9Obviously annuity contracts of this form are a modeling device which is not meant to be taken literally.
These annuity contracts can be seen as a proxy for a number of arrangements which will yield similar results.
The same result could be obtained in a model in which education levels are chosen by an infinitely-lived
dynasty, composed of finitely-lived members, as in Barro and Sala-i-Martin (1995), chapter 9. The problem
is to choose s to maximize

∞∫
s

e−(r+ρ)twef(s)dt =
wef(s)−(r+ρ)s

r + ρ
.

This yields (13) as a first order condition.
10Results using CRRA utility were qualitatively similar.
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Individuals maximizes (4) subject to (5),(6), and (7), taking w and r as given. The

optimal path of consumption is given by

ċ(z) = [(r + ρ)− (θ + ρ)]c(z) = [r − θ]c(z), (8)

which can be re-written as

c(z) = c(b)e(r−θ)(z−b). (9)

Using equations (5)-(7) and (9), we can solve for the differential equations characterizing

the path of assets during the two phases of an individual’s life. During an individual’s

schooling (ages 0 through s), the evolution of assets is given by

k(z) =
c(b)

(θ + ρ)

[
e(r−θ)(z−b) − e(r+ρ)(z−b)

]
. (10)

For a working individual, the path of assets is given by

k(z) =
−wh

(r + ρ)
+

c(b)
(θ + ρ)

[
e(r−θ)(z−b)

]
+

wh

(r + ρ)

[
e(r+ρ)(s−z)

]
− c(b)

(θ + ρ)

[
e(r+ρ)(z−b)

]
. (11)

By imposing transversality, we can solve for the initial value of consumption, c(b):

c(b) =
(θ + ρ)
(r + ρ)

[
wef(s)e−(r+ρ)s

]
. (12)

By maximizing the initial level of consumption with respect to s, individual chooses the

optimal level of schooling. The first order condition is

fs = r + ρ, (13)

which says that an individual goes to school until his marginal rate of return from schooling

is equal to the effective interest rate. This is the condition from Rosen’s model of optimal

schooling (See Willis, 1986). Substituting (12) into (9), (10), and (11), an individual who

born at time b will have consumption and assets at time t given by
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c(b, t) =
(θ + ρ)
(r + ρ)

[
wef(s)e−(r+ρ)s

][
e(r−θ)(t−b)

]
t ∈ [b,∞), (14)

ksc(b, t) =
(wef(s)e−(r+ρ)s)

(r + ρ)

[
e(r−θ)(t−b) − e(r+ρ)(t−b)

]
t ∈ [b, b + s], (15)

kwk(b, t) =
wef(s)

(r + ρ)

[
e−(r+ρ)se(r−θ)(t−b) − 1

]
t ∈ [b + s,∞), (16)

where ksc is the wealth of a person who is still in school and kwk is the wealth of a person who

is working. Assuming that r > θ, (which we show must hold true in general equilibrium),

consumption will be rising over the course of an individual’s life.

Figure 1 shows an individual’s wealth as a function of age.11 Wealth is zero at birth, and

it declines while he is in school, reaching a minimum at the point in time where he starts

working. During his early working years, the individual pays down his debt, and eventually

begins to hold positive wealth. Although wages are constant during working life, consumption

is increasing. This consumption path in turn requires that the level of wealth also increase

over the course of working life. Unlike a standard life-cycle model in which wage income ceases

at some point during life and in which there is a deterministic date of death, individuals in

this model will continue to work and to accumulate assets as long as they live. They hold

wealth in order to take advantage of the difference between the interest rate and their rate

of time discount, even though this means that they will die without having consumed all of

their wealth.

2.3 General Equilibrium and Aggregation

The production function for the total output is

Y (t) = AK(t)αH(t)1−α, (17)

where K(t) denotes total physical capital and H(t) denotes the total human capital of workers

in the economy at time t. From the maximization problem of the perfectly competitive firms,

11The figure is drawn using values of the parameters and endogenous variables in Table 1.
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the wage rate per unit of individual human capital, w, is the marginal product of human

capital and the interest rate is the marginal product of physical capital:12

w(t) = A(1− α)

(
K(t)
H(t)

)α

. (18)

r(t) = Aα

(
K(t)
H(t)

)α−1

. (19)

To derive the aggregate variables we sum over generations. Aggregate consumption at

time t will be;

C(t) =
t∫

−∞

c(b, t)ρe−ρ(t−b)db. (20)

Recall that the size of the generation born at b as of t is ρe−ρ(t−b). Integrating this

expression yields

C(t) =
(θ + ρ)ρ

(r + ρ)(ρ− r + θ)

[
wef(s)e−(r+ρ)s

]
. (21)

In the appendix we show that in equilibrium, θ < r < ρ + θ. The intuition for this

result is as follows. If r ≤ θ, individuals will want consumption to decline over the course

of their lives. This would imply that the optimal policy would be to always be in debt, and

so there will be no capital accumulation.13 If ρ < r − θ, by contrast, then the growth rate

of consumption among the individuals within a cohort who do not die will be higher than

the rate at which members of the cohort are dying, in which case total consumption of the

cohort will be rising over time, and aggregate consumption will be infinite.

Aggregate human capital at time t will be

12We assume zero depreciation for convenience.
13This is a result of finite horizons (i.e an overlapping generations structure). To see the intuition, ignore

the schooling aspect of our model. If individuals had discount rates equal to the interest rate, then they would
want flat consumption. Given that the wage is constant in steady state, this would imply simply consuming
wages in every period and never accumulating capital. The situation is different in an infinite horizon setting
(i.e a Ramsey model). In this case, constant consumption in the steady state indeed implies that θ = r. See
Blanchard and Fisher (1989), p. 124.
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H(t) =
t−s∫

−∞

h(b, t)ρe−ρ(t−b)db. (22)

Notice that the upper limit of the integral is t − s instead of t, since people born in the

last s periods are still in school and are thus not supplying their human capital to the labor

market. This integral implies (remembering that h is only a function of schooling):

H(t) = ef(s)−ρs. (23)

Lastly, the aggregate capital stock as of time t will be;

K(t) =
t−s∫

−∞

kwk(b, t)ρe−ρ(t−b)db +
t∫

t−s

ksc(b, t)ρe−ρ(t−b)db. (24)

Integrating (24) yields;

K(t) =
wef(s)

(r + ρ)

[(
ρ

ρ− r + θ
+

ρ

r

)
e−(r+ρ)s −

(
1 +

ρ

r

)
e−ρs

]
. (25)

2.4 Existence and Uniqueness of the Steady State

In steady state, the aggregate quantities of consumption, C, capital, K, and human capital,

H, the wage, w, interest rate r, and the age at which individuals leave school, s, are all

constant. Equations (13), (18), (19), (21), (23), and (25) implicitly determine the steady state

values of these endogenous variables.

To solve the model explicitly, we need to specify a functional form for f(s), the return on

schooling, which is defined in equations (2) and (3). To derive our analytic results, we use a

logarithmic form: f(s) = ln(s). In our calibration we use a more realistic form of the f(s)

function. The logarithmic functional form implies that the optimal quantity of schooling is

simply

s =
1

r + ρ
. (26)

We use an asterisk to designate steady-state values. Dividing equation (25) by (23) gives

physical to human capital ratio in steady state:
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K∗

H∗ =
w∗

(r∗ + ρ)

[(
ρ

ρ− r∗ + θ
+

ρ

r∗

)
e−r∗s∗ − 1− ρ

r∗

]
. (27)

Substituting (18), (19) and (26) into (27) gives the following equality which should hold

at the steady state:

ρ(ρ + θ)(1− α)
(ρ + r∗)(ρ + θ − r∗)

= e
r∗

ρ+r∗ . (28)

In the appendix we show that there exists a unique value of r∗ that satisfies this equation.

This also implies unique steady state values for K∗,H∗, C∗, w∗, s∗.

An important implication of equation (28) is that the interest rate is not dependent on A,

the parameter which measures productivity. Further, this implies that the level of schooling,

which depends on the interest rate and the level of mortality, will also not be affected by

changes in productivity.

The intuition for this result is as follows. First, note that changes in productivity have

offsetting direct effects on the optimal quantity of education. Higher productivity raises the

costs and benefits of education by the same factor. Further, increases in productivity do

not affect the quantity of schooling via the interest rate: a standard property of neoclassical

growth models is that the interest rate is constant along balanced growth paths with changing

technology.

A further implication of the result that schooling does not depend on the level of produc-

tivity is that the model which we have examined in this paper can easily be combined with

a model of growth due to changing technology. For example, in our calibrations in section

3.2, we show that an increase in life expectancy from age 33 to age 83 can raise consumption

via the channels we study by a factor of 2.6. Suppose that one were examining a country

in which life expectancy had risen by this much over a period of 100 years, but in which

consumption had risen by a factor of 8. Of the annual growth rate of consumption of 2.10%,

the change in life expectancy could account for only 0.96% per year. The remaining growth

could then be accounted for by the growth of A. Assuming a value of α = 0.3, this would

imply that A grew at a rate of .80% per year.
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3 Comparative Static Results

There are three exercises that we want to conduct with our model. First, we want to examine

the effect of changing mortality on the equilibrium values of all of the endogenous variables.

Second, we want to compare the general equilibrium case to the case where schooling is held

constant. This will allow us to assess the importance of the effect of mortality on schooling

on which we have focused. Finally, we want to compare the effect of mortality on schooling

in general equilibrium to the partial equilibrium case in which the wage and interest rates

are held constant. This will highlight the importance of examining the determination of

schooling in a general equilibrium framework, and will also allow for a comparison of the

effects of mortality on schooling and consumption in a closed versus an open economy.

The first half of this section examines these issues analytically. The second half uses a

realistically specified model for the return to schooling to produce quantitative results.

3.1 Analytical Results

All of the results in this section refer to steady states, so for convenience we suppress the

asterisk indicating steady state. In the appendix we show that r varies positively with

ρ, as would be expected from the simple intuition that shorter lives lead to lower wealth

accumulation, and thus to a higher marginal product of capital.

dr

dρ
> 0. (29)

Once this result is established, results for the other endogenous variables follow quickly.

From equation (26), it is straightforward to show that;

ds

dρ
= −dr/dρ + 1

(r + ρ)2
< 0. (30)

From equations (23) and (26), it follows that;

dH

dρ
= − e

− ρ
r+ρ

(r + ρ)2

(
r(dr/dρ) + 1

r + ρ
+ 1

)
< 0. (31)

Equation (19) implies the physical to human capital ratio is, K/H = (r/Aα)1/α−1. Thus

it is easy to show;
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d(K/H)
dρ

= − 1
Aα(1− α)

(
r

Aα

) 2−α
α−1 dr

dρ
< 0. (32)

Equation (18) together with the above expression for d(K/H)/dρ implies;

dw

dρ
= −

(
r

Aα

) 1
α−1 dr

dρ
< 0. (33)

Since K = (K/H)H, dK/dρ will be;

dK

dρ
= H

d(K/H)
dρ

+ (K/H)
dH

dρ
,

dK

dρ
= −e

− ρ
r+ρ

r + ρ

[(
1

Aα(1− α)

(
r

Aα

) 2−α
α−1 dr

dρ

)
+

(
r

Aα

) 1
α−1

(
r

(r + ρ)2

(
dr

dρ
+1

)
+

1
r + ρ

)]
< 0.

(34)

Lastly, the general equilibrium response of aggregate consumption to a change in ρ, follows

from the fact that aggregate consumption, C, is equal to aggregate output, Y, at the steady

state (since there is no depreciation , population growth, or technical change). Thus:

dC

dρ
=

dY

dρ
= Aα

(
K

H

)α−1
dK

dρ
+ A(1− α)

(
K

H

)α
dH

dρ
< 0, (35)

which follows directly from equations (31) and (34).

3.1.1 The Effect of Endogenous Schooling

In the model of Blanchard, in which there is no schooling at all, a reduction in mortality

raises the steady state levels of capital and consumption, just as it does in our model. Thus,

to show the importance of endogenous schooling we need to show that the general equilibrium

effects of mortality change are larger when schooling adjusts than when it stays constant.

This is the issue we examine in this section. We show that the effect of a change in mortality

on human capital, physical capital, and consumption is smaller in absolute value in the case

where schooling is held constant than in the case where schooling varies endogenously.

We begin by calculating dr/dρ holding s constant at its general equilibrium level. Per-

forming calculations similar to those in the appendix, one can show that
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dr

dρ

∣∣∣∣∣
s̄=s∗

=
r(r − θ)(2ρ + θ)

(3r − ρ− 2θ)ρ(ρ + θ)
> 0. (36)

With constant s, dH/dρ becomes:

dH

dρ

∣∣∣∣∣
s̄=s∗

= − e
− ρ

r+ρ

(r + ρ)2
< 0, (37)

which is clearly smaller in absolute value than the result with endogenous s in equation (31).

The response of capital stock becomes:

dK

dρ

∣∣∣∣∣
s̄=s∗

= −e
− ρ

r+ρ

r + ρ

[(
1

Aα(1− α)

(
r

Aα

) 2−α
α−1 dr

dρ

)
+

(
r

Aα

) 1
α−1

(
1

r + ρ

)]
< 0, (38)

which is less than the value in equation (34).

Finally, since both physical and human capital respond less to a change in mortality in

the case of fixed schooling than in the case where schooling is endogenous, the same must be

true of output and thus consumption.

3.1.2 Partial vs General Equilibrium

Our last goal is to compare the general equilibrium response of schooling and consumption

to a change in mortality to the response of these variables in case where wages and interest

rates are held fixed − conditions which would hold, for example, in a small, open economy

subject to factor price equalization.

From (26), holding r constant, we can calculate the partial equilibrium response of school-

ing to a change in the death rate:

ds

dρ

∣∣∣∣∣
r̄

= − 1
(r + ρ)2

< 0, (39)

which is clearly smaller in absolute value than the general equilibrium result in equation (30).

By the same token, the partial equilibrium response of aggregate human capital stock to a

change in ρ is:
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dH

dρ

∣∣∣∣∣
r̄

= − e
− ρ

r+ρ

(r + ρ)2

(
r

r + ρ
+ 1

)
< 0, (40)

which is smaller in absolute value than the derivative in equation (31).

To show how the response to a change in mortality compares in the partial and general

equilibrium in the case of consumption, first notice that we can write equation (21) as follows.

C =
w(ρ + θ)ρ

(r + ρ2)(ρ + θ − r)e
. (41)

It is straightforward to show that the partial equilibrium derivative is negative,

dC

dρ

∣∣∣∣∣
r̄,w̄

= − w(ρ + θ)ρ
(r + ρ2)(ρ + θ − r)e

[
2θ + ρ− r

(ρ + θ)(ρ + r)
+

r − θ

ρ(ρ + θ − r)

]
< 0. (42)

Second, by using the two equations above one can show that,

dC

dρ
=

dC

dρ

∣∣∣∣∣
r̄,w̄

+
dr

dρ

[
1

ρ + θ − r
− 2

r + ρ
− α

(1− α)r

]
. (43)

In the appendix we show the existence of some tighter bounds for r so that the term in

the square brackets can be shown to be positive. 14 The above equation, together with (29)

and (35), imply that the partial equilibrium response of consumption to a change in mortality

is greater in absolute value then the general equilibrium response.

3.2 Calibration

Our analytical results were derived by assuming a specific form for the function f(s), the

derivative of which is the return to schooling. We assumed f(s) = ln(s). This function

satisfies the properties assumed in the schooling models of Mincer and Rosen (Willis, 1986),

specifically fs < 0, fss > 0. It is not particularly realistic, however. In this section we examine

our results using a more realistic earnings function. The price of this realism is that we are

not able to produce analytic solutions.

Bils and Klenow (1996) posit the following form for the f(s) function:

14The algebra for this result is available from the authors upon request.
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f(s) =
Θ

1−Ψ
s1−Ψ. (44)

The Mincerian return to schooling is thus f ′(s) = Θ/sΨ. Using data from Psacharopoulos

(1994) on a sample of 56 countries, Bils and Klenow regressed estimates of Mincerian returns

on country schooling levels to estimate Ψ and Θ.15 Their estimates are Ψ = .58 and Θ = .32.

Using these estimates for the return to schooling, we examine the steady state of our

model for two different values of ρ, corresponding to two different values of life expectancy.

In table 1, we use ρ = .03, corresponding to a life expectancy of 33 years. In table 2, we use

ρ = .012, corresponding to a life expectancy of 83 years. These values bracket the observed

experience of life expectancy in recent history. Since our results on the effects of mortality

reduction on schooling do not differ greatly between the two tables, we are confident that the

choice of ρ is not affecting our conclusions.

The second column of each table shows the steady state values of the endogenous variables

s, H, r, w, and K, as well as two measures of consumption: the average level of consumption,

C, and the level of consumption in the first instant of life, c(b). The third column shows the

elasticities of each of these variables with respect to ρ, the mortality probability. All of the

elasticities in tables 1 and 2 have the same sign as in our analytic exercise.16 Note that an

increase in ρ corresponds to a decline in life expectancy. In our discussion of tables 1 and 2

we find it more natural to talk about the effects of increased life expectancy, and so all of the

signs of the elasticities in the discussion below will be the opposite of those in the tables.

The tables show that the effects of reduced mortality are economically significant. At

low life expectancy (table 1), a one percent reduction in mortality will lead to a one percent

increase in the length of schooling. For an economy with high life expectancy this effect is

diminished only slightly: a one percent increase in life expectancy leads to an increase in

schooling of seven-tenths of one percent. Overall, an increase in life expectancy from 33 years

to 83 years leads to the length of schooling more than doubling. Thus, although the increase

in longevity could not account for all of the increase in schooling that has been observed, it

15Specifically, they estimate
ln(λ̂) = ln(Θ)−Ψln(s) + ε,

where λ̂ is the estimated return to schooling and ε is an error term.
16We performed a numerical analysis using the log specification, which was used to derive analytical results

in section 3.1. The results were quite similar to those presented here.
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can explain a significant fraction. 17

At both high and low life expectancies, there is a relatively large response of both total

human capital and total physical capital to improvements in life expectancy, and there are

correspondingly small effects of life expectancy on the interest rate and on the wage per

unit of human capital.18 At both high and low life expectancies, the elasticity of average

consumption with respect to mortality decline is roughly equal to one. Some of this higher

average consumption is due directly to lower mortality: since consumption is rising over the

course of life, higher life expectancy will, ceteris paribus, lead to higher average consumption.

But most of the increase in average consumption, the table shows, is due to higher c(b), that

is, higher consumption at the beginning of life.

The fourth columns of tables 1 and 2 show the elasticities of the endogenous variables with

respect to mortality under the assumption that the length of schooling is held constant. The

variable s is set at the value that holds in general equilibrium. By comparing the second and

third columns we are thus able to look directly at the role being played by the endogenous

variation in schooling. As can be seen from the table, even when schooling is held constant,

there is an increase in H, the total quantity of human capital supplied, in response to a

reduction in mortality. This is because when mortality is low, holding the length of schooling

constant, a larger fraction of the population will be composed of people who have completed

their schooling. But the change in H when s is held constant is only one-third as large

as when s is allowed to vary. Similarly, the size of the capital stock increases directly in

response to a decline in mortality, but the size of this increase is much larger in the case

where schooling varies endogenously.

The increase in average consumption in response to a reduction in mortality is roughly

twice as large in the case where schooling varies endogenously as in the case where schooling

is held fixed. This comparison shows the important role that is played by the endogenous

adjustment of schooling. It is interesting to note, however, that the increase in initial con-

sumption is larger in the case where schooling is held fixed than in the case where schooling

17Since future improvements in mortality in the most developed countries are unlikely to match those that
took place over the last 150 years, our model implies that the growth in education that has been witnessed
over this period will not be repeated. Jones (1998) has similarly argued that the growth of human capital
accumulation over this period represents a one-time adjustment.

18One of the most important effects that we would expect from longer life expectancy would be an increase
in saving, as people expect to live into old age and thus save for life-cycle reasons. In this paper such an effect
is absent because people work until they die. In a companion paper Kalemli-Ozcan and Weil (1998) explore
this effect in a model where individuals can choose to retire if they live long enough.
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is allowed to vary. The reason for this is that when schooling does not adjust in response to

a mortality decline, the interest rate falls by more than it does in the case where schooling is

endogenous. This lower interest rate leads to a flatter path of lifetime consumption.

The fifth columns of tables 1 and 2 examine the response of schooling and consumption to

a change in mortality, under the assumption that neither wages nor interest rates change. An

important phenomenon to note here is that the change in schooling in response to mortality

decline is significantly larger in the general equilibrium case than in the partial equilibrium

case (63 percent at low life expectancy and 73 percent at high life expectancy). This is the

effect of changes in the interest rate: when mortality falls, the interest rate does so as well.

As equation (13) showed, a lower interest rate will raise the optimal quantity of schooling.19

Thus partial equilibrium analyses of the effect of mortality on schooling will miss an important

channel of causation.

One possible worry about the results presented in these tables is that some of the increase

in life expectancy that results from a decline in mortality will take place at ages where the

individual has left the labor force. Obviously these extra years of life will not affect the

incentive to acquire human capital. To check the robustness of our results to this effect, we

carried out the following experiment. We simulated a partial equilibrium version of the model,

holding the interest rate constant at its steady state value, as is done in the fifth columns

of tables 1 and 2. We then compared the elasticity of schooling with respect to mortality in

the case where there is no retirement (which exactly matches the analytic exercise carried

out in the tables) with the case where individuals stop working at age 65. In the case of low

life expectancy, the elasticity of schooling with respect to ρ moves from -.64 to -.70. In the

case of high life expectancy, the elasticity moves from -.40 to -.35. Extending these results to

a general equilibrium model would be analytically intractable, but these partial equilibrium

results give us some confidence that allowing for retirement in our model would not greatly

alter the outcome.

19Another difference between partial and general equilibrium is that the former holds constant the wage.
But changes in the wage do not have any effect on the optimal quantity of schooling, since both the opportunity
cost of and the benefits from schooling are proportional to the wage.
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4 Conclusion

Reduced mortality and increased investment in education are two of the most significant

aspects of the process of economic growth. In this paper we have examined the effects of

declining mortality on the incentive to invest in education. Higher life expectancy raises

the optimal quantity of schooling because investments in education will earn a return over a

longer period of time. The general equilibrium effect of reduced interest rates enhances this

effect.

Using empirical estimates of the return to schooling, we showed that the magnitude of

the effect of lower mortality on the length of schooling is economically significant. We also

showed that the effect of lower mortality on consumption is significantly larger in the case

where schooling is endogenous than in the case where schooling is taken to be fixed. This

is another way of showing that the mortality-induced increase in education is a important

consideration.

Our analysis leaves many questions unanswered, however. First, we have modeled the

change in mortality as being completely exogenous. Obviously, this leaves out an important

link running from higher income to lower mortality. In the context of our model, such a

link would produce a multiplier effect from exogenous shocks to either income or mortality.

For example, an exogenous shock to income would lower mortality and increase the optimal

quantity of schooling. Higher schooling would further raise income, producing a feedback

effect. While such a model could be important for analyzing the historical experience of the

richest countries, however, it must be noted that the large changes in mortality in the post-

World War II developing world were not been the product of higher income (see Preston,

1978a).

A second limitation of our analysis is that we have restricted education’s role to be

only as a factor of production, thus not allowing for any interaction between education and

technology. Indeed, our model is one in which technology is stagnant. However, recent

literature has drawn a link from increased education to a higher rate of technological progress.

Thus a more extensive model could draw a link all the way from lower mortality to more

rapid technological growth.

Finally, and possibly most significantly, our model of education and mortality has ig-

nored any interaction with the fertility decision. Lower mortality and higher education have

both been important correlates of reduced fertility. More educated parents face a higher op-
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portunity cost of child-rearing, and in a low-mortality environment, parents are more likely

to substitute child quality for child quantity. Thus lowered mortality will have mutually-

reinforcing effects that lower fertility and raise education.
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Appendix

Existence and Uniqueness of the Steady State:

Recall the reduced form steady state equation20 (28):

ρ(ρ + θ)(1− α)
(ρ + r)(ρ + θ − r)

= e
r

ρ+r .

Consider values of r between 0 and θ. In this range LHS is strictly smaller than the

RHS:

ρ(ρ + θ)(1− α)
(ρ + r)(ρ + θ − r)

=
ρ(ρ + θ)(1− α)

ρ(ρ + θ) + r(θ − r)
≤ 1− α < 1 < e

r
ρ+r .

In fact this is also true for the range 0 ≤ r ≤ ρ/2 + θ:

ρ(ρ + θ)(1− α)
(ρ + r)(ρ + θ − r)

<
ρ(ρ + θ)

(ρ + r)(ρ + θ − r)
≤ ρ + 2r

ρ + r
= 1 +

r

ρ + r
< e

r
ρ+r .

The last part follows from the fact that 1 + r
ρ+r is the first term of the Taylor series

expansion for e
r

ρ+r . The weak inequality part is true since ρ(ρ+θ)
ρ+θ−r ≤ ρ + 2r when r ≤ ρ/2 + θ.

If we consider the case when r → ρ + θ, LHS is strictly bigger than the RHS:

ρ(ρ + θ)(1− α)
(ρ + r)(ρ + θ − r)

→∞ > e
ρ+θ
2ρ+θ .

Therefore the range for r is: ρ/2 + θ < r < ρ + θ. In this range LHS begins below

RHS and ends above it, so there exists a fixed point in this range. But the question remains

whether this steady state solution is unique. To determine this, we examine the derivatives

of both LHS and RHS with respect to r. It is easy to show that:

dLHS

dr
=

ρ(ρ + θ)(2r − θ)(1− α)
(ρ + r)2(ρ + θ − r)2

> 0.

The above derivative is positive given θ < r < ρ + θ. One can also show that:

d2LHS

dr2
=

ρ(ρ + θ)(1− α)
(ρ + r)3(ρ + θ − r)3

[2(ρ + r)(ρ + θ − r) + 2(2r − θ)2] > 0,

20For simplicity we drop * which indicates the values for steady state.
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which is also positive for the given range of r. So LHS is an increasing convex function.

Examining the RHS:

dRHS

dr
=

ρe
r

ρ+r

(ρ + r)2
> 0.

So RHS is also increasing in r. We can also evaluate the second derivative:

d2RHS

dr2
= −ρ(ρ + 2r)e

r
ρ+r

(ρ + r)4
< 0.

Thus RHS is an increasing concave function. Since LHS begins below RHS and ends

above RHS for the range θ < r < ρ + θ and since both sides are monotonic increasing

functions of r, there exists a unique steady state solution.

The Tighter Bounds for r:

One can prove the existence of tighter bounds for r then the ones given above. We can

analyze the reduced form steady state equation more as we did above and can show that,

γρ + θ < r < βρ + θ,

where γ = 1− (1− α)2ρ+2θ
3ρ+2θe

− ρ+2θ
3ρ+2θ and β = 1− (1− α) ρ+θ

2ρ+θe
− ρ+θ

2ρ+θ .

These bounds follows from the fact that if r ≥ θ + βρ, LHS > RHS, i.e,

ρ(ρ + θ)(1− α)
(ρ + r)(ρ + θ − r)

>
ρ(ρ + θ)(1− α)
(2ρ + θ)(1− β)ρ

= e
ρ+θ
2ρ+θ > e

r
ρ+r ,

and also if r ≤ θ + γρ, LHS < RHS, i.e,

ρ(ρ + θ)(1− α)
(ρ + r)(ρ + θ − r)

<
ρ(ρ + θ)(1− α)

(3/2ρ + θ)(1− γ)ρ
= e

ρ+2θ
3ρ+2θ < e

r
ρ+r .

These results establish the tighter bounds.

The Effect of the Death Rate on the Interest Rate:

Examining the reduced form steady state equation, (28) again:

ρ(ρ + θ)(1− α)
(ρ + r)(ρ + θ − r)

= e
r

ρ+r .
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We also know that ρ/2+θ < r < ρ+θ, should hold to have a unique steady state solution.

Taking the logs of both sides of the above equation and re-writing it as an implicit function

will give:

G(r; ρ) =
r

ρ + r
+ ln(ρ + r) + ln(ρ + θ − r)− ln(ρ)− ln(ρ + θ)− ln(1− α) = 0.

The implicit function theorem implies:

dr

dρ
= −Gρ

Gr
,

where subscripts denote the partial derivatives. We can evaluate this piece by piece:

Gρ =

(
ρ

(ρ + r)2
− ρ

ρ2

)
+

(
1

ρ + θ − r
− 1

ρ + θ

)
= r

(
−(2ρ + r)
ρ(ρ + r)2

+
1

(ρ + θ)(ρ + θ − r)

)
,

=

(
r

ρ(ρ + r)2(ρ + θ)(ρ + θ − r)

)[
ρ(ρ + r)(r − θ) + r(ρ + θ)(r − θ) + ρ(ρ + θ)(2r − ρ− 2θ)

]
,

which is positive in the given range of r.

Gr =
ρ

(ρ + r)2
+

1
ρ + r

− 1
ρ + θ − r

=
(ρ + r)(θ − 2r) + ρ(ρ + θ − r)

(ρ + r)2(ρ + θ − r)
= −ρ(3r − 2θ − ρ) + r(2r − θ)

(ρ + r)2(ρ + θ − r)
,

which is negative for the given range of r. These imply dr/dρ > 0:

dr

dρ
=

r[ρ(ρ + r)(r − θ) + r(ρ + θ)(r − θ) + ρ(ρ + θ)(2r − ρ− 2θ)]
ρ(ρ + θ)[ρ(3r − 2θ − ρ) + r(2r − θ)]

> 0.
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Table 1: Calibration Results with Low Life Expectancy

Variables Steady State Elasticity
Value with respect to ρ

General General Equilibrium Partial
Equilibrium with fixed Schooling Equilibrium

s 10.69 –1.04 –0.64
H 5.70 –0.89 –0.32 –0.67
r 0.05 0.36 0.49
w 1.50 –0.16 –0.21
K 71.70 –1.41 –1.02

c(b) 3.66 –0.78 –0.98 –0.19
C 12.18 –1.04 –0.53 –2.54

Notes: ρ = 0.03, α = 0.3, θ = 0.03, A = 1. The fourth column holds s fixed at its steady state
value. The fifth column holds r and w fixed at their steady state values.
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Table 2: Calibration Results with High Life Expectancy

Variables Steady State Elasticity
Value with respect to ρ

General General Equilibrium Partial
Equilibrium with fixed Schooling Equilibrium

s 23.51 –0.69 –0.40
H 13.30 –0.92 –0.28 –0.66
r 0.04 0.21 0.26
w 1.67 –0.09 –0.11
K 242.92 –1.23 –0.66

c(b) 7.24 –0.69 –0.79 –0.23
C 31.80 –1.01 –0.40 –3.76

Notes: ρ = 0.012, α = 0.3, θ = 0.03, A = 1. The fourth column holds s fixed at its steady state
value. The fifth column holds r and w fixed at their steady state values.
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Figure 1: The Evolution of the Individual Capital Stock


