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Abstract

This paper analyzes qualitatively and quantitatively the effects of declining mortality
rates on fertility, education and economic growth. The analysis demonstrates that if
individuals are prudent in the face of uncertainty about child survival, a decline in an ex-
ogenous mortality rate reduces precautionary demand for children and increases parental
investment in each child. Once mortality is endogenized, population growth becomes a
hump-shaped function of income per capita. At low levels of income population growth
rises as income per capita rises leading to a Malthusian steady-state equilibrium, whereas
at high levels of income population growth declines leading to a sustained growth steady-
state equilibrium.
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1 Introduction

During the last two centuries, the life expectancy at birth doubled in most parts of the world.

For example, the life expectancy at birth in England rose from 37.3 in 1870 to 72.8 years in

1940. Averaging across lower income countries, the life expectancy at birth rose from 42.2

years in 1950 to 65.3 years in 1990.1 The increase in the life expectancy at birth mostly comes

from the reductions in infant and child mortality. This fact can be seen in figure 1 that shows

the changes in the age-specific mortality patterns of Sweden, which resemble those of other

developed countries in the nineteenth century.2 In 1780, a newborn child had a 60% chance

of living to age 20. By 1930, this figure had risen to 90%. Over the past few decades, infant

and child mortality also fell dramatically in less developed regions (LDCs) of the world.3

Accompanying the decline in the mortality rates, there has been a sharp decline in the

fertility rates (see figure 2).4 Demographers view these declines in mortality and fertility as

components of a single “demographic transition.” There are many competing theories about

why fertility declined. One theory that is favored by demographers is that the fertility decline

is due to the mortality decline, i.e., it is the response to the improved survival chances of the

offspring.5 An alternative theory proposed by Becker (1981) suggests that the demographic

transition occurs since at high levels of income, the adverse effect of the opportunity cost

of children on child rearing dominates the positive income effect. This theory, however, is

inconsistent with the simultaneous occurrence of the fertility transition in countries that

markedly differed in their levels of income.6 The old age security hypothesis, suggest that

the demographic transition is associated with the decline in the need of old-age support from

children due to the development of financial markets (Caldwell, 1976).7

Recently Galor and Weil (1999, 2000), Galor and Moav (2002) argue that the demographic

transition was triggered by the increase in the return to education that was brought about by

the acceleration of technological progress in the aftermath of the industrial revolution. The

rise in the return to skills induced a quantity-quality trade-off and a demographic transition

and therefore a fertility decline. The theory appears consistent with the significant increase

in the investment in education prior to the fertility decline in most of the developed world.

Another theory attributes the demographic transition to the decline in the gender wage gap.

Galor and Weil (1996) show that higher wages for women raise the cost of children relatively

more than they raise household income, and lead to a reduction in the number of children

that couples choose to have. Their model is consistent with the empirical studies such as
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Heckman and Walker (1990), who show a negative effect of women’s wages on birth rates and

Schultz (1985), who finds that an increase in the relative wages of women played an important

role in Sweden’s fertility transition.8 For the developing countries the dissemination of the

birth control methods is also proposed as an explanation. However studies found that family

planning programs explain only 10%-40% of the decline in fertility in developing countries

and the rest of the decline is explained by the changes in desired fertility, i.e., number of

children families wanted to have (Weil, 2001).

Which of these explanations, including the mortality decline, can explain a bigger fraction

of the decline in fertility is still an open empirical question. Answering this question is difficult

because the causal factors of the fertility decline not only have varied across countries but

also across time. To the best of my knowledge, there has been one study that try to shed

light on the issue by comparing two causal factors for a given country. Eckstein et. al.

(1998) in a study of Swedish fertility dynamics, show that the reduction in infant and child

mortality explain more than two-thirds of the fertility decline, whereas increases in the real

wages explain less than one-third of the fertility decline.

The link between the demographic transition and economic growth has been explored in

several recent studies. In general, these studies attempt to present a unified model of indus-

trialization and population dynamics that capture economic history from the early stagnation

years to the modern growth of the 1800s. They are unified in the sense that they combine

different regimes of population and economic growth within a single model.9 In general mor-

tality is not incorporated into these models and the fertility transition comes as a result of a

quality-quantity trade off via technological progress, which then causes sustained growth in

income. Therefore it is important to investigate the effect of mortality on fertility together

with its implications for economic growth.

In addition to its effect on fertility, child mortality is also important for the human

capital investment decision of parents. Lower mortality implies a higher rate of return to

education, and thus declining child and youth mortality provides an important incentive to

increase investment in the education of each child. Numerous researchers have emphasized

that human capital accumulation is the prime engine for economic growth. They have not,

however, rigorously investigated this particular mechanism through which increased survival

chances promote growth by raising the human capital investment. Some researchers argue

that since most of the mortality decline occurs in infancy, a decline in mortality should

not matter for the human capital investment decision, which comes later in life. However,
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Heckman (2000) argues that the return to human capital investment is highest before age

five. In addition, mortality changes around age fifteen are not small.10 Ram and Schultz

(1979) argue that improvements in mortality have been an important incentive to increase

investment in education at any age, and the post-war experience of India is consistent with

this incentive. Meltzer (1992) shows that mortality decline in Mexico from 1920 to 1965 is

resulted in a 9.2% increase in the rate of return, which in turn implies a 20% increase in the

enrollment rates. There is also evidence that during the faster mortality decline in developing

countries between 1960-1990 compared to developed world in nineteenth century, the growth

of human capital investment is also faster.11

I demonstrate that an exogenous mortality decline causes a fall in fertility, a fall in the

net rate of production, and a rise in educational attainment. The model relies on individuals

being prudent, as in Kimball (1990), in the face of uncertainty. If the marginal utility of

a surviving child is convex in the number of survivors, then there will be a precautionary

demand for children. As the mortality rate and thus uncertainty falls, this precautionary de-

mand decreases, causing a quality-quantity trade off.12 This uncertainty effect together with

endogenous mortality lead to the potential co-existence of two steady states, one Malthusian

and one with constant growth. Due to the uncertainty effect population growth is a hump

shaped function of the survival probability in the partial equilibrium setup, given the as-

sumption on high returns to education. By endogenizing mortality in the general equilibrium

framework population growth becomes a hump-shaped function of income per capita, given

the assumptions about the survival function. The hump-shaped pattern in the population

growth is evident in the data (see figure 3).13 However, what is important is to generate the

hump-shaped relation between the population growth rate and the level of income per capita

within a unified model, since the changing relation between these two variables is the central

piece in the long development process from a Malthusian stagnation to modern growth. The

hump-shaped pattern of population growth as a function of income per capita is the essential

factor in determining the general equilibrium outcome. At low levels of income per capita

population growth rises as income per capita rises. This in turn leads to dilution of resources

and results in lower income per capita and hence in a stable Malthusian steady state. At

this steady state, fertility is high and human capital investment is low. At high levels of

income per capita population growth falls as income per capita increases. This leads to an

unstable growth steady state with low fertility and high human capital investment, above

which sustained growth is achieved.
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The partial and general equilibrium models are also calibrated by using historical and

contemporary data on income and on survival probabilities from 36 and 86 countries respec-

tively. Survival functions for different age groups are estimated from these two data sets and

then used to calibrate the general equilibrium model, since the results from this model are

ambiguous. This estimation also provides the empirical basis for the endogenous mortality

assumption. The calibration exercise shows that the real life mortality changes allow for

multiple steady states, and the implied steady state values of the endogenous variables are

consistent with the data. The calibration of the partial equilibrium model shows that reduced

child mortality can cause economically significant changes in parents’ fertility and schooling

decisions.

The remainder of the paper is structured as follows. Section 2 introduces the basic

framework. Section 3 introduces the general equilibrium model. Section 4 presents the

estimation for the survival function followed by the calibration exercise. Conclusions are

presented in Section 5.

2 The Model

Consider an OLG economy where activity extends over infinite discrete time. In every period,

the economy produces a single homogeneous good by using two inputs: land and human

capital. The supply of land is exogenous and fixed over time. The amount of human capital

is determined by fertility and schooling choices of the individuals.

2.1 Production of Final Output

Production occurs according to a constant returns to scale neoclassical production technology.

Thus the output produced at time (t), Yt is

Yt = AHα
t X

1−α, 0 < α < 1, (1)

where Ht is the aggregate amount of human capital at time (t) and X is the fixed amount of

land. A is a fixed productivity parameter. Output per worker at time (t), yt, is

yt = Ahα
t x

1−α
t ≡ y(ht, xt), (2)
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where ht = Ht/Lt is the human capital per worker and xt = X/Lt is the resources per worker

at time (t).

The modeling of the production side follows Galor and Weil (2000) and hence it is based

on two simplifying assumptions. Capital is not an input in the production function and

return to land is zero. Thus the return to human capital per worker at time (t) equals to the

average product,

wt = Aα(
xt

ht
)1−α. (3)

2.2 Individuals

Individuals within a generation have identical preferences. Members of generation t live for

two periods: in the first period of life, (t−1), individuals consume a fraction of their parent’s

unit time endowment. In the beginning of the second period of life, (t), individuals make a

one-time fertility decision and an education decision for their children.

The preferences of the altruistic member of generation t are defined over second period’s

consumption, Ct, and the future income of the surviving children, Ntwt+1ht+1, where Nt is

the number of survivors, wt+1 is the future wage of a survivor per unit of human capital, and

ht+1 is the human capital of a survivor. Et denotes expectation as of time (t). The utility

function for a member of generation t can be written as

Ut = γ ln
[
Ct

]
+ (1− γ)Et

{
ln
[
Ntwt+1ht+1

]}
. (4)

Human capital production is given by

ht+1 = eβt ht, 0 < β < 1, (5)

where et is the education level of a child and ht is the level of parental human capital.

Households choose the number of children, nt, and the optimal amount of education, et,

to give to each child where each child’s survival is uncertain. These choices are subject to a

constraint on the total amount of time, which is unity. Assuming a fixed time cost, v ∈ (0, 1),

for every child, the time left for the household after the child-bearing cost is incurred is

1−vnt. This remaining time is divided between work to earn a wage income and educational

investment. Therefore, the budget constraint is14
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wtht(1− (v + et)nt) = Ct. (6)

With uncertainty, the number of survivors will be a random variable drawn from a bino-

mial distribution. Thus, the probability that Nt out of nt children will survive is

f(Nt;nt, qt) =

(
nt

Nt

)
qNt
t (1− qt)nt−Nt Nt = 0, 1, . . . , nt,∀t, (7)

where qt ∈ (0, 1) is the survival probability of each child. The survival probability is assumed

to be fixed over time. This assumption will be relaxed in the general equilibrium model.

The maximization of expected utility and the first order conditions are as follows.15

Et(Ut) =
nt∑

Nt=0

{
γ ln

[
Ct

]
+ (1− γ) ln

[
Ntwt+1ht+1

]}
f(Nt;nt, q). (8)

et −
β(1− γ)

(β(1− γ) + γ)
(1− vnt)

nt
= 0. (9)

−γ(v + et)
1− (v + et)nt

+
(1− γ)
nt

+
(1− γ)(1− q)

2qn2
t

= 0. (10)

The population growth rate is,

Lt+1

Lt
− 1 = Et(Nt)− 1 = (ntq)− 1, (11)

where Lt is the size of the population at time (t). Given (9)-(11), an exogenous increase in the

survival probability (a decline in mortality), causes parents to decrease their precautionary

demand for children. Thus, they choose to have fewer children and provide them with more

education. In addition at low levels of survival, an increase in the survival probability unam-

biguously raises the population growth rate, while at high levels of survival, an increase in the

survival probability causes the population growth rate to decline if the returns to education

are high enough.

Proposition:

dnt

dq
< 0, ∀q, (12)

det
dq

> 0, ∀q.
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lim
q→0

d(Lt+1/Lt)
dq

> 0, (13)

lim
q→1

d(Lt+1/Lt)
dq

< 0 if β ∼= 1,

d2(Lt+1/Lt)
dq2

< 0, ∀ q.

Proof: See Kalemli-Ozcan (2002).

Therefore there is a Malthusian outcome, where the population growth rate depends

positively on the survival chances and a non-Malthusian outcome, where the population

growth rate declines with increased survival. The transition from the Malthusian outcome

to the non-Malthusian outcome depends on the initial mortality rates and the returns to

education. When the survival probability is low (a high initial mortality rate), the population

growth rate increases with the increases in the survival rate due to the increase in the number

of survivors. When the survival probability is high, although the population growth rate may

increase due to the increased number of survivors, the negative response of fertility can offset

this effect. Most quality-quantity trade off literature assumes high returns to education by

assuming β = 1. Also Parente and Prescott (2000) argue that when β is near 1, the differences

in the time allocated to human capital investment lead to large differences in the steady state

levels of income per capita, which are consistent with the data. Therefore population growth

is a concave function of the survival probability, and if the returns to education are high

enough (β is close to 1) it is a hump-shaped function (see figure 4a).

3 General Equilibrium Analysis

What are the dynamic implications of these links from mortality to fertility and human capital

investment for economic growth? The answer to this question is important since ultimately

we want to understand the importance of the mortality decline in the development process.

To be able to perform this kind of general equilibrium exercise survival probability should be

endogenous.
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3.1 Endogenous Mortality

Both time-series and cross-sectional empirical studies have found that as income per capita

in a country rises, the mortality rates tend to fall.16 Based on this evidence, qt is assumed

to be a concave function of income per capita for the general equilibrium analysis.

qt ≡ q(yt), (14)

qy(yt) > 0 , qyy(yt) < 0.

where q(yt) maps into [0, 1], i.e., limyt→0 qt = 0 and limyt→∞ qt ≤ 1.

Given the hump-shaped relationship between the survival probability and the population

growth rate, the concave relationship between the survival probability and income per capita

results in a hump-shaped relationship between the population growth rate and income per

capita (see figure 4b). As shown in figure 4b, having a negative population growth rate (Lt+1

Lt

below 1) at high levels of income per capita, depends on the parameter values, specifically

v > (1 − γ)(1 − β).17 This inequality says the following: for a given rate of return on

education, if parents care about their own consumption a lot (high γ) or if the fixed cost

of a child, v, is high then they prefer to have fewer children in order to increase their own

consumption. On the other hand, if parents’ valuation for their own consumption and the

cost of children are fixed, then a high return to education (high β) also satisfies this condition.

If this inequality holds with equality, Lt+1

Lt
asymptotes to 1 at high levels of income per capita,

implying a population growth rate of zero. All of this is consistent with the current rates

of zero or negative population growth in some European countries. In fact, over the next

several decades much of Western Europe is forecasted to have negative population growth

rates (Bongaarts, 1999).

3.2 The Evolution of Population Growth, Human Capital, and Output

The development of the economy is characterized by the evolution of output per worker,

population, human capital per worker, and resources per worker. The evolution of human

capital per worker and population are given in (5) and (11) respectively. The evolution of

resources per worker is given by

xt+1 =
X

Lt+1
(15)
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The evolution of the economy is determined by a sequence {ht, xt, Lt}∞t=0 that satisfies

(5), (11) and (15). However, given (14), Lt and ht evolve with respect to yt via nt and et.

Therefore, substituting the equations for Lt+1

Lt
, and ht+1 into the one-period iterated form of

(2), yt+1 can implicitly be written as a function of yt,

yt+1 = Ayt

[
β(1− γ)

γ + β(1− γ)

]βα[
(1− vnt)

nt

]βα

[ntqt]α−1 ≡ ψ(yt). (16)

where qt = q(yt) and nt = n(q(yt)). Hence the evolution of the economy is governed by one

dimensional nonlinear first-order difference equation as given in (16).

Income per capita growth comes from positive human capital accumulation and negative

population growth. Both are going to be a result of the quality-quantity trade off due to

increased survival chances. Unfortunately, solving the difference equation given in (16) an-

alytically becomes intractable. Since the signs of the slope, ψ′, and the curvature, ψ′′ are

ambiguous, the above setup can give different equilibrium outcomes depending on the param-

eter values as shown in Appendix. Figure 4c shows the possible equilibrium outcomes.18 One

of these possible cases is the two steady state case: a stable Malthusian steady state (denoted

as ym), with domain of attraction from point 0 to yg, and an unstable growth steady state

(denoted as yg), above which persistent growth is achieved.

The hump-shaped pattern of population growth as a function of income per capita is the

essential factor in determining the shape of ψ(.) and thus the equilibrium outcome. The

shape of the population growth rate, as a function of income per capita, in turn depends on

the functional form q(.) and the parameter restrictions. If q(.) is concave and asymptotes to

1 at high levels of income per capita, and if the parameter restrictions for population growth

to be a hump-shaped function of qt are satisfied (high returns to education), then population

growth is a hump-shaped function of income per capita as shown in figure 4b. If in addition

the rate of population growth is negative (as shown in figure 4b) at high levels of income per

capita, then there will be two steady states. At low levels of income per capita (either side

of ym), the survival chances are low. Therefore, an increase in the survival probability, as

a result of an increase in income per capita, leads to an increase in the rate of population

growth. This results in lower income per capita via the dilution of resources per worker due

to the fixed factor of production, i.e., land. This is the stable Malthusian steady state. At

high levels of income per capita (above yg), the survival chances are high, so further increases

in the survival probability cause population growth to decline via decreased fertility. This,
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together with increased levels of human capital investment, leads to higher income per capita

and, therefore to endogenous growth. With negative population growth at high levels of

income per capita, there is sustained growth beyond the growth steady state. Thus, one

result out of this setup is that shrinking population over time generates sustained growth in

income per capita.

There is neither exogenous nor endogenous technological progress. In principle, there can

be an endogenous transition from a two steady state case to a one steady state case. The

Malthusian steady state will disappear by the upward shifts of the survival function q(.) over

time. However, since there is no technological progress, there is not an endogenous transition

between the two steady states. Also there is not sustained growth at any steady state. Both

population growth and income per capita growth are zero at the steady states, implying

aggregate income growth is also zero. What about outside the steady states? Around the

Malthusian steady state there is a Malthusian regime and the economy stays close to the

Malthusian steady state. The equal amount of increases in population and aggregate income

bring income per capita growth to zero. Therefore, the economy is trapped at the Malthusian

steady state. A negative rate of population growth above the growth steady state allows for

sustained growth in income per capita.

If there is exogenous technological progress, ψ(.) can shift up and create a jump from

a Malthusian regime to a growth regime. If there is endogenous technological progress, an

exogenous decline in mortality can serve as the basis for a unified growth model that describes

the complete transition from a Malthusian world to the modern growth era. After an initial

decline in mortality, population growth rises without the fertility response (as shown here).

But the effect of lower mortality in raising the human capital investment is present. This

leads to higher technological progress (technical change should be a function of education),

and therefore, higher income further lowers mortality. Then the fertility response comes

into play and population growth falls together with more human capital investment. As a

result, a decline in mortality can transfer an economy from a Malthusian regime to a growth

regime.19 The aim here is to focus on the role of the mortality decline in the development

process, which is ignored in the literature. While doing this, I want to abstract from all the

usual suspects, in particular from technological progress, since I want to know if the mortality

decline alone can promote growth by initiating a quality-quantity trade off.

The model depends on parameters and functional forms. It shows the possibility of two

steady states, but this is not a definite outcome. Therefore, I have to study the data to see
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what the real life mortality changes imply about the general equilibrium dynamics.

4 Estimation of the Survival Function and Calibration

In order to calibrate the model, I need to estimate the survival probability, qt, as a function

of income per capita, as in (14).

4.1 Data

I use data on the mortality rates for different age groups and data on GDP per capita from

a cross-section of countries for the years 1900 through 1997. I examined two different data

sets.20 The first, combined from various sources, covers 36 countries for 1900, 1930, 1960,

and 1990. The second, from World Bank (2000), covers 86 countries for 1960, 1980, and

1997. The first data set, termed the “historical” data set because it goes back to 1900,

features two variables: the survival rate for males, qx,it, where i denotes the country and t

denotes the time, and income per capita, yit, from Maddison (1995). The survival rate for

males represents the fraction of males who survive until age x out of 100,000 born. I use the

survival rate for ages one, five, and fifteen (x = 1, 5, 15).

The World Bank data set also has two variables: The survival rate for males and income

per capita. The survival rates are derived from the mortality rates that are conditional

to reaching a given age. The survival rates in the historical data set, however, are not

conditional. Thus, I will denote the survival rates in the World Bank data set with qc−x,it,

where c stands for the conditional survival age. The age five survival rate (x = 5, c = 1),

for example, is the probability that a newborn baby will survive until age five. The adult

survival rate (x = 60, c = 15) is the probability of a fifteen year old male surviving until age

sixty. Income per capita, yit, is just GDP per capita.

4.2 A Non-Linear Estimation of the Survival Function

By using the historical data set described above, each of the three dependent variables,

q1,it, q5,it, q15,it, is estimated as a function of income per capita. Hence, the following concave

functional form is estimated cross-sectionally for each of these survival probabilities and for

four different years separately: 1900, 1930, 1960, and 1990.21
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qx̄,it̄ = a0(1− exp(−a1yit̄)). (17)

In tables 1 and 2, I report results for ages five and fifteen. All coefficients are found to be

significant.22 Results are similar for age one. The first column of table 1 shows the estimation

for the dependent variable q5,1900. The other columns reports the same estimation for q5 for

1930, 1960, and 1990. Table 2 does the same exercise for q15.

Figures 5a and 5b show the fitted values for each year from the estimations of q5 and

q15 given in tables 1 and 2 respectively. In both figures, the thick line at the bottom is for

1900, the next one is for 1930, and the thickest one at the top is for 1960. The horizontal

thin line is for 1990. It is evident from the figures that survival probabilities become more

independent of per capita income with increasing levels of income per capita.

Next, using the World Bank data, I repeated the same exercise. Hence, the concave

functional form in (17) is estimated cross-sectionally for q1−5, and q15−60 for three different

years separately. 1960, 1980, and 1997. As shown in tables 3 and 4, all coefficients are

significant. Figures 5c and 5d show the fitted values for each year from these estimations.

Now the thick line at the bottom is for 1960, the next one is for 1980, and the thickest one at

the top is for 1997 in both figures. What is different here is that, even for the year 1997, there

is a concave relationship instead of a linear relationship. This is because the World Bank

data set contains more developing countries. In the historical data set, only 16 of 36 countries

are developing countries, whereas the World Bank data set has 64 developing countries in a

sample of 86 countries.

4.3 Calibrating the Model

The general equilibrium model is calibrated by using all of the estimated survival functions

just described. I report only results that use the estimated survival function, q5, from the

historical data set and the estimated survival function, q15−60, from the World Bank data set,

as given in tables 1 and 4 respectively. The choices for the other parameters are explained

below. The calibration results are given in four panels of figure 6. The purpose of this exercise

is to see the implications of the real life mortality data and hence to see whether or not the

general equilibrium model is consistent with the stylized facts of the development process.

Using the estimated survival function, q5, for 1900, 1930, and 1960 from the historical

data set, figure 6 shows the evolution of population growth as a function of income per capita.
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The q5 for 1990 cannot be used since the estimated relationship for that year is linear. For

1900 and 1930, a concave relationship exists between population growth and income per

capita; for 1960, the relationship becomes hump-shaped. Why is this? Recall that there are

two necessary conditions for population growth to be a hump-shaped function of income per

capita (see section 3.2); the survival function q(.) must be concave and asymptote to 1 with

high values of income per capita and some parameter restrictions need to be satisfied. I start

with the choice of the parameters. Parameters other then qt are chosen from the literature

and according to the restrictions of the model. As previously explained, some studies found

returns to education, β, being close to 1. A high β is needed to have population growth as a

hump-shaped function of the survival probability so β is chosen to be 0.9. For γ, I assume

parents value their consumption and the future income of their survivors equally. Therefore,

γ is chosen to be 0.5. Given β and γ, v is chosen to fit the restriction for having negative

population growth at high levels of income per capita (as in figure 4b) i.e., v > (1−γ)(1−β),

hence v is chosen to be 0.1.23 Finally, α is chosen according to the stylized facts of the cross-

country growth literature. Thus, α is chosen to be 0.3. In figure 6a, the difference between

1900, 1930, and 1960 is due to the estimated value of the survival probability. Given the

fact that β has a high value and the estimated survival function q(.) for 1960 is concave and

asymptotes to 1 with high values of income per capita, population growth is hump-shaped

for 1960. It becomes negative with high values of income per capita given the fact that the

above inequality holds. But for 1900 and 1930, it is concave and always positive, since for

those years q(.) is estimated to have a much lower value then 1 at high levels of income per

capita (see figure 5a).

The calibration of (16) results in the multiple steady states given in figure 6b. Using the

estimated survival function, q5 for 1960 from table 1, the two steady states are shown for

1960. Since population growth is a hump-shaped function of income per capita and since it

is negative at high levels of income per capita, there are two steady states, where sustained

growth prevails beyond the growth steady state. For 1900 and 1930, there is not a growth

steady state, since population growth is not a hump-shaped function of income per capita

and thus stays always positive, implying that the calibrated ψ(.) function stays below the 45

degree line.

Figures 6c and 6d, repeat the same exercise by using the estimated survival function,

q15−60 from the World Bank data set. The results are similar. Here, for 1960 and 1980,

population growth is always positive since it is a concave function and thus there is not a
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growth steady state. Recall that these data are mostly composed of poor countries. For 1997,

population growth is a hump-shaped function and becomes negative at high levels of income

per capita, so the growth steady state is there, above which sustained growth is achieved.

Therefore, the calibration exercise shows that the estimated survival probabilities allow

for multiple steady states. The one at the lower level of income per capita is the locally

stable Malthusian steady state and the one at the higher level of income per capita is the

unstable growth steady state.24 Thus, two countries with same parameters can have different

outcomes depending on their mortality levels.

Table 5 gives the numerical results of the calibration exercise. This corresponds to the

two steady states in figure 6b. Note that since the model abstracts from a variety of factors

important for the development process, it will be impossible to match the data one-to-one.

Income per capita is in natural logarithms, so the Malthusian steady state income corresponds

to 20 dollars and the growth steady state income to 3,500 dollars. Remember that the growth

steady state is an unstable threshold steady state. If the economy starts above the threshold

growth steady state, it will have sustained growth forever. Otherwise it will be trapped in

a Malthusian regime. The difference between these income levels match the data. In the

real world, poor countries trapped in Malthusian type regimes have a subsistence income

per capita around 100-500 dollars. Rich countries that grow have an income per capita of

20,000-30,000 dollars. The difference is around 200 fold, which is similar to the difference

here. As a result of this income difference, survival probability differs 1.6 fold between the

two steady states. This difference in the survival chances causes almost a 50% decrease in

fertility and a doubling of the educational investment on each child (see table 5). This change

between the two steady states and the implied values of the variables are consistent with the

data of rich and poor countries.

The general equilibrium calibration exercise, as given in table 5, does not answer the

following question: Can small changes in the survival probability cause bigger changes in

parents’ behavior, namely their fertility and educational investment choices? To answer this

question, one must calibrate the partial equilibrium model, where mortality is exogenous.

This is done in table 6. All of the elasticities in table 6 have the same sign as in the analytical

solutions. The table shows that the effects of reduced mortality are economically significant.

At low levels of the survival probability (q = 0.51), a one percent increase in the survival

probability will lead to almost a one percent decrease in fertility and a one percent increase

in the educational investment. At high levels of the survival probability, the effects are more

14



profound. At q = 0.83, for a one percent increase in the survival probability there will be

an almost two percent decrease in fertility and a two percent increase in the educational

investment. At q = 0.9 fertility and education change by three percent with respect to a one

percent change in mortality. Thus, although the reduction in mortality could not account for

all of the decrease in fertility and the increase in schooling that have been observed, it can

explain a significant fraction.

5 Conclusion

This paper shows that mortality decline working through the channels of education and

fertility promotes economic growth. Individuals are prudent in the face of uncertainty about

child survival, which causes a precautionary demand for children. As the mortality rate falls,

precautionary demand decreases, and thus, parents choose to move along a quality-quantity

frontier. This uncertainty effect together with endogenous mortality may lead to multiple

steady states. Due to the uncertainty effect population growth is a hump shaped function of

the survival probability in the partial equilibrium model. By endogenizing mortality in the

general equilibrium model, population growth becomes a hump-shaped function of income per

capita, given the parameter restrictions. Thus at low levels of income per capita population

growth rises as income per capita rises. This in turn leads to dilution of resources and

results in lower income per capita and hence in a Malthusian steady state. At this steady

state the fertility is high and human capital investment is low. At high levels of income per

capita population growth falls as income per capita increases. This leads to a growth steady

state with low fertility and high human capital investment, above which sustained growth

is achieved. Calibration exercises, based on the estimation of the survival probability from

historical and contemporary data, show that the general equilibrium model is consistent with

the stylized facts of the development process.

The paper provides an explanation for the demographic transition followed by sustained

economic growth that occurred in developed countries in the nineteenth century and is oc-

curring in developing countries today within a unified model. As a result the paper has

important policy implications. Although demographic transition is complete in most parts of

the world, there are still high fertility countries, especially in Africa. Some researchers show

that the countries in Africa, where child mortality has declined in recent decades, have begun

the demographic transition. But a mounting epidemic of HIV/AIDS threatens this progress.
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In regions with the highest HIV prevalence, such as Botswana, Zimbawe and South Africa,

approximately 36% of the young people (ages 15-24) are HIV positive (United Nations, 1999).

What is more interesting is that in these countries, after an increase of 35% in gross primary

school enrollment between 1975 and 1985, there is a 16% decline in this enrollment rate

between 1985 and 1995, on average. The fertility rates declined initially during the same

period in those countries from 7 children per women, on average, to 5.5, but then they stayed

constant. Thus, reducing child mortality from the diseases like AIDS and Malaria will bring

the additional benefits of increased educational investment and reduced fertility by parents,

which in turn will cause lower population growth and higher economic growth.
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Theoretical Appendix

I start by rewriting (16).

yt+1 = Ayt

[
β(1− γ)

γ + β(1− γ)

]βα[
(1− vnt)

nt

]βα

[ntqt]α−1 ≡ ψ(yt). (18)

It follows that limyt→0 yt+1 = 0 since limyt→0 qt = 0 from (14) and limqt→0 nt = 1/v

from (10). Also limyt→∞ yt+1 = ∞, since limyt→∞ qt ≤ 1 from (14) and limqt→1 nt = (1 −
α)(1 − β)/v from (10). But notice that if β = 0 there can be an indeterminate case, i.e.,

limyt→∞ yt+1 = 0 or limyt→∞ yt+1 = ∞.

I want to know the signs of total first and second order derivatives of ψ(.) with respect

to yt, i.e., dyt+1

dyt
= ψ′ and d2yt+1

dy2
t

= ψ′′. Taking the logarithm of (18) and then differentiating

it with respect to yt gives,

Z

ψ′ = yt+1

[
1
yt
− dqt
dyt

︷ ︸︸ ︷{
dnt

dqt

βα

(1− vnt)nt
+

(1− α)
Pt+1

dPt+1

dqt

}]
︸ ︷︷ ︸, (19)

X

where Pt+1 = Lt+1

Lt
= ntqt.

Given that dqt

dyt
> 0 ∀q and dnt

dqt
< 0 ∀q, and limyt→∞ qt = 1, limyt→∞

dPt+1

dqt
< 0, and hence

ψ′ > 0. But limyt→0 qt = 0, and thus limyt→0
dPt+1

dqt
> 0. Hence ψ′ is ambiguous when yt → 0.

The sign depends on the parameter values and relative magnitudes within the term Z.

To find out the curvature, I take the total derivative of (19) with respect to yt

ψ′′ = ψ′X + yt+1
dX

dyt
, (20)

where

Z

dX

dyt
= − 1

y2
t

− d2qt
dy2

t

︷ ︸︸ ︷{
dnt

dqt

βα

(1− vnt)nt
+

(1− α)
Pt+1

dPt+1

dqt

}
−
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(
dqt
dyt

)2{
d2nt

dq2t

βα

(1− vnt)nt
+

(
dnt

dqt

)2
βα(2vnt − 1)
(1− vnt)2n2

t

+
(1− α)
Pt+1

d2Pt+1

dq2t
− (1− α)

P 2
t+1

(
dPt+1

dqt

)2}
︸ ︷︷ ︸ .

W

Notice that X = ψ′/yt+1 thus I can write (20) as

ψ′′ = (ψ′)2/yt+1 + yt+1
dX

dyt
.

Again the sign of ψ′′ is ambiguous, and it depends on the parameter values. The first term is

always positive but the second term is ambiguous since the sign of dX
dyt

is ambiguous. When

yt → ∞ the derivatives dqt

dyt
and d2qt

dy2
t

become essential in determining the sign of dX
dyt

and

thus the sign of ψ′′. I assume q(.) is concave and asymptotes to 1 when yt → ∞ as given

in (14). This implies limyt→∞
dqt

dyt
= 0 and limyt→∞

d2qt

dy2
t

= 0. Also given limyt→∞ 1/y2
t = 0,

limyt→∞
dX
dyt

= 0 and thus ψ′′ > 0. But there can also be an indeterminate case since

limyt→∞
dqt

dyt
= 0, hence ψ′ is indeterminate.

Data Appendix

Historical Data Set

The male survival rates, qx,it, are calculated from the life table variable lx,it, which is the

number of the male survivors until exact age x out of 100,000 born, for each country i and

each year t. lx,it comes from a cross-sectional period life table. For example if x = 15 (given i

and t, such as U.S. in 1900) it measures how many males would survive until age 15 if at each

age they experienced the mortality rates of men who are currently that age. The survival

data, lx,it, are from various sources: Colin Clark (1970), Keyfitz and Flieger (1968, 1990),

Haines (1994), Keyfitz et al. (1972). The income per capita data, yit, from Maddison (1995)

in 1990 dollars.

World Bank Data Set

The male survival rates are converted from conditional male mortality rates, which are the

original data given by the World Bank. These come from cross-sectional period life tables

as in the historical data set. For example, the adult survival rate, converted from the adult
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mortality rate, is the probability of a 15 year old man dying before reaching age 60, if subject

to current age-specific mortality rates between ages 15 and 60. Thus, it is conditional on

reaching age 15. The age five survival rate, also converted from the age five mortality rate,

is the probability that a newborn baby will die before reaching age five, if subject to current

age-specific mortality rates. The GDP per capita is constant at 1995 U.S. dollars.
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Countries in the two Data Sets

Historical Data World Bank Data World Bank Data cont. World Bank Data cont.
(1900, 1930, 1960, 1990) (1960, 1980, 1997)

Argentina Algeria Honduras Paraguay
Australia Argentina Hungary Peru
Austria Australia Iceland Philippines
Belgium Austria Indonesia Portugal
Bulgaria Bahamas Ireland Rwanda
Canada Bangladesh Israel Singapore
Chile Barbados Italy Spain
China Belgium Jamaica Sri Lanka
Czechoslovakia Benin Japan Sudan
Denmark Botswana Kenya Suriname
Egypt Brazil Korea, Republic Swaziland
Finland Burkina Faso Lesotho Sweden
France Burundi Luxembourg Switzerland
Germany Cameroon Madagascar Thailand
Greece Canada Malawi Togo
Hungary Central African Republic Malaysia Trinidad and Tobago
India Chad Mauritania United Kingdom
Ireland Chile Mauritius United States
Italy China Mexico Uruguay
Japan Congo, Republic Morocco Zambia
Mexico Costa Rica Nepal
Netherlands Cote d’Ivoire Netherlands
New Zealand Denmark New Zealand
Norway Dominican Republic Nicaragua
Poland Ecuador Niger
Portugal Egypt, Arab Republic Nigeria
Romania El Salvador Norway
South Africa Fiji Pakistan
Spain Finland Panama
Sweden France Papua New Guinea
Switzerland Gabon
Taiwan Ghana
United Kingdom Greece
United States Guatemala
Venezuela Guyana
Yugoslavia Haiti
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Notes

1. See Livi-Bacci (1997) and United Nations (1999).

2. The mortality decline in the developing world is much faster and occurs at lower levels

of income compared to that of the developed world. This is due to the rapid transfer of

the health technology from the West. In the developed world, however, the mortality

decline was due to an increase in the standard of living. In the latter decades of the

twentieth century, improvements in old age mortality shape the picture of the mortality

decline in developed countries.

3. In these regions, both infant and child mortality fell approximately 60% between 1950

and 1990.

4. In developed countries, the fertility decline, which began by the end of the nineteenth

century, was completed by World War II. During this period, the total fertility rate

(TFR), which is defined as the number of children that a woman would have if she

lived through all of her child-bearing years and experienced the current age-specific

fertility rates at each age, declined from 5 children to 2.5 children. In the developing

world, the fertility transition started around the 1950s, and over the past forty years

TFR declined from 6 children to 3 children. See Livi-Bacci (1997) and United Nations

(1999). The fertility decline is preceded by the mortality decline in general. France is

an exception, where the fertility decline began early in the nineteenth century before

the mortality had declined. Lesthaeghe and Van de Walle (1976) and Segalen (1992)

argue that this is due to voluntary limitation of births. Mroz and Weir (1989) estimate

after the initial decline in fertility in France 17% of the decline in fertility between 1840

and 1919 is due to the decline in mortality. The U.S. also has declining fertility early in

the nineteenth century. Haines (1998) argues that during this time, fertility was being

controlled mostly by adjustments in marital fertility. He reports after the initial decline

in fertility in U.S., 30% of the later decline is due to the decline in the death rates.

5. Wolpin (1997), Galloway et. al. (1998), Coale (1986), and Preston (1978b) provide

support for the causal effect of the mortality decline on the fertility transition. There

may be two different strategies at work that generate the fertility response to reduced

mortality. First, the “replacement strategy” is the response of fertility to experienced
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deaths, where parents replace deceased children. Second, the “insurance strategy,” or

hoarding, is the response of fertility to expected deaths, where parents bear more chil-

dren than their optimal number of survivors. If parents follow a replacement strategy,

they can produce their target number of survivors with no error, and a change in child

mortality will have no effect on the population growth rate. However, in the empirical

studies using micro data, the estimated replacement effect is always smaller than 0.5

and generally it is around 0.2. But only a replacement effect of 1 means a fully working

replacement strategy. (See Schultz, 1997.)

6. His alternative related theory that the elasticity of substitution between quantity and

quality of children increases with income, is subjected to the same criticism.

7. There are inconclusive evidence about this theory. Kaplan (1994) provides evidence

that rejects the hypothesis, whereas Cain (1977) shows support for the hypothesis.

8. Other theories explain the decline in fertility as a result of the aggregate consumption

growth in the economy and/or the increase in the aggregate level of human capital.

Examples are Becker and Barro (1988) and Becker et. al. (1990). Brezis (2001), Dahan

and Tsiddon (1998) use the change in the structure of the economy, the role of the social

classes and the effect of income inequality as explanations for the fertility transition,

respectively.

9. Galor and Weil’s (2000) model is the first unified growth model, where the evolution

of population growth, technological progress and output growth is consistent with the

developments in the last several centuries. Some elements of the long transition from

stagnation to growth are also studied in Kremer (1993), Lucas (2002), Hansen and

Prescott (2002), Tamura (2002), Lagerlof (2002), Kogel and Prskawetz (2001), and

Morand (2002).

10. In Sweden around 1800, 5200 children died between ages 10 and 15 out of 100,000

births. By 1930 this number fell to 400.

11. The relevant comparison is between mortality and human capital in developing countries

in the period 1960-1990 on the one hand versus the more developed countries at an

earlier period, on the other. This kind of comparison is an empirical question, which

should be handled in a multiple regression framework since there are many other factors
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that affect growth of human capital investment during this period in the developing

countries. However, if we look at the data we see the following pattern: Average

years of schooling increased from 2.05 to 4.43 in the developing countries between

1960-1990. During the same period life expectancy at birth increased from 48 to 68

in those countries on average. In England life expectancy at birth increased from 48

to 69 between 1880 and 1950. The average years of schooling increased from 9.1 to

10.8 during the same period implying a smaller percentage increase compared to the

percentage increase of schooling in the developing countries between 1960-1990. See

Matthews et al. (1982) for England data and World Bank (2000) for LDC data.

12. Previous research, ignoring the role of uncertainty, fails to match the data in several key

respects. Most of the existing growth models with endogenous fertility do not allow for

mortality. Those that do allow it ignore the uncertainty about the number of surviving

children present in a high mortality environment. In their model of fertility, Becker and

Barro (1988) include mortality without considering the role of uncertainty and show

that the decline in mortality lowers the cost of raising a survivor and thus increases the

demand for surviving children. This implies that births rise in response to a decline

in mortality, an implication that is not consistent with the data. See also O’Hara

(1975), Ben-Porath (1976), and Sah (1991), among which Sah only considered the role

of uncertainty. A recent paper by Portner (2001) extends Sah’s setup by allowing

dynamic aspects of fertility. Ehrlich and Lui (1991) show that without old-age support

motivation for having children, there will not be a mortality effect on human capital

investment. Meltzer (1992) extends Becker et. al. (1990) by introducing a relationship

between adult mortality and education. However his setup cannot relate declining child

mortality to declining fertility, but rather as the longevity of parents increases, their

investment in the human capital of their children increases.

13. Note that whether fertility stays constant or increases in the first stage of the transition

this hump-shaped pattern of population growth will be the case as long as mortality

is declining during the first stage. Fertility may remain unchanged, at first, because

of the lags and misperceptions. Fertility can also be increasing due to better health

(Dyson and Murphy, 1985) or due to the income effect as a result of higher men’s

wages (Wrigley and Schofield, 1981). In UK fertility increased in the first stage of the

demographic transition. Wrigley and Schofield (1981) argue that during this time there
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was no change in the marital fertility. Instead the propensity to marry increased, which

was the reason why the total fertility rate increased. The main reason of the increase

in the marriages in UK around 1871 is the higher wages.

14. There can be two different scenarios regarding the educational investment. Education

may be provided before or after the uncertainty about mortality is realized. If parents

provide educational opportunities to every newborn child before the uncertainty about

survival is realized, each child will have a fixed cost and an education cost regardless

of whether he or she dies. This paper investigates this ex-ante case. If education is

given to each survivor after the uncertainty is realized, then each child has a fixed cost

but only survivors have an education cost. The ex-post case is considered in Kalemli-

Ozcan (2000), which yields similar results. This is important since some researchers

have argued that most of the mortality decline has occurred in infancy and therefore

a decline in mortality should not matter for the human capital investment decision,

which comes later in life.

15. The formulation in (8) implies that the number of children born and the number of

surviving children are represented as nonnegative integers, which is a discrete repre-

sentation. This causes analytical intractability. Sah (1991) followed this type of setup.

Using the Delta Method allows me to have a continuous representation and to avoid

the intractability. Also note that utility function in (8) is not well defined since the log

form gives negative infinite utility in the case of zero survivors. The log utility function

cannot be taken as literally correct since having no children cannot give negative infinite

utility. Since I am using the Delta Method approximation to the binomial distribution,

this problem will not prevent the analytics from working. See Kalemli-Ozcan (2002)

for the application of the Delta Method.

16. See Preston (1978a).

17. The hump-shaped relation between the population growth rate (Lt+1

Lt
) and the survival

probability (qt) causes the hump-shaped relation between the population growth rate

and income per capita (yt) since dLt+1/Lt

dyt
= dLt+1/Lt

dqt

dqt

dyt
and since limqt→0

dLt+1/Lt

dqt
> 0

and limqt→1
dLt+1/Lt

dqt
< 0; and dqt

dyt
> 0. When limyt→∞ qt = 1, and at qt = 1, Lt+1

Lt
=

nt = (1 − γ)(1 − β)/v. Since the population growth rate is Lt+1

Lt
− 1, the inequality

v > (1− γ)(1− β) implies negative population growth at qt = 1.
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18. Monotonicity of ψ(.) cannot be shown analytically, thus the possibility of any finite

number of steady states cannot be ruled out. As far as the shape of the policy function

is concerned, the only case that can be ruled out is the case where ψ(.) starts out convex

and ends up concave. If ψ′′ > 0 for low levels of yt it will be the case for high levels of

yt as shown in Appendix.

19. A discussion of this is given in Galor and Weil (1999). In a recent growth paper with

two sectors, Kogel and Prskawetz (2001) adopt the household problem of this paper

using the methodology here to deal with uncertainty and then they add demand for

an agricultural good together with endogenous technological progress in manufacturing

sector. As a result, they can explain the entire transition from the Malthusian to

post-Malthusian regime followed by the modern growth regime.

20. The World Bank data set is used for the purpose of having more developing countries

since the historical data set is mainly composed of developed countries. The spans of

the two data sets are consistent with the timing of the demographic transition since the

demographic transition had occurred in the developed countries during the nineteenth

and the twentieth centuries and it started in the developing countries after 1950s. See

the Data Appendix for details.

21. x̄ and t̄ show that this equation is estimated for each age and year by using data on a

cross-section of countries. This data fitting exercise is done to get an estimate value of

qt. If one wants to estimate any structural relationship, then IV estimation should be

used due to the mutual dependence of qt and yt on each other.

22. Note that a more general form of logistic function, q = a0/(1+exp(−a1y)) is estimated

first, before enforcing the concave functional form in (17) on the data, to see if I really

get concavity over the sample range. I decided to use the concave function in (17),

which is also a logistic function, since it allows an intercept of 0, whereas the above

logistic function’s intercept is 0.5.

23. If v or γ changes, holding this inequality constant, the results will not change. But if

β changes, then the results will change since the hump-shaped pattern of population

growth as a function of qt depends on β.

24. Note that the yt axis starts at 0.5 in figures 6b and 6d. This is because at the exact
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point 0 GAUSS will not solve the system due to non-linear production function. In

Appendix, it is shown that when yt = 0, yt+1 = 0. Thus the part between point 0 and

0.5 is concave in figures 6b and 6d, as shown in figure 4c.
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Table 1: Estimation of the Survival Function (Historical Data Set)

Dependent variable—Survival Probability for Age 5

Observations 18 24 36 31

q5,1900 q5,1930 q5,1960 q5,1990

CONSTANT 0.796 0.869 0.945 0.983

(0.024) (0.020) (0.007) (0.002)

INCOME PER CAPITA 0.168 0.155 0.267 0.0

(0.033) (0.033) (0.025) –

Note: Standard errors are in parentheses. q5,1900 is the survival probability to age five in
1900, q5,1930 is the survival probability to age five in 1930, q5,1960 is the survival probability
to age five in 1960, and q5,1990 is the survival probability to age five in 1990.



Table 2: Estimation of the Survival Function (Historical Data Set)

Dependent variable—Survival Probability for Age 15

Observations 19 24 36 31

q15,1900 q15,1930 q15,1960 q15,1990

CONSTANT 0.781 0.858 0.939 0.980

(0.027) (0.022) (0.008) (0.002)

INCOME PER CAPITA 0.138 0.135 0.248 0.0

(0.024) (0.020) (0.024) –

Note: Standard errors are in parentheses. q15,1900 is the survival probability to age fifteen
in 1900, q15,1930 is the survival probability to age fifteen in 1930, q15,1960 is the survival
probability to age fifteen in 1960, and q15,1990 is the survival probability to age fifteen in
1990.



Table 3: Estimation of the Survival Function (World Bank Data Set)

Dependent variable—Age Five Survival Rate

Observations 86 86 86

q1−5,1960 q1−5,1980 q1−5,1997

CONSTANT 0.87 0.90 0.96

(0.01) (0.008) (0.01)

INCOME PER CAPITA 0.45 0.50 0.55

(0.11) (0.08) (0.04)

Note: Standard errors are in parentheses. q1−5,1960 is the conditional survival probability
to age five in 1960, q1−5,1980 is the conditional survival probability to age five in 1980, and
q1−5,1997 is the conditional survival probability to age five in 1997.



Table 4: Estimation of the Survival Function (World Bank Data)

Dependent variable—Adult Survival Rate

Observations 86 86 86

q15−60,1960 q15−60,1980 q15−60,1997

CONSTANT 0.74 0.76 0.82

(0.02) (0.01) (0.01)

INCOME PER CAPITA 0.36 0.47 0.44

(0.03) (0.05) (0.04)

Note: Standard errors are in parentheses. q15−60,1960 is the conditional survival probability
to age fifteen in 1960, q15−60,1980 is the conditional survival probability to age fifteen in 1980,
and q15−60,1997 is the conditional survival probability to age fifteen in 1997.



Table 5: Calibration Results for the General Equilibrium Model

Historical Data Set—Survival Probability: q5,1960

Malthusian Growth
Steady State Steady State

Variables Value Value

Income per capita (yt) 3.0 8.0

Survival Probability (qt) 0.51 0.83

Fertility (nt) 2 1.2

Education (et) 0.2 0.4

Population Growth (Lt+1

Lt
− 1) 0 0

Income per capita growth (yt+1/yt − 1) 0 0

Note: Income per capita (yt) is in natural logarithm. The estimated functional form for
the survival probability is qx̄it̄ = a0(1 − exp(−a1yit̄)), where x = 5 and t = 1960 from the
historical data set. For the parameters a0, a1 see table 1. v = 0.1, β = 0.9, γ = 0.5 and
α = 0.3.



Table 6: Calibration Results for the Partial Equilibrium Model

Elasticity with respect to survival probability (q)

Variables q = 0.51 q = 0.83 q = 0.90

Fertility (nt) –0.78 –1.86 –2.72

Education (et) 0.94 2.06 2.96

Note: I use q = 0.51 and q = 0.83 since these values are the estimated general equilib-
rium values. Elasticity is calculated as dc/dq(q/c) where c = n, e. The derivative dc/dq
is calculated around the given q values by changing q an epsilon amount. Parameters are
v = 0.1, β = 0.9, γ = 0.5 and α = 0.3.



     Figure 1: Mortality in Sweden

Notes: The survival function shows the probability that a person will be alive at a given age. Life
expectancy at birth is the area under the survival function. Swedish data is from Keyfitz and 
Flieger (1968, 1990).
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Figure 2: Fertility and Mortality

Note: The LDC data is from United Nations (1999). Total fertility rate for developed countries is from Livi-Bacci (1997). The probability of dying is
defined as probability of a newborn dying before age 1 and is from Keyfitz (1968).
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Figure 3: Population Growth

Notes: The countries of Western Europe are Austria, Belgium, Denmark, Finland, France, 
Germany, Italy, Netherlands, Norway, Sweden, Switzerland and UK. This data is from 
Maddison (1995). The LDCs are all countries of Africa, Latin America and Asia, excluding Japan.
This data is from United Nations (1999). The first two observations, marked differently, are from Maddison. 
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Figure 4c: Evolution of Income per Capita-Various Paths
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Figure 5a: Survival Probability (age 5) vs. Income
Income per Capita
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Figure 5b: Survival Probability (age 15) vs. Income
Income per Capita
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Figure 5c: Survival Probability (age 1-5) vs. Income
Income per Capita
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Figure 5d: Survival Probability (age 15-60) vs. Income
Income per Capita
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