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This article proposes a new dynamic design for auctioning multiple heterogeneous
commodities. An auctioneer wishes to allocate K types of commodities among n
bidders. The auctioneer announces a vector of current prices, bidders report
quantities demanded at these prices, and the auctioneer adjusts the prices. Units are
credited to bidders at the current prices as their opponents’ demands decline, and
the process continues until every commodity market clears. Bidders, rather than
being assumed to behave as price-takers, are permitted to strategically exercise
their market power. Nevertheless, the proposed auction yields Walrasian equilib-
rium prices and, as from a Vickrey-Clarke-Groves mechanism, an efficient alloca-
tion. (JEL D44)

In earlier work (Ausubel, 1997, 2004), I pro-
posed an efficient ascending auction design for
multiple homogeneous items. In environments
where bidders have pure private values and
diminishing marginal values, this dynamic auc-
tion yields outcomes coinciding with that of the
(sealed-bid) Vickrey auction (William Vickrey,
1961), but offers advantages of simplicity,
transparency, and privacy preservation. More-
over, in some environments where bidders have
interdependent values for the items, this dy-
namic auction continues to yield efficient out-
comes and thus outperforms even the Vickrey
auction.

However, situations abound in diverse indus-
tries in which heterogeneous (but related) com-
modities are auctioned. On a typical Monday,

the U.S. Treasury sells in excess of $10 billion
in three-month bills and $10 billion in six-
month bills.1 Current practice is to auction the
three-month and six-month bills separately in
two independent sealed-bid auctions. In the Eu-
ropean UMTS/IMT-2000 spectrum auctions,
governments sold both paired and unpaired 3G
spectrum, located at similar frequencies but ap-
parently exhibiting markedly different values.
Some governments auctioned these together in
fixed bundles, while other governments auc-
tioned the paired spectrum followed by the (less
valuable) unpaired spectrum. In the Electricité
de France (EDF) generation capacity auctions
that have operated quarterly since 2001, as well
as separately in the Electrabel virtual power
plant auctions that have operated quarterly in
Belgium since 2003, the companies sell base-
load electricity contracts and peak-load electric-
ity contracts, of at least five different durations
each, simultaneously in one dynamic auction
procedure (see Ausubel and Peter Cramton,
2004a).

The current article proposes an efficient dy-
namic auction method for heterogeneous items.
The starting point for the new design is a ven-
erable trading procedure, often associated in
general equilibrium theory with the fictitious

* Department of Economics, University of Maryland,
Tydings Hall, Room 3105, College Park, MD 20742
(e-mail: ausubel@econ.umd.edu). I am grateful to Kathleen
Ausubel, Ken Binmore, Peter Cramton, John Ledyard, Pres-
ton McAfee, Paul Milgrom, Thayer Morrill, Ennio Stac-
chetti, Jeroen Swinkels, Daniel Vincent, three anonymous
referees, and participants in the Heidelberg Conference on
Auctions and Market Structure, the Stony Brook Multi-Unit
Auctions Workshop, the 2000 World Congress of the
Econometric Society, the 2001 NBER General Equilibrium
Conference, the 2001 NSF Decentralization Conference,
and numerous university seminars for helpful comments.
Intellectual Property Disclosure: The auction design intro-
duced in this article may be subject to issued or pending
patents, in particular, U.S. Patent No. 6,026,383 and U.S.
Patent Application No. 09/898,483. Upon request, the au-
thor will grant a royalty-free license to the referenced prop-
erties for noncommercial research on this auction design.

1 For example, on 25 July 2005, the U.S. Treasury auc-
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Walrasian auctioneer, and sometimes imple-
mented in modern times as a dynamic clock
auction. An auctioneer wishes to allocate K
types of heterogeneous commodities among n
bidders. The auctioneer announces a price vec-
tor, p, and bidders respond by reporting the
quantity vectors that they wish to transact at
these prices. The auctioneer then calculates the
excess demand and increases or decreases each
coordinate of the price vector according to
whether the excess demand is positive or neg-
ative (Walrasian tâtonnement). This iterative
process continues until a price vector is reached
at which excess demand is zero, and trades
occur only at the final price vector.

In both the fictitious Walrasian auctioneer
construct and in most real-world dynamic clock
auctions, bidders’ payments are linear in the
quantities awarded: if bidder i wins quantity
vector qi in an auction with final price vector p,
bidder i pays p � qi. Unfortunately, a strategic
agent who faces linear prices in the auction then
possesses an incentive to underreport her true
demand at the announced prices, and this incen-
tive increases in her market share. This is most
straightforwardly seen in the case of homoge-
neous goods (i.e., K � 1), where there is a
growing body of both theoretical arguments and
empirical evidence. (See detailed discussions
for sealed-bid auctions in Ausubel and Cram-
ton, 2002, and for ascending auctions in Aus-
ubel, 2004.) Consequently, when agents have
market power, the Walrasian auction procedure
typically does not result in Walrasian outcomes.
The current article circumvents this problem by
extending and generalizing an approach intro-
duced in Ausubel (1997, 2004): units are cred-
ited to bidders at the current prices whenever
the opposing bidders’ demands decline. Speci-
fied properly, this nonlinear pricing rule restores
the incentive for strategic bidders to bid as
price-takers, yielding efficient outcomes even
when bidders have market power.2

One of the objectives of the current article is,
thus, to provide both a solution to an outstand-
ing theoretical auction question and a new prac-
tical auction design. In a recent article, Sushil
Bikhchandani and John W. Mamer (1997, pp.
405–06) ask:

“Do there exist simple market mecha-
nisms (i.e., mechanisms that assign a
price to each object) which efficiently al-
locate multiple indivisible objects when
market clearing prices exist? ... Whether
there are simple incentive compatible
market mechanisms which converge to a
competitive equilibrium (whenever one
exists) under the more general condition
that buyers may want to consume more
than one object is an open question.”

Meanwhile, Faruk Gul and Ennio Stacchetti
(2000, p. 69) conclude the introduction of their
recent article by stating:

“More importantly, we show that no dy-
namic auction can reveal sufficient in-
formation to implement the Vickrey
mechanism if all Gross Substitutes pref-
erences are allowed. Thus, the unit de-
mand case of Demange et al. [1986] and
the multiple homogeneous goods case of
Ausubel [1997] are the most general en-
vironments for which generalizations of
the English auction can be used to im-
plement efficient, strategy-proof alloca-
tions.”3

In this article, I will put forth an affirmative
answer to Bikhchandani and Mamer’s question,
while disagreeing with the spirit (but not the
letter) of Gul and Stacchetti’s conclusion. A
simple market mechanism is provided: the auc-

2 The extension of the efficient ascending auction of
Ausubel (1997, 2004) to K � 2 commodities poses at least
two significant obstacles. First, unlike in the homogeneous
goods case, a bidder may now wish to increase her demand
for a given commodity along the path toward equilibrium,
as prices of substitute commodities increase. Thus, units
that once appeared to be “clinched” by another bidder may
later be “unclinched,” and the auction rules need to reflect

this scenario. Second, K simultaneous auctions are effec-
tively conducted, and it is unclear how the progress of one
auction should affect the clinching of units in another.
Surprisingly, this article establishes that it suffices to cal-
culate independently the crediting of different commodities;
the only formal interaction among the K auctions needs to
occur through the simultaneous bidding and the price ad-
justment rule. With these obstacles resolved, an efficient
dynamic auction design for heterogeneous commodities
emerges.

3 They also conclude their article: “Finally, we showed
that in general, no efficient, dynamic auction can extract
enough information to implement any strategy-proof mech-
anism” (Gul and Stacchetti, 2000, p. 83).
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tioneer announces price vectors, bidders are
asked to respond with their naı̈ve demands, and
there is no benefit to bidders from strategizing
further. Moreover, the dynamic mechanism
economizes on information in the sense that
bidders need only report their demands at a
one-dimensional set of price vectors, and it
maintains privacy in the sense that (starting
from an initial price vector of zero) bidders
avoid the need to report demands at prices
above the market-clearing prices.

While the answer provided here may super-
ficially appear to be in conflict with Gul and
Stacchetti’s conclusion, there is no formal con-
flict with their theorems.4 Indeed, their elegant
analysis is utilized as an important input into the
current analysis. Gul and Stacchetti limit their
attention, however, to a restrictive class of dy-
namic auctions and then conclude that “no dy-
namic auction can reveal sufficient information
to implement the Vickrey mechanism” (Gul and
Stacchetti, 2000, p. 66). The current article’s
viewpoint is that a limitation to clock auctions
that trace a single ascending price trajectory
is an unwarranted restriction on the market
designer. Moreover, such a restriction runs
counter to the long tradition in economics of
Walrasian tâtonnement, which allows prices
both to ascend and descend. Taking the more
expansive view of dynamic auctions in the cur-
rent article, an environment of multiple hetero-
geneous commodities becomes amenable to a
generalization of the English auction that can
be used to implement efficient, strategy-proof
allocations.5, 6

The current article will also seek to offer a
modern perspective on the Walrasian auction-
eer. Indeed, economists have long been hostile
toward this modeling device. Kenneth J. Arrow
(1959, p. 43) notes at once the motivation for
the fictitious auctioneer and the logical problem
that the auctioneer creates: “It is not explained
whose decision it is to change prices in accor-
dance with [Walrasian tâtonnement]. Each indi-
vidual participant in the economy is supposed to
take prices as given and determine his choices
as to purchases and sales accordingly; there is
no one left over whose job it is to make a
decision on price.” Arrow and Frank H. Hahn
(1971, p. 322) elaborate that the auctioneer and
perfect competition together produce “the par-
adoxical problem that a perfect competitor
changes prices that he is supposed to take as
given.”

The present research suggests one way out of
the paradox. Instead of an implicit fictitious
auctioneer, consider an explicit auction mecha-
nism that uses Walrasian tâtonnement for price
adjustment and uses the payment rule proposed
in this article. Then, economic agents—even
though conscious that they can and do change
prices—find it in their interest to take prices as
given at every moment and to report their true
demands relative to the current prices. As a
result, the auction reaches the same efficient

4 The precise statement of Theorem 6 of Gul and Stac-
chetti (2000) excludes implementing literally the Vickrey-
Clarke-Groves (VCG) outcome by a dynamic clock auction
which traces a single ascending price trajectory. By con-
trast, for the case of substitutes and starting from an initial
price vector of zero, Theorems 2 and 2� of the current article
yield the outcome of a modified VCG mechanism using a
single ascending trajectory, while Theorems 4 and 4� of the
current article yield literally the VCG outcome using po-
tentially n distinct ascending trajectories generated in par-
allel. Hence, the conflict herein is only with Gul and
Stacchetti’s interpretation, and not literally with their
theorem.

5 The modified VCG mechanism is also a Clarke-Groves
mechanism, and so it is also strategy-proof. Payoffs differ,
however, from the standard VCG payoffs by an additive
term that depends on other bidders’ reports. If the additive
term is positive, the modified VCG mechanism may violate

a voluntary participation constraint. If the additive term is
negative, the modified VCG mechanism will yield lower
expected revenues than the VCG mechanism. Thus, there
are advantages to obtaining the standard VCG payoffs, but
doing so incurs the cost of using the parallel auction pro-
cedure with n distinct ascending trajectories.

6 In Ausubel and Paul R. Milgrom (2002), we take a
different approach to these issues and we again obtain an
answer that disagrees with the spirit (but not the letter) of
Gul and Stacchetti’s conclusion. In our 2002 article, we
consider an ascending auction with package bidding. A bid
is a pair comprising a package (i.e., a set) of items and a
proposed payment for the entire package. Bidders submit
bids iteratively, and successive bids by a bidder for a given
package are required to ascend. This is not a clock auction,
as the bidders—not the auctioneer—name the prices. Thus,
Gul and Stacchetti’s Theorem 6 does not apply. Nonethe-
less, our auction procedure should be viewed as a general-
ization of the English auction. In Theorem 8 of Ausubel and
Milgrom (2002), we prove that, for substitutes preferences,
sincere bidding is an equilibrium of the ascending package
auction and leads to the same outcome as the VCG mech-
anism. Thus, a restriction to clock auctions is also needed to
reach Gul and Stacchetti’s conclusion.
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allocation of goods and the same Walrasian
equilibrium price vector as if agents were price-
takers and the fictitious auctioneer were present.
However, the agents’ payments are generally
lower than in the Walrasian model.

One attractive feature of the current approach
is that it enables very clean results in strategic
models of Walrasian equilibrium. In traditional
analyses, it has been necessary either to assume
that agents are price-takers (i.e., their behavior
is optimal only subject to the mistaken belief
that their actions do not affect prices) or to set
up the model so that economic agents literally
have no market power (e.g., they are players in
the continuum economy of Robert J. Aumann,
1964). So, for example, the models of Arrow et
al. (1959), Alexander S. Kelso and Vincent P.
Crawford (1982), Gul and Stacchetti (2000),
and Milgrom (2000) are guaranteed to converge
to Walrasian equilibria only if agents are pos-
ited to bid “straightforwardly” rather than truly
optimally, or if the economy has been replicated
sufficiently that no individual has any impact on
the outcome. By contrast, the main convergence
results (Theorems 2, 4, 2�, and 4�) of the current
article show exact convergence to Walrasian
equilibrium under the assumptions that bidders
have market power and are fully optimizing,
without any caveats whatsoever.

Thus, the current article relates to a variety of
strands of the literature. First, it connects most
directly with several recent papers seeking to
extend or explain my analysis in Ausubel (1997,
2004). Motty Perry and Philip J. Reny (2005)
adapt my previous ascending-bid design to en-
vironments of homogeneous goods with inter-
dependent values. Bikhchandani and Joseph M.
Ostroy (2002, forthcoming) and Bikhchandani
et al. (2002) formulate the auction problem as a
linear programming problem and reinterpret my
homogeneous goods design as a primal-dual
algorithm. Second, this article relates to the
literature on efficient auction design. This in-
cludes the classic work of Vickrey (1961), Ed-
ward H. Clarke (1971), and Theodore Groves
(1973), who provide static dominant-strategy
mechanisms for private values settings, as well
as recent papers examining the possibility or
impossibility of efficient mechanisms with in-
terdependent values, including Eric S. Maskin
(1992), Ausubel (1999), Partha Dasgupta and
Maskin (2000), Philippe Jehiel and Benny

Moldovanu (2001) and Perry and Reny (2002).
Third, this article also relates to the literature
exploring Walrasian equilibrium in auction en-
vironments with discrete goods. This includes
the early work of Kelso and Crawford (1982),
as well as recent work by Bikhchandani and
Mamer (1997), Gul and Stacchetti (1999, 2000),
and Milgrom (2000). Fourth, this article relates
to the literature exploring dynamic package bid-
ding—rather than the clock auction—as a pro-
cedure for auctioning heterogeneous items,
articles such as Jeffrey S. Banks et al. (1989),
David C. Parkes and Lyle H. Ungar (2000), and
Ausubel and Milgrom (2002).

Finally, the current article connects with the
venerable literature on tâtonnement stability
and price adjustment processes, which seeks to
understand the forces operating in an economy
that may drive it toward an equilibrium. The
most famous early attempt to treat convergence
to equilibrium was made by Leon Walras
(1874). Classical results include articles by Ar-
row et al. (1959), who demonstrate the global
stability of Walrasian tâtonnement under the
assumption of gross substitutes, and Herbert
Scarf (1960), who provides (nonsubstitutes)
counterexamples for which Walrasian tâtonne-
ment fails to converge from any starting point
other than the equilibria. Hahn (1982) provides
a nice survey of the classical literature on tâton-
nement stability. Indeed, one way to view the
current article is that it introduces a methodol-
ogy enabling the economist to convert compet-
itive results on tâtonnement stability into game-
theoretic results involving strategic agents. It is
hoped that the methodology may ultimately en-
able us to import significant portions of the
existing literature on stability of price adjust-
ment processes into a strategic framework.

The article examines two economic environ-
ments, each containing bidders with quasilinear
utilities and pure private values. In the first
environment, the commodities are perfectly di-
visible. Price is adjusted as a differential equa-
tion using the classic specification of Walrasian
tâtonnement, and bidders submit bids in contin-
uous time. Surprisingly, it is unnecessary to
assume that bidders display substitutes prefer-
ences; strictly concave utility functions are suf-
ficient for obtaining the following results in a
continuous environment. If a bidder’s oppo-
nents bid sincerely, then the bidder’s payoff is
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path independent and equals a constant transla-
tion of social surplus at the final allocation
(Lemma 2), implying that the bidder maximizes
her payoff by bidding sincerely (Theorem 1).
Hence, sincere bidding by every bidder is an
equilibrium, yielding a Walrasian equilibrium
price vector and an efficient allocation (Theo-
rem 2). With appropriate choice of the initial
price, it yields exactly the Vickrey-Clarke-
Groves (VCG) payoff to a given bidder (Theo-
rem 3). Finally, a procedure for n parallel
auctions is provided which yields exactly the
VCG payoff to all n bidders, starting from any
initial price vector (Theorem 4).

In the second environment, the commodities
are discrete. Then it becomes necessary to as-
sume that agents have substitutes preferences;
otherwise, Walrasian prices might fail to exist
(see Kelso and Crawford, 1982; Bikhchandani
and Mamer, 1997; Gul and Stacchetti, 1999;
Milgrom, 2000). Adjusting prices using a
simplification and improvement of Gul and
Stacchetti’s (2000) Walrasian tâtonnement al-
gorithm for discrete commodities, Theorems
1�–4� (analogous to Theorems 1–4) obtain.
Moreover, starting from an initial price vector
of zero, prices ascend only along the adjustment
path, so the auction design exhibits the same
advantage of privacy preservation as in the ho-
mogeneous goods case; and starting from any
initial price vector, prices always converge to an
equilibrium (i.e., global stability holds) and
convergence occurs in finitely many iterations.

The article is organized as follows. Section I
illustrates the new dynamic auction. Section II
specifies the model. Sections III and IV develop
the auction in generality. Sections V and VI
prove theorems for the continuous environment.
Section VII specifies a tâtonnement process and
proves theorems for the discrete environment.
Section VIII concludes. Appendix A contains
the proofs of the main lemmas and theorems.
Appendix B, summarizing the results of a com-
panion paper (Ausubel, 2005), describes in de-
tail the tâtonnement algorithm for discrete
goods used in Section VII.

I. An Illustration of the Efficient Dynamic
Auction

We illustrate the new dynamic auction pro-
cedure for heterogeneous commodities using an

example in which K � 2. There are two types of
commodities, denoted A and B. Real-world ex-
amples fitting this description may include the
sale of three-month and six-month Treasury
bills, the sale of paired and unpaired telecom-
munications spectrum, or the sale of base-load
and peak-load electricity. Suppose that there are
n � 3 bidders and let the supply vector equal
(10, 8). The auctioneer initially announces a
price vector of p(0) � (3, 4), and subsequently
adjusts the price vector to p(1) � (4, 5), p(2) �
(5, 7), p(3) � (6, 7), and finally p(4) � (7, 8).
The bidders’ quantities demanded at these price
vectors are shown in Table 1.

The crediting of units to bidders occurs as
follows. First, consider Bidder 1. When the
price vector advances from p(0) � (3, 4) to
p(1) � (4, 5), the sum of the quantity vectors
demanded by Bidder 1’s opponents decreases
from (10, 8) to (9, 7). Thus, one unit of com-
modity A and one unit of commodity B can be
thought of as becoming available to Bidder 1 at
the current price of p(1) � (4, 5). The auction
algorithm takes this literally, by crediting one
unit of commodity A at a price of four, and one
unit of commodity B at a price of five to Bidder
1. Next, consider Bidder 2. When the price
vector advances from p(0) to p(1), the sum of
the quantity vectors demanded by Bidder 2’s
opponents decreases from (10, 8) to (8, 7).
Thus, two units of commodity A and one unit of
commodity B can be thought of as becoming
available to Bidder 2 at the current price. The
auction algorithm takes this literally, by credit-
ing two units of commodity A at a price of four,
and one unit of commodity B at a price of five,
to Bidder 2. Finally, consider Bidder 3. When
the price vector advances from p(0) to p(1), the
sum of the quantity vectors demanded by Bid-
der 3’s opponents decreases from (10, 8) to (9,

TABLE 1—PRICE AND QUANTITY VECTORS FOR

ILLUSTRATIVE EXAMPLE WITH K � 2

Price vector Bidder 1 Bidder 2 Bidder 3

p(0) � (3, 4) (5, 4) (5, 4) (5, 4)
p(1) � (4, 5) (4, 4) (5, 4) (4, 3)
p(2) � (5, 7) (4, 3) (4, 4) (4, 1)
p(3) � (6, 7) (4, 3) (4, 4) (3, 2)
p(4) � (7, 8) (4, 2) (3, 4) (3, 2)
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8). Thus, one unit of commodity A and zero
units of commodity B can be thought of as
becoming available to Bidder 3 at the current
price. Again, the auction algorithm takes this
literally, by crediting one unit of commodity A
at a price of four and zero units of commodity B
at a price of five, to Bidder 3.

The process continues as the price vector
advances. One interesting moment occurs when
the price advances from p(2) � (5, 7) to p(3) �
(6, 7). Observe that Bidder 3’s demand vector
changes from (4, 1) to (3, 2), while the other
bidders’ demand vectors remain constant. In
particular, Bidder 3’s demand for commodity B
increases, meaning that one fewer unit of com-
modity B remains available for Bidders 1 and 2.
Consequently, the auction algorithm needs to
take this literally, by debiting one unit of com-
modity B at the current price of seven from each
of Bidders 1 and 2.

The entire progression of units credited and
debited is summarized in Table 2.

At p(4) � (7, 8), supply and demand are now
in balance for both commodities. Thus, p(4)
becomes the final price. Bidders 1, 2, and 3
receive their quantity vectors of (4, 2), (3, 4)
and (3, 2), respectively, demanded at the final
price. Observe that, for each bidder, the quantity
vector demanded at the final price equals the
sum of all units credited or debited along the
way. Since many of the credits and debits oc-
curred at earlier prices, however, bidders’ pay-
ments do not generally equal their final
demands evaluated at the final prices. Rather,

the bidders’ payments are related to those from
the VCG mechanism, justifying the sincere bid-
ding assumed in this section by making it in-
centive compatible.

II. The Model

A seller wishes to allocate units of each of K
heterogeneous commodities among a set of n
bidders, N � {1, ... , n}. The seller’s available
supply of commodities is denoted by S � (S1,
... , SK) � ���

K . Bidder i’s consumption set,
Xi, is assumed to be a compact, convex7 subset
of ��

K , and bidder i’s consumption bundle is
denoted by xi � (xi

1, ... , xi
K) � Xi. The follow-

ing assumptions are made for the divisible com-
modities model:8

(A1) Pure private values: Bidder i’s value,
Ui(xi), for consumption vector xi does not
change when bidder i learns other bid-
ders’ information.

(A2) Quasilinearity: Bidder i’s utility from re-
ceiving the consumption vector xi in re-

7 More precisely, convexity will be assumed when con-
sidering the divisible commodities model emphasized in
Sections V and VI; obviously, convexity in �K will not be
assumed for the discrete commodities model studied in
Section VII, since then Xi � ��

K .
8 In addition, to avoid arcane difficulties, it is assumed

that the consumption sets of the bidders and the available
supply S of commodities are such that there exists a feasible
allocation of S among all the bidders and, for each i, there
exists a feasible allocation of S among the bidders j � i.

TABLE 2—CREDITS AND DEBITS FOR ILLUSTRATIVE EXAMPLE WITH K � 2

Price vector Bidder 1 Bidder 2 Bidder 3

p(0) � (3, 4) Initialization Initialization Initialization

p(1) � (4, 5) 1 unit of A credited at 4 2 units of A credited at 4 1 unit of A credited at 4
1 unit of B credited at 5 1 unit of B credited at 5 0 units of B credited at 5
Cumulative payment � 9 Cumulative payment � 13 Cumulative payment � 4

p(2) � (5, 7) 1 unit of A credited at 5 0 units of A credited at 5 1 unit of A credited at 5
2 units of B credited at 7 3 units of B credited at 7 1 unit of B credited at 7
Cumulative payment � 28 Cumulative payment � 34 Cumulative payment � 16

p(3) � (6, 7) 1 unit of A credited at 6 1 unit of A credited at 6 0 units of A credited at 6
1 unit of B debited at 7 1 unit of B debited at 7 0 units of B credited at 7
Cumulative payment � 27 Cumulative payment � 33 Cumulative payment � 16

p(4) � (7, 8) 1 unit of A credited at 7 0 units of A credited at 7 1 unit of A credited at 7
0 units of B credited at 8 1 unit of B credited at 8 1 unit of B credited at 8
Cumulative payment � 34 Cumulative payment � 41 Cumulative payment � 31
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turn for the payment yi is given by
Ui(xi) � yi.

(A3) Monotonicity: The function Ui : Xi3 � is
increasing, i.e., if x�i � xi and x�i � xi, then
U(x�i) � U(xi).

(A4) Concavity: The function Ui : Xi 3 � is
concave.

Note that, for the divisible commodities model,
the concavity assumption (A4) immediately im-
plies continuity: the function Ui : Xi 3 � is
continuous.

The price vector will be denoted by p �
(p1, ... , pK) � �K. Bidder i’s indirect utility
function, Vi(p), and true demand correspon-
dence, Qi(p), are defined respectively by:

(1) Vi �p	 � max
xi � Xi


Ui�xi	 � p � xi�, and

(2) Qi�p	 � arg max
xi � Xi


Ui�xi	 � p � xi�.

Observe that Vi(p) is well defined and Qi(p) is
nonempty. If the correspondence Qi(p) is single
valued (as will be the case when we strengthen
(A4) to assume strictly concave utility in Sec-
tions V and VI, below), then we may also refer
to the solution of equation (2) as the demand
function qi(p).

Since Ui� is continuous and concave, its
conjugate function, �Vi� : �K3 �, is contin-
uous, closed, and concave (R. Tyrrell Rocka-
fellar, 1970, Thm. 12.2 and p. 308). We have:

(3) �Vi �p	 � �Qi�p	, for all p � �K,

i.e., x is a subgradient of Vi at p if and only if
�x is an element of bidder i’s true demand
correspondence at p (Rockafellar, 1970, Thm.
23.5). Note that equation (3) is merely a general
version of �Vi(p) � �qi(p), Roy’s identity as
restricted to quasilinear utility. To see this, con-
sider the case where Ui� is twice continuously
differentiable and strictly concave. Then de-
mand is a continuously differentiable function,
qi�. Furthermore, since Vi(p) � Ui(qi(p)) � p �
qi(p), the Envelope Theorem implies �Vi(p) �
�qi(p).

With every time t � [0, ), we associate a
price vector p(t), and each bidder i selects a bid
xi(t). We say that bidder i bids sincerely if her

bid always belongs to her true demand corre-
spondence:

Sincere bidding.9 Bidder i is said to bid sin-
cerely relative to utility function Ui� if, at
every time t � [0, ), her bid xi(t) �
Qi(p(t)) � arg maxxi�Xi

{Ui(xi) � p(t) � xi}.

Next, we define two notions of efficient out-
comes for this auction environment, the first
taken from general equilibrium theory and the
second taken from game theory:

DEFINITION 1: A Walrasian equilibrium is a
price vector p* and a profile of consumption
bundles {x*i}i�1

n for bidders such that x*i �
Qi(p*), for i � 1, ... , n, and ¥i�1

n x*i � S.

DEFINITION 2: The Vickrey-Clarke-Groves
(VCG) mechanism is the following procedure:
each bidder i reports a valuation function, Ui :
Xi 3 �, to the auctioneer. The auctioneer

assigns a consumption bundle, x*i, to each bid-
der i and charges a payment of y*i � Ui(x*i ) �
W* � W*�i , where:


x*i �i � 1
n

� arg max��
i � 1

n

Ui(xi) : xi � Xi and �
i � 1

n

xi � S�,

W* � max��
i � 1

n

Ui(xi) : xi � Xi and �
i � 1

n

xi � S�,

and

W*�i � max��
j�i

Uj(xj) : xj � Xj and �
j�i

xj � S�.

The VCG payoffs (if reports are truthful) are the
payoffs W* � W*�i.

9 If bidder i’s utility function is strictly concave (as will
be assumed in Sections V and VI), then the demand corre-
spondence Qi(p) is single valued, and so sincere bidding
simply means that xi(t) � qi(p(t)) for all t � [0, T].
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Assumptions (A1)–(A4) guarantee the exis-
tence of Walrasian equilibrium. Given Assump-
tions (A1)–(A4), if bidders report truthfully, then
the VCG mechanism is also well defined. It is well
known that truthful reporting is a dominant strat-
egy equilibrium of the VCG mechanism. By the
First Theorem of Welfare Economics, any Wal-
rasian equilibrium allocation {x*i}i�1

n is welfare
maximizing, so (apart from nonuniqueness is-
sues10) the Walrasian and VCG allocations co-
incide. The payments in the VCG mechanism,
however, are generally less than the linear cal-
culation p* � x*i of the Walrasian equilibrium.

Finally, we define a modification of the VCG
mechanism that will be useful in characterizing
the outcomes of the auction proposed in this
article. It is somewhat related to the notion of a
Vickrey auction with a reserve price discussed
in Ausubel and Cramton (2004b):

DEFINITION 3: The modified VCG mecha-
nism with price of p(0) is the following proce-
dure: each bidder i reports a valuation function,
Ui : Xi 3 �, to the auctioneer. The auctioneer
assigns a consumption bundle, x*i, to each bid-
der i and charges a payment of y*i � Ui(x*i ) �
W** � W*�i*, where:


x*i �i � 1
n � arg max��

i � 1

n

(Ui(xi) � p(0) � xi) :

xi � Xi and �
i � 1

n

xi � S�,

W** � max��
i � 1

n

(Ui(xi) � p(0) � xi) :

xi � Xi and �
i � 1

n

xi � S�, and

W*�i*� max��
j�i

(Uj(xj) � p(0) � xj) : xj � Xj�.

The modified VCG mechanism with price of
p(0) has the following interpretation. The cal-
culation of W** is similar to the calculation of
W* in Definition 1: social surplus is calculated
with all bidders present and the supply con-
straint of ¥i�1

n xi � S is maintained, but a social
cost of p(0) is assigned to the commodities. The
calculation of W*�i*calculates social surplus ab-
sent bidder i, but it discards the supply con-
straint and instead assumes that commodities
are available in arbitrary supply at a social cost
of p(0). Similar to the regular VCG mechanism,
the modified mechanism awards bidder i ex-
actly the difference between these two surplus
calculations. As will be emphasized in Theorem
3 below, if p(0) happens to be chosen such that
the market absent bidder i clears (i.e., ¥j�i
qj(p(0)) � S), then bidder i’s modified VCG
payoff coincides with her regular VCG payoff.

III. “Clinching” versus “Crediting and
Debiting”

In Ausubel (1997, 2004), I introduced the
notion of “clinching” for auctions of homoge-
neous goods. In the current notation, this corre-
sponds to the case of K � 1, and so our various
quantity and price vectors temporarily reduce to
scalars. Let the auction start at time 0 and clear
at time T, and let p(t) denote the price at time
t � [0, T]. Let xi(t) denote bidder i’s demand at
time t. Let x��i(t) � (xj )j�i denote the vector of
demands by all of bidder i’s opponents and let
x�i(t) � ¥j�i xj(t) denote the aggregate demand
of bidder i’s opponents at time t. We define the
cumulative clinches, Ci(t), by:

(4) Ĉi �t	 � max
0, S � x�i�t	� and

Ci(t) � sup t̂ � �0,t�Ĉi�t̂ 	,

and we define the payment, yi(T), of bidder i by
the following Stieltjes integral:

(5) yi �T	 � �
0

T

p�t	 dCi�t	.

This paragraph provides a short review of
Stieltjes integrals, drawing from the presenta-
tion of Tom M. Apostol (1957). The Stieltjes

10 If we strengthen Assumption (A4) to assume strictly
concave utilities (as in Sections V and VI), then the Wal-
rasian and VCG allocations of goods are each unique.
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integral �a
b f(t) d�(t) involves two functions, f

and �. When � has a continuous derivative, the
Stieltjes integral reduces to the Riemann inte-
gral �a

b f(t)��(t) dt. The Stieltjes integral may
still be evaluated, however, when � is not dif-
ferentiable or even when � is discontinuous. In
particular, if f is continuous on [a, b] and � is of
bounded variation on [a, b], then the integral
�a

b f(t) d�(t) exists (Apostol, 1957, Theorem
9-26). In turn, � is of bounded variation on [a,
b] if and only if � can be expressed as the
difference of two increasing functions. A defi-
nition of the Stieltjes integral may be found in
Apostol (1957, Definition 9-1).

An example of evaluating a Stieltjes integral
of a discontinuous function can be based on the
illustrative example of Section I of Ausubel
(2004). Five objects are available for auction,
and the price is given by p(t) � t. Bidder 1’s
demand, x1(t), equals three at all t � [0, 103).
The aggregate demand, x�1(t), of bidder 1’s
opponents equals: five, at t � [49, 65); four, at
t � [65, 75); three, at t � [75, 85); and two, at
t � [85, 125). Consequently, the auction clears
at T � 85 and, applying equation (4), we have:

dC1 �t	 � �1, if t � 65, 75, or 85,
0, otherwise.

Thus, the Stieltjes integral, �0
85 p(t) dC1(t), eval-

uates to p(65) dC1(65) � p(75) dC1(75) �
p(85) dC1(85), which equals 65 � 75 � 85 �
225.

This example has the following simple inter-
pretation. The function Ci(t) indicates the “cu-
mulative clinches,” e.g., at the time t � 75, it
has become a foregone conclusion that Bidder 1
will win at least C1(75) � 2 units of the homo-
geneous good, since there are five units avail-
able and her opponents demand only three. The
function dCi(t) indicates the “current clinches,”
i.e., the number of additional units that the
bidder has newly clinched at time t. The inter-
pretation of the Stieltjes integral of equation (5)
is then that, at every time t when it becomes
inevitable that a bidder wins additional units
dCi(t), she wins them at the current price p(t).
For example, Bidder 1 clinched one unit at 65,
one unit at 75, and one unit at 85, for a total
payment of 225. In Ausubel (2004, Theorem 1),
I proved for homogeneous goods that, if the

auction rules provide that each bidder i is as-
signed xi(T) units and is assessed a payment
yi(T) determined by equations (4) and (5), then
sincere bidding by all bidders is an (efficient)
equilibrium.

It is possible to modify equation (5) in a
relatively innocuous way. Note that the expres-
sion Ci(t) of equation (4) is a function of
�x�i(t) that treats increases and decreases of
opponents’ aggregate demands asymmetrically.
One might instead choose to treat increases and
decreases entirely symmetrically, replacing the
term � p(t) dCi(t) with the term �� p(t) dx�i(t).
At the same time, the term Ci(t) of equation (4)
implicitly incorporates a constant term in which
the residual supply, S � x�i(0), is priced at
price p(0) at time zero. Thus, one could define
instead the payment, ai(T), of bidder i by the
following equation:

(6) ai�T	 � p�0	�S � x�i�0	� � �
0

T

p�t	 dx�i�t	.

By its construction, the principal difference be-
tween the original notion of “clinching” in
equations (4)–(5) and the extended notion in
equation (6) occurs when x�i(t) is nonmono-
tonic. In equations (4)–(5), price is integrated
against dCi(t), so units are won when oppo-
nents’ demands decrease, but units are not lost
when opponents’ demands correspondingly in-
crease. By contrast, in equation (6), price is
integrated against dx�i(t), so decreases and in-
creases in opponents’ demands are treated en-
tirely symmetrically, allowing both “crediting”
and “debiting” to occur.

An example of the calculation of the “cred-
iting and debiting” Stieltjes integral of equation
(6) (as well as an introduction to the vector
notation that will be used for heterogeneous
types of commodities) is provided by reexam-
ining the example of Section I of the current
article. Table 1 implies:

dx�1�t	 � �
��1, �1	, if t � 1,
��1, �2	, if t � 2,
��1, �1	, if t � 3,
��1, 0	, if t � 4,
�0, 0	, if t � 1, 2, 3, 4.
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We need only note the value of the price vector
p(t) at the times when dx�i(t) � 0:

p�t	 � �
�4, 5	, if t � 1,
�5, 7	, if t � 2,
�6, 7	, if t � 3,
�7, 8	, if t � 4.

Consequently, ��0
4 p1(t) dx�1

1 (t) � �4 �
(�1) � 5 � (�1) � 6 � (�1) � 7 � (�1) �
22 and ��0

4 p2(t) dx�1
2 (t) � �5 � (�1) � 7 �

(�2) � 7 � 1 � 8 � 0 � 12, or, in short,
��0

4 p(t) � dx�1(t) � 22 � 12 � 34, confirming
the results summarized in the second column of
Table 2.

Nevertheless, the differences between the
clinching approach and the crediting/debiting
approach should not be overstated. Suppose
that, in an ascending auction of homogeneous
goods, we replace equations (4)–(5) with equa-
tion (6), and we choose p(0) so that x�i(0) � S.
Then the central result from Ausubel (1997,
2004) continues to hold—sincere bidding by all
bidders is an equilibrium—and the bidders’
equilibrium payoffs remain unchanged. Thus,
reformulating the payoffs need not disturb in-
centive compatibility.

IV. The Extension to K Heterogeneous
Commodities

The most naı̈ve way that one might think
about generalizing the homogeneous goods pro-
cedure to the case of K heterogeneous commod-
ities is to run K price clocks (one for each
commodity) simultaneously, to compute the
“credits” and “debits” for each independently,
and to sum them up. Let the movement of the K
price clocks be described by a continuous,
piecewise smooth,11 vector-valued function
p(t) � (p1(t), ... , pK(t)) from [0, T] to �K.

Further suppose that each bidder i bids accord-
ing to the vector-valued function xi(t) �
(xi

1(t), ... , xi
K(t)) from [0, T] to Xi, which is

constrained to be of bounded variation in each
coordinate k. Then the naı̈ve extension of equa-
tion (6) would be to define x�i

k (t) � ¥j�i xj
k(t),

for k � 1, ... , K, and to define payments by:

(7) ai �T	 � p�0	 � �S � x�i�0	�

� �
0

T

p�t	 � dx�i�t	

� �
k � 1

K �pk(0)[Sk � x�i
k (0)] � �

0

T

pk(t) dx�i
k (t)�,

where the integrals of equation (7) are calcu-
lated as Stieltjes integrals. We begin by
observing:

LEMMA 1: If p� is continuous and if xj
k� is

of bounded variation for every bidder j � i and
commodity k, then the payment ai(T) of equation
(7) is well defined.

The proofs of all lemmas and theorems appear
in Appendix A.

Next, in order for the payment formula of
equation (7) to serve its intended purpose, it is
critical for us to establish the property of path
independence. Suppose that bidders j � i bid
qj�, sincere bids relative to their utility func-
tions. Consider two different price paths, pA�
and pB�, which originate at the same price
vector and conclude at the same price vector.
We need to show that the line integrals calcu-
lated along the two paths are equal, i.e.,
�0

T pA(t) � dq�i
A (t) � �0

T pB(t) � dq�i
B (t). Other-

wise, bidder i would have the incentive to ma-
nipulate her demand reports so as to alter the
price adjustment path to her advantage.

In general, path independence requires that
the line integral along any (piecewise smooth)
path from point A to point B gives the same
value. Equivalently, a path is said to be closed if
its starting and ending point are the same; path
independence requires that the line integral
along any (piecewise smooth) closed path
equals zero.

11 The (vector-valued) continuous function p is said to be
piecewise smooth if each coordinate pk has a bounded
derivative which is continuous everywhere in [0, T], except
(possibly) at a finite number of points. At these exceptional
points it is required that both right- and left-hand derivatives
exist. A curve � is said to be piecewise smooth if it can be
described by a piecewise smooth function (Apostol, 1957,
Definition 9-61).
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The classical consumer theory problem of
integrability is the best-known problem in mi-
croeconomics in which the issue of path inde-
pendence arises. There, the question considered
is: What are necessary and sufficient conditions
on a vector-valued function xi� satisfying Wal-
ras’s law to assure that it is the demand function
derived from some utility function?12 Recall
that the answer is: xi� must satisfy the sym-
metry condition, �xi

j/�pk � �xi
k/�pj. The reason

is that, for path independence, xi� needs to be
the gradient of a potential function (i.e., there
must exist a function �i� such that ��i� �
xi�). Furthermore, the symmetry condition on
derivatives is essentially necessary and suffi-
cient for the existence of such a potential func-
tion (e.g., see Apostol, 1957, Theorems 10-38,
10-45, and 10-48).

In the classical case of integrability, the po-
tential function has the interpretation of an ex-
penditure function. Path independence is the
requirement that the incremental expenditure
needed for an agent to attain a fixed level of
utility, as the price vector changes from pA to
pB, must not depend on the particular price
adjustment path taken from pA to pB. Outside of
economics, a better-known example of path in-
dependence is the analysis of a gravitational
field in Newtonian mechanics. In a frictionless
world, the amount of work required to move an
object from point A to point B is the same along
any possible path.

Thus, in the current auction context, path
independence of the payment formula of
equation (7) requires the existence of a po-
tential function. For concise notation, we let
x��i(p(t)) � {xj(p(t))}j�i denote the vector of
demands by bidder i’s opponents at time t, and
we define U�i(x��i(p(t))) � ¥j�i Uj(xj(p(t))).
With sincere bidding, the following important
lemma shows that the potential function,
U�i(x��i(p�)), is associated with the crediting/
debiting formula, implying path independence.
For greater generality, the result is obtained
using subgradients rather than gradients, so that
Lemma 2 applies to both the continuous and
discrete models:

LEMMA 2: Suppose that p� is a continuous,
piecewise smooth function from [0, T] to �K.
Also suppose that xj� is a measurable selection
from Qj(p�), the demand correspondence from
a concave, continuous utility function Uj�, and
that xj

k� is of bounded variation, for every
bidder j � i and commodity k. Then the integral
�0

T p(t) � dx�i(p(t)) of equation (7) is indepen-
dent of the path from p(0) to p(T) and equals:

(8) �
0

T

p�t	 � dx�i�p�t		

� U�i �x� �i�p�T			 � U�i�x��i�p�0			

� �
j�i

�Uj �xj�p�T			 � Uj�xj�p�0			�.

V. The Dynamic Auction Game for Divisible
Commodities

The auction is modeled as a dynamic game in
continuous time. There are n players. To sim-
plify matters, we henceforth assume for the
model of divisible commodities that utility
functions, Ui�, are strictly concave, making the
sincere demand correspondences single-valued
at all prices. At each time t � [0, ), a price
vector p(t) is announced to the players. Each
player i then reports an optimal consumption
bundle xi(t). The law of motion for the price
vector is any continuous, sign-preserving trans-
formation of the Walrasian tâtonnement price
adjustment process (as formalized by Paul A.
Samuelson, 1941):

Walrasian tâtonnement. Let Z(t) � �S � ¥i�1
n

xi(t) denote the excess demand vector. Let
h� : �K 3 �K denote any continuous func-
tion that is sign preserving in the sense that
hk(z�) � 0N zk � 0 and hk(z�) � 0N zk � 0.
Prices adjust according to:

(9) ṗk�t	 � hk�Z�t		, for k � 1, ... , K.

Given the initial price, p(0), and suitable restric-
tions on {xi(s)}i�1

n , equation (9) determines the
evolution of the price vector, p(t), at all times
t � [0, ).

12 In addition, the function xi� is required to satisfy a
negative semidefiniteness condition and the utility function
is required to satisfy quasiconcavity, monotonicity, and
continuity.
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Let Hi
t denote the part of the history of play

prior to time t that is observable to player i at
time t. One sensible specification is that Hi

t

comprises the history of aggregate excess de-
mand and player i’s own actions, i.e., Hi

t �
{Z(s) and xi(s) : s � [0, t)}. Observe that, given
equation (9), this observable history determines
p(s) for all s � [0, t].13 The strategy �i(t, Hi

t) of
player i (i � 1, ... , n) is a function associating
times and observable histories with elements of
Xi. The strategy spaces �i may be any sets of
functions �i(t, Hi

t) which: (a) include sincere
bidding; and (b) induce actions xi(t) by bidder i
that are piecewise continuous and of bounded
variation, for each bidder i and each commodity
k.14 The following theorems may be proven for
many possible choices of strategy spaces; for
specificity, we will use the following:

Piecewise Lipschitz-continuous functions. The
strategy space of each player i is given by:
�i � {�i : [0, ) � �K 3 Xi such that �i is
a piecewise Lipschitz-continuous function of
(t, p)}.15

The strategies in �i are similar in spirit to
“Markovian” strategies in the sense that a player
has full knowledge of the history of aggregate
excess demands (or even of individual de-
mands), yet the player chooses to base her de-
mands only on the current time and price. This
strategy space is restrictive enough to induce
actions satisfying the hypothesis of Lemma 2,
while general enough to include sincere bidding.

The auction is said to terminate at time T if

¥i�1
n xi(T) � S, i.e., the aggregate demand

equals the supply for every commodity. It is
said to terminate at time T �  if limT3 ¥i�1

n

xi(T) � S. Following termination of the auction,
players receive their quantities demanded at the
termination time, xi(T) (or limT3xi(T)), and
payments are assessed according to equation
(7). If the auction fails to terminate, i.e., if
limT3 ¥i�1

n xi(T) � S or if limT3 ¥i�1
n xi(T)

fails to exist, then every player is assigned a
payoff of �.

The next lemma shows that, if all bidders bid
sincerely, then starting from any history the
auction converges to a Walrasian equilibrium
price vector. The proof is little more than the
classical argument (see, for example, Hal R.
Varian, 1981, pp. 104–06) that, with price-
taking agents, the price is globally convergent
to a Walrasian equilibrium price vector. We
have:

LEMMA 3: With divisible goods and strictly
concave utility functions for all bidders, and
after any history, sincere bidding by every bid-
der i induces convergence to a Walrasian equi-
librium price vector.

The information structure of the auction game
may be one of complete or incomplete informa-
tion regarding opposing bidders’ valuations. With
complete information, each bidder is fully in-
formed of the functions {Uj�}j�1

n , and the appro-
priate equilibrium concept is subgame perfect
equilibrium. With incomplete information, each
bidder i is informed only of her own utility func-
tion Ui� and of the joint probability distribution
F� from which the profile {Uj�}j�1

n is drawn. In
static games of incomplete information, authors
sometimes advocate ex post equilibrium, which
requires that the strategy for each player would
remain optimal if the player were to learn her
opponents’ types (see Jacques Crémer and Rich-
ard P. McLean, 1985). In the current dynamic
game, the equilibrium concept that we will use
(which we defined and also used in Ausubel,
2004) is ex post perfect equilibrium, which im-
poses this same condition at every node of the
auction game:

Ex post perfect equilibrium. The strategy n-
tuple {�i}i�1

n is said to comprise an ex post
perfect equilibrium if for every time t, fol-

13 Another sensible specification is that the observable
history comprises the complete history of individual de-
mands, i.e., Hi

t � {xj(s) : s � [0, t) and j � 1, ... , n}.
14 More precisely, we assume that for every player i,

there exists a partitioning 0 � ti
0 � ti

1 � ... � ti
l � ... of the

time interval [0, ) by the points ti
l without finite points of

accumulation, such that within each piece [ti
l, ti

l�1) of the
domain, the function xi� is continuous, and each xi

k� is
required to be a function of bounded variation on every
finite time interval [0, T].

15 More precisely, we assume that for every player i,
there exists a partitioning 0 � ti

0 � ti
1 � ... � ti

l � ... of the
time interval [0, ) by the points ti

l without finite points of
accumulation, and there exists a constant C � 0, such that
within each piece [ti

l, ti
l�1) � �K of the domain, the function

xi(t, p) is Lipschitz-continuous in (t, p), i.e., for (t1, p1), (t2,
p2) � [ti

l, ti
l�1) � �K, we have �xi

k(t2, p2) � xi
k(t1, p1)� 	

C(�t2 � t1� � �p2 � p1�).
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lowing any history Hi
t, and for every realiza-

tion {Ui}i�1
n of private information, the

n-tuple of continuation strategies {�i( � , � �t,
Hi

t, Ui)}i�1
n constitutes a Nash equilibrium of

the game in which the realization of {Ui}i�1
n

is common knowledge.

Alternatively, we could have explicitly defined
beliefs for each bidder and stated the theorems
of this article in terms of the perfect Bayesian
equilibrium concept.16 Stating the results in
their current form, however, gives them a num-
ber of additional desirable properties, e.g., the
results are independent of the underlying distri-
bution of bidders’ types (see Crémer and
McLean, 1985; Maskin, 1992; Perry and Reny,
2002, 2005). The results as stated also encom-
pass the complete-information version of the
model, since ex post perfect equilibrium then
reduces to the familiar equilibrium concept of
subgame perfect equilibrium.

Our assumptions above, which assure that the
strategies �i � �i induce demands xi(t) by each
bidder i that are piecewise continuous and of
bounded variation in each coordinate k, and that
the price adjustment process ṗ(t) is continuous
in xi(t), guarantee that the technical require-
ments for Lemma 2 hold. In light of the path
independence established by Lemma 2, if the
bidders j � i bid sincerely relative to strictly
concave utility functions, then the strategic
choice by bidder i reduces from an optimization
problem over price paths in �K to one over
endpoints in �K, implying:

THEOREM 1: With divisible goods, if each
opposing bidder j � i bids qj(p�), a sincere bid
relative to a strictly concave utility function
Uj�, then bidder i with strictly concave utility
function Ui� maximizes her payoff by bidding
sincerely. By bidding sincerely, bidder i selects

a Walrasian equilibrium price vector as the
endpoint of the price path and maximizes social
surplus, Ui� � ¥j�i Uj�, over all feasible
allocations. This result holds at every time t and
after every history Hi

t.

This theorem is established by using Lemma
2 to show that the portion of payoff that a bidder
is able to influence coincides with the social
surplus associated with the allocation implied
by the terminal price vector, p(T). Conse-
quently, the bidder’s payoff is maximized if and
only if p(T) is a Walrasian equilibrium price
vector. By Lemma 3, bidder i can attain a Wal-
rasian equilibrium by bidding sincerely.

Theorem 1 immediately implies that sincere
bidding is an ex post perfect equilibrium of the
new auction game. We have:

THEOREM 2: With divisible goods, strictly
concave utility functions, mandatory participa-
tion, and any arbitrary initial price vector of
p(0):

(a) Sincere bidding by every bidder is an ex
post perfect equilibrium of the auction
game;

(b) With sincere bidding, the price vector con-
verges to a Walrasian equilibrium price
vector; and

(c) With sincere bidding, the outcome is that of
the modified VCG mechanism with price of
p(0).

Note that the hypothesis of Theorem 2 as-
sumes “mandatory participation.” This refers to
the fact that bidders’ payments depend on the
initial price vector p(0) (see equation (7)) and it
is entirely possible, with some initial price vec-
tors, that sincere bidding may yield a negative
payoff (see also footnote 5). For example, when
p(0) exceeds the Walrasian equilibrium price
vectors, the payment of bidder i for receiving x*i
might exceed Ui(x*i ). In that event, if given a
choice whether or not to participate, bidder i
with complete information would choose to stay
out of the auction. We would be assured of the
conclusion of Theorem 2 only if bidders’ par-
ticipation was mandatory.

Mandatory participation ceases to be an is-
sue, however, if the auction procedure is en-

16 To state the results in terms of perfect Bayesian equi-
librium, we would begin by specifying that, after any his-
tory, each player i has posterior beliefs over opponents’
utility functions, U�i� � {Uj�}j�i. The beliefs of player
i are denoted 
i( � �t, Hi

t, Ui). The n-tuple {�i, 
i}i�1
n is then

defined to comprise a perfect Bayesian equilibrium if the
strategies �i � �i, the beliefs 
i are updated by Bayes’s rule
whenever possible, and if following any history Ht of play
prior to time t, �i is a best response for player i in the
continuation game against {�j}j�i given beliefs 
i( � �t, Hi

t,
Ui), and for every i � 1, ... , n.
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hanced in such a way that bidders receive their
VCG payoffs. The VCG mechanism is ex post
individually rational (i.e., the bidder’s payoff is
always nonnegative and so, under voluntary
participation, the bidder would choose to par-
ticipate). We turn to developing such an en-
hancement to the auction procedure in the next
section.

VI. Relationship with the Vickrey-Clarke-
Groves Mechanism

In Theorem 2, each bidder i received her
payoff from the modified VCG mechanism with
price of p(0). This payoff coincides with bidder
i’s VCG payoff if the initial price vector p(0) is
chosen appropriately. Moreover, since the VCG
payoff is nonnegative, we no longer need to
assume mandatory participation. We have:

THEOREM 3: With divisible goods and strictly
concave utility functions, if the initial price p(0)
is chosen such that the market without bidder i
clears at p(0) (i.e., ¥j�i qj(p(0)) � S) and if
each bidder j � i bids sincerely, then bidder i
maximizes her payoff by bidding sincerely and
thereby receives her VCG payoff.

Furthermore, the hypothesis of Theorem 3 is
trivial to satisfy if all bidders are identical,
providing a simple procedure to generate the
VCG outcome. We immediately have the fol-
lowing corollary:

COROLLARY TO THEOREM 3: With iden-
tical bidders, divisible goods and strictly con-
cave utility functions, if the initial price p(0) is
chosen such that the market without one bidder
clears (i.e., if ¥j�i qj(p(0)) � S), then the sin-
cere bidding equilibrium of the auction game
gives the same outcome as the VCG mechanism.

Without identical bidders, however, it obvi-
ously is not generally possible to select an initial
price p(0) such that every bidder receives her
VCG payoff. Theorem 3 nevertheless suggests a
more intricate, parallel auction procedure that
could be followed so that every bidder receives
exactly her VCG payoff.

Parallel Auction Game.—Begin with any ini-
tial price p(0) � �K. First, we perform the

following n steps, which may be done in any
order or may be run in parallel:

Step 1: Run the auction procedure of announc-
ing a price p(t), allowing each bidder i to
respond with a quantity xi(t), and adjusting
price according to ṗ(t) � �S � ¥i�1 xi(t),
starting from price p(0) and until a price p�1
is determined at which the market (absent
bidder 1) clears.

. . .
Step n: Run the auction procedure of announc-

ing a price p(t), allowing each bidder i to
respond with a quantity xi(t), and adjusting
price according to ṗ(t) � �S � ¥i�n xi(t),
starting from price p(0) and until a price p�n
is determined at which the market (absent
bidder n) clears.

Second, we perform the following additional
n steps, which again may be done in any order
or may be run in parallel, which are similar to
the first n steps except that all n bidders’ de-
mands are now included in the Walrasian tâton-
nement process:

Step n � 1: Run the auction procedure of an-
nouncing a price p(t), allowing each bidder i
to respond with a quantity xi(t), and adjusting
price according to equation (9), starting from
price p�1 and continuing until a price p(T) is
determined at which the market (with all bid-
ders included) clears.

. . .
Step 2n: Run the auction procedure of announc-

ing a price p(t), allowing each bidder i to
respond with a quantity xi(t), and adjusting
price according to equation (9), starting from
price p�n and continuing until a price p(T) is
determined at which the market (with all bid-
ders included) clears.

Finally, payoffs are computed as follows. The
commodity bundle assigned to each bidder i (1 	
i 	 n) is given by xi(T) from step (n � i) above.
The payment is given by the line integral of equa-
tion (7), calculated from step (n � i) above, i.e.,
along the path from p�i to p(T). If the results of
steps n � 1, ... , 2n are inconsistent (i.e., if they
yield different allocations), then every bidder is
assigned a payoff of �.

The parallel auction procedure is illustrated
in Figure 1. As the figure makes clear, a number
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of the steps described above are unnecessary.
Observe that one could delete all but one of the
dashed arcs, yet all of the nodes in the figure
would remain connected. Hence, by the path
independence of Lemma 2, one would still have
sufficient information to calculate all of the
needed line integrals. Moreover, if one deletes
(n � 1) of the last n steps, one is able to get rid
of the awkward final step of checking whether
the results of steps n � 1, ... , 2n are consistent,
and assigning each bidder a payoff of � if
they are inconsistent. Thus, in performing the
parallel auction, we may utilize the following
shortcut procedure:

Shortcut Procedure for a Parallel Auction.
Only (n � 1) of the steps described above—all
of the first n steps, but only one of the last n
steps—actually need to be carried out.

For example, suppose that out of the last n
steps, only Step 2n is performed. Payoffs can
still be computed as follows. The payment of
bidder n is given by the line integral of equation
(7), calculated along the path from p�n to p*,
i.e., by step 2n alone. The payment of bidder i
(1 	 i 	 n � 1) is also given by equation (7),
but is calculated as a line integral along the
union of three paths: the path from p�i to p(0);
the path from p(0) to p�n; and the path from
p�n to p*. Step i generated the first path (run
backward), as well as all necessary demands for
calculating equation (7); step n generated the
second path; and step 2n generated the third
path. For both the full parallel auction game and
for the shortcut procedure, we have:

THEOREM 4: With divisible goods, strictly
concave utility functions, and any initial price
vector, sincere bidding by every bidder is an ex
post perfect equilibrium of the parallel auction
game, prices converge to a Walrasian equilib-
rium price vector, and the outcome is exactly
that of the VCG mechanism.

VII. The Dynamic Auction Game for Discrete
Goods

We now turn to an environment of indivisible
goods. A seller wishes to allocate units of each
of K types of discrete heterogeneous commod-
ities among n bidders. The seller’s available
supply of commodities is denoted by S � (S1,
... , SK) � ���

K . Bidder i’s consumption set
is the set Xi � {xi � �K : 0 	 xi

k 	 zi
k for all k �

1, ... , K} bounded below by zero and bounded
above by the vector zi � (zi

1, ... , zi
K) � ��

K .
Bidder i’s consumption bundle is denoted by xi
� (xi

1, ... , xi
K) � Xi.

In order to treat the case of discrete commod-
ities, it will now be necessary for us to impose
the substitutes condition. This condition, often
known as “gross substitutes,”17 requires that if
the prices of some commodities are increased
while the prices of the remaining commodities
are held constant, then a bidder’s sincere de-
mand weakly increases for each of the commod-
ities whose prices were held constant. The
reason for requiring the substitutes condition in
the discrete case is to assure the existence of
Walrasian equilibrium.18 We define:

DEFINITION 4: Consider an economy with K
indivisible commodities, each of which is avail-
able in a supply of one. Ui� is said to satisfy
the substitutes condition if, for any two price

17 The substitutes condition is often referred to as gross
substitutes (as opposed to net substitutes, which would be
the case if the analogous condition held for compensated
demands). In the current context of quasilinear utility, how-
ever, there is no distinction between gross substitutes and
net substitutes, so in this article, the condition will simply be
called the substitutes condition.

18 Indeed, in the case of discrete items, given any one
bidder with preferences violating the substitutes condition,
it is possible to specify another bidder with additive pref-
erences and an endowment of goods such that the resulting
economy has no Walrasian equilibrium (Milgrom, 2000,
Theorem 4).

p0

p−−1

p−−2

np−−

p*

...

FIGURE 1. PARALLEL AUCTION GAME
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vectors p and p� such that p� � p and demand
qi� is single valued at p and p�, qi

k(p�) � qi
k(p)

for any commodity k (1 	 k 	 K) such that
p�k � pk.

The assumption in Definition 4 that each
commodity is available in a supply of one is
without loss of generality, since if there are
multiple units of some commodities, one can
expand the commodity space by treating each
unit of a commodity as a unique item (Bikh-
chandani and Mamer, 1997, sect. 2). The sub-
stitutes condition is defined with respect to this
“unique items” formulation, since it is then a
“sufficient and almost necessary” condition for
the existence of Walrasian equilibrium.19 How-
ever, the auction procedure itself will be spec-
ified to allow multiple units of each discrete
commodity. This provides a more compact way
for bidders to communicate information, and is
more naturally connected with both the tradi-
tional Walrasian auctioneer procedure and the
divisible commodities treatment, above.

The substitutes condition is stronger than the
concave utility assumption that we made above.
Substitutes preferences imply concave utility.
Let ui : � 3 � be increasing and concave,
however, and consider the utility function
Ui(xi) � ui(mink�1, ... ,K xi

k). Then Ui� is a
concave utility function, but starting from a
consumption vector xi � (�, ... , �), the various
commodities are complements for bidder i. The
following assumptions are made for the discrete
case:

(A1�) Integer pure private values: The utility
function Ui : Xi 3 � takes integer
values.

(A2�) Quasilinearity: The same as (A2).
(A3�) Monotonicity: The utility function Ui :

Xi3 � is increasing, i.e., if x�i � xi and
x�i � xi, then U(x�i) � U(xi).

(A4�) Substitutes condition: The utility func-
tion Ui : Xi 3 � satisfies Definition 4.

As before, the price vector will be denoted by
p � (p1, ... , pK) � �K, but it will soon be

specified to take nonnegative integer values at
integer times. The demand correspondence,
Qi(p), is defined as before.

The auction is modeled as a dynamic game.
At each time t � 0, 1, 2, ... , the price vector p(t)
is announced to the n players. Each player i
responds by reporting her set xi(t) � Xi of one
or more optimal consumption bundles. The law
of motion for the price variable will be specified
later in this section.

Let Hi
t denote the part of the history of play

prior to time t that is observable to player i at
time t. One sensible possibility is that the ob-
servable history comprises the complete history
of price vectors and demand profiles, i.e., Ht �
{p(s) and xj(s) : 0 	 s � t and j � 1, ... , n}. The
strategy �i(t, Ht) of a player i (i � 1, ... , n) is a
set-valued function of times and observable his-
tories �i : �� � Hi

t3 2Xi. The strategy space �i
is the set of all such functions �i(t, Hi

t). As in the
divisible goods game of Sections V and VI, the
equilibrium concept will be ex post perfect equi-
librium. In the equilibrium that we construct,
bidders will engage in sincere bidding, which
now means that they report truthfully their
entire demand correspondences. This sincere
bidding strategy will simply be denoted by
Qi(p), the same notation as for the demand
correspondence.

The logic behind classical Walrasian tâtonne-
ment remains sound in a discrete environment.
However, the classic Walrasian tâtonnement
process of differential equation (9), in which the
price for each good is continuously increased
(or decreased) in relation to excess demand (or
supply) based on reports of demand functions
by bidders, encounters major technical difficul-
ties, as shown by the following example. Sup-
pose that there are two indivisible goods, each
available in a quantity of one, and three bidders,
each with utility functions given by: U(0, 0) �
0; U(1, 0) � c; U(0, 1) � c; and U(1, 1) � c. At
a price vector of (p, p), where 0 � p � c, each
bidder would demand one of the goods, and so
one good is in excess demand. Without loss of
generality, say it is the first good, so its price is
increased according to equation (9). At any
price vector of (p � �, p), however, where � �
0, the aggregate demand for the first good drops
to zero and for the second good jumps to three.
Equation (9) now requires, instead, the price of
the second good to rise. The choice of good

19 Kelso and Crawford (1982), Gul and Stacchetti
(1999), and Milgrom (2000).
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whose price increases may oscillate back and
forth arbitrarily frequently.

Gul and Stacchetti (2000) provide an elegant
procedure that circumvents this difficulty and
thereby extends classical Walrasian tâtonne-
ment to environments with discrete goods and
substitutes preferences. The solution that they
give to the conundrum of the previous para-
graph is to increase the prices of the two goods
simultaneously; knowing to do this requires
having the bidders report information about
their demand correspondences (which indeed is
how we have specified the game in this section).
If agents bid sincerely by reporting all of their
optimal commodity bundles at each price, the
procedure is guaranteed to converge in finitely
many steps from an initial price vector of zero
to the lowest Walrasian equilibrium price vec-
tor, and to get there via an ascending price path.
While the Gul-Stacchetti procedure remains
subject to the same critique as classical Walra-
sian tâtonnement—that if bidders possess any
market power then the posited bidder behavior
fails to be incentive compatible (see the intro-
duction)—it provides an extremely useful ex-
tension of Walrasian tâtonnement to environments
with discrete goods.

Appendix B, summarizing the results of a
companion paper (Ausubel, 2005), describes in
detail a simplified version of Gul and Stacchet-
ti’s price adjustment procedure. It draws heavily
from Gul and Stacchetti’s work, but builds upon
it to yield an improved procedure for the prob-
lem at hand.20 At the heart of the simplified

price adjustment procedure is a Lyapunov func-
tion—a construction familiar from the older
literature on the global stability of price adjust-
ment processes. In the global stability literature,
given a dynamical system ṗ � f(p) with equi-
librium p*, a Lyapunov function is defined to be
a differentiable function L(p) that exhibits two
key properties: (a) L� is minimized at p*; and
(b) L̇(p(t)) � 0 for all p(t) � p*. The basic
result is that, if there exists a Lyapunov function
for the dynamical system, then p* is a globally
stable equilibrium (i.e., p(t) 3 p* for every
initial condition p(0)). See, for example, Arrow
and Hahn (1971, chap. 11) and Varian (1981).

In the classical derivation of global stability
for Walrasian tâtonnement, when there are di-
visible commodities and consumers with quasi-
linear utility functions, the following Lyapunov
function is used:

(10) L�p	 � p � S � �
i � 1

n

Vi�p	.

The reason that this function is selected in the
divisible commodities formulation is that its
subgradient at p equals S � ¥i�1

n qi(p), the
excess supply vector (see the proof of Lemma 3
in Appendix A or such sources as Varian, 1981,
pp. 104–06).

The companion paper establishes that the ex-
act same Lyapunov function as in equation (10)
can be successfully used in constructing a sim-
plified and improved version of Gul and Stac-
chetti’s tâtonnement algorithm for discrete
goods. The minimizers of L� correspond to
Walrasian equilibrium price vectors (Proposi-
tion 1), and the price adjustment process (now
discrete) gives us a next price vector p(t � 1)
such that L(p(t � 1)) � L(p(t)) whenever p(t) is

20 The procedure developed in the companion paper and
outlined in Appendix B departs from Gul and Stacchetti’s
(2000) procedure in several respects. First, the description
and proof in the companion paper do not require any knowl-
edge of matroid theory and instead rely on the (better known
and more elementary) properties of submodular functions.
Second, whereas Gul and Stacchetti define only an ascend-
ing price adjustment procedure, we utilize here both an
ascending algorithm and a “global” algorithm (which may
ascend or descend). While the ascending algorithm is guar-
anteed to converge to a Walrasian equilibrium price vector
only starting from an initial price vector of zero, the global
algorithm is guaranteed to converge from any initial price
vector (i.e., global convergence). Third, whereas Gul and
Stacchetti define their procedure for the “unique items”
formulation, the current procedure is specified for the useful
generalization where there may be multiple units of each
“type” of commodity. Fourth, in step 2 of their procedure,
Gul and Stacchetti (2000, p. 78) find it necessary to require

the auction to end without trade if bidders ever report
(untruthfully) in such a way that the excess demand set is
not well defined. By contrast, the current procedure operates
by making use of any minimal minimizing set—which
always exists—so there is never a need for such a punish-
ment. Fifth, the current procedure is specified in such a way
as to yield constant demand profiles at times t̂ � [t, t � 1),
where t is any integer. This guarantees that the line integral
of equation (7) is well defined and so the current algorithm
can be used as an input into our analysis of Sections V and
VI.
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not a Walrasian equilibrium price vector. Appen-
dix B summarizes the key steps in the argument.
The reader is referred to the companion paper for
the complete proofs of Propositions 1–5.

Given Definitions 5–7 and Propositions 1–5
in Appendix B, we may provide a complete
description of an ascending tâtonnement algo-
rithm for discrete goods:

(a) The auctioneer initializes p(0) � 0 (or any
initial price vector less than or equal to p)
and, at each t � 0, 1, 2, ... , the auctioneer
asks each bidder i for a report, Qi(p(t)), of
her demand correspondence at p(t).

(b) The auctioneer extends each bidder’s de-
mand correspondence report using Defini-
tion 5 and thereby determines indirect
utility functions on the entire unit K-dimen-
sional cube, {p(t) � � : 0 	 � 	 1}. If
bidders have substitutes preferences and
make truthful demand correspondence re-
ports, the extended indirect utility functions
are correct (Proposition 2).

(c) The auctioneer then determines a next price
vector, p(t � 1), satisfying Definition 7, i.e.,
a minimal minimizer of the Lyapunov func-
tion L� of equation (10) on the vertices of
{p(t) � � : 0 	 � 	 1}. Given substitutes
preferences and truthful reporting, this min-
imal minimizer is unique and coincides
with the unique minimal minimizer of the
Lyapunov function L� on the entire unit
K-dimensional cube, {p(t) � � : 0 	 � 	
1} (Proposition 3); but in the event of un-
truthful reporting, any minimal minimizer
can be selected.

(d) The algorithm continues so long as p(t �
1) � p(t) and terminates when p(t � 1) �
p(t). Propositions 4 and 5 show that, given
substitutes preferences and truthful report-
ing, the algorithm must terminate at p. By
Proposition 1, there exists an allocation
(x*1, ... , x*n) such that x*i � Qi(p), for every
i � 1, ... , n, and the bidders may be as-
signed any such Pareto optimal allocation.

The ascending algorithm can serve as a re-
placement for the algorithm of Gul and Stac-
chetti (2000). It has the advantages described in
footnote 20, but it has the limitation that it
achieves convergence to a Walrasian equilib-
rium price vector only if the initial price vector

p(0) 	 p� . The companion paper also provides a
complete description of a descending tâtonne-
ment algorithm for discrete goods. It is thor-
oughly analogous to the ascending algorithm,
with the main differences that the auctioneer
determines a next price vector, p(t � 1), which
is a maximal minimizer of the Lyapunov func-
tion L� of equation (10) on the vertices of
{p(t) � � : 0 	 � 	 1}. Starting from an initial
price vector p(0) � p� , the descending algorithm
must terminate at p� .

Finally, by combining the ascending and
descending tâtonnement algorithms, the com-
panion paper defines a global Walrasian tâton-
nement algorithm for discrete goods:

(a) The auctioneer selects any initial price vec-
tor, p(0), and, at each t � 0, 1, 2, ... , the
auctioneer runs the ascending tâtonnement
algorithm until it terminates at p(T1).

(b) Starting from the price vector, p(T1), where
the ascending tâtonnement algorithm termi-
nated, and, at each t � T1 � 1, T1 � 2, ... ,
the auctioneer runs the descending tâtonne-
ment algorithm until it terminates at p(T2).

(c) Starting from the price vector, p(T2), where
the descending tâtonnement algorithm ter-
minated, and, at each t � T2 � 1, T2 �
2, ... , the auctioneer runs the ascending tâ-
tonnement algorithm until it terminates at
p(T3).

(d) The algorithm continues so long as either
the ascending or descending tâtonnement
algorithm has not terminated, and termi-
nates at p(T) such that p(T � 1) � p(T) for
both the ascending and descending tâtonne-
ment algorithms.

The global Walrasian tâtonnement algorithm
satisfies a global convergence theorem (see the
companion paper): starting from any integer-
valued initial price vector and given truthful
reporting by bidders, it converges to a Walra-
sian equilibrium price vector in finitely many
iterations. Using the global Walrasian tâtonne-
ment algorithm in place of the differential equa-
tion (9) classically used to describe Walrasian
tâtonnement, we may extend the results of Sec-
tions V and VI for the continuous model and
obtain analogous results for the discrete model.

Recall that the price paths and the payoff
calculations of Sections V and VI were speci-
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fied in continuous time t � [0, ). Thus, it is
convenient for us to convert the discrete price
adjustment process for discrete goods into a
continuous-time adjustment process. This can
be done easily as follows. At each time t � 0, 1,
2, ... , the auctioneer announces an integer-
valued price vector p(t), and bidders respond by
reporting demand correspondences {xi(t)}i�1

n .
If, in the iteration at time t, the global Walrasian
tâtonnement algorithm is ascending and deter-
mines a set E� of commodities associated with
a minimal minimizer, the auctioneer can con-
tinuously (indeed, linearly) increase the price
vector at times t̂ � [t, t � 1) by:

(11) ṗk� t̂	 � �1, if k � E�

0, if k � E�

and if, in the iteration at time t, the global
Walrasian tâtonnement algorithm is descending
and determines a set E� of commodities asso-
ciated with a maximal minimizer, the auctioneer
can continuously (indeed, linearly) decrease the
price vector at times t̂ � [t, t � 1) by:

(12) ṗk� t̂	 � ��1, if k � E�

0, if k � E� .

Given the continuous-time adjustment process
specified by equations (11)–(12), observe that
the payoff equation (7) and Lemmas 1 and 2
continue to hold literally as before. Thus, using
essentially the same arguments as in Section V
and VI, we have the following results for dis-
crete goods:

THEOREM 1�: With discrete goods and cur-
rent price vector p, if each opposing bidder j �
i bids sincerely relative to a substitutes utility
function Uj�, then bidder i with substitutes
utility function Ui� maximizes her payoff by
bidding sincerely, which has the effect of max-
imizing social surplus, Ui� � ¥j�i Uj�, over
all allocations.

The proof of Theorem 1� is similar to the
proof of Theorem 1; the only novelty occurs in
two places. First, the price adjustment proce-
dure specified by equations (11)–(12) yields a
continuous, piecewise smooth price path; in-

deed, the price path is continuous and piecewise
linear. Second, Proposition 2 in Appendix B
assures us that, despite receiving demand re-
ports from bidders at only integer times, the
auctioneer can nevertheless reconstruct a con-
stant profile of optimal demands for all of the
bidders on each time interval [t, t � 1), where t
is an integer, and so each bidder’s demand is of
bounded variation. Thus, Lemmas 1 and 2 con-
tinue to hold. In particular, equation (7) contin-
ues to be well defined and path independent,
and it can still be evaluated using equation (8).

This result then implies:

THEOREM 2�: With discrete goods, the sub-
stitutes condition, and mandatory participation:

(a) Sincere bidding by every bidder is an ex
post perfect equilibrium of the auction
game;

(b) With sincere bidding and any arbitrary
integer-valued initial price vector p(0),
prices converge to a Walrasian equilibrium
price vector in finite time; and

(c) With sincere bidding and any arbitrary
integer-valued initial price vector p(0), the
outcome is that of the modified VCG mech-
anism with price of p(0).

Analogous to the results in Section VI, we
also have:

THEOREM 3�: With discrete goods and the
substitutes condition, if the initial price vector is
chosen to be an integer-valued Walrasian equi-
librium price vector of the market without bid-
der i, and if each bidder j � i bids sincerely,
then bidder i maximizes her payoff by bidding
sincerely and thereby receives exactly her VCG
payoff; and:

THEOREM 4�: With discrete goods, the sub-
stitutes condition, and any integer-valued initial
price vector, sincere bidding by every bidder is
an ex post perfect equilibrium of the parallel
auction game, prices converge to a Walrasian
equilibrium price vector in finitely many itera-
tions, and the outcome is exactly that of the
VCG mechanism.

Moreover, in each of Theorems 2� to 4�, if the
initial price vector equals zero (or is below the
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lowest Walrasian equilibrium price vector p),
then prices converge monotonically (in a non-
decreasing direction) to the lowest Walrasian
equilibrium price vector p. Similarly, if the ini-
tial price vector is above the highest Walrasian
equilibrium price vector p� , then prices converge
monotonically (in a nonincreasing direction) to
the highest Walrasian equilibrium price vector
p� . These two facts can be shown using Propo-
sitions 4 and 5 in Appendix B.

VIII. Conclusion

This article has considered economic envi-
ronments with K types of heterogeneous com-
modities, containing consumers with quasilinear
utilities and pure private values. It has intro-
duced a dynamic clock auction procedure in
which sincere bidding is an equilibrium that
yields Walrasian equilibrium price vectors and
efficient outcomes. This is shown both for a
divisible commodities environment (with strictly
concave utility functions) and a discrete com-
modities environment (with substitutes prefer-
ences). Starting from an initial price vector of
zero and using a single ascending price trajec-
tory, a “modified” VCG mechanism is imple-
mented; and using n ascending price trajectories
that may be elicited in parallel, the full VCG
mechanism is implemented. Using an adjust-
ment process that allows prices to increase or
decrease, global convergence to a Walrasian
equilibrium price vector is obtained.

One immediate question is whether the auc-
tion design herein can be generalized to treat the
case where bidders have interdependent values.
Perry and Reny (2005) provide an affirmative
answer to this question for my earlier efficient
auction design treating homogeneous goods.
They consider a model where each bidder re-
ceives a one-dimensional signal and where each
bidder’s valuation depends on the signals re-
ceived by all n bidders. They show that: (a) with
two bidders, the homogeneous goods auction
leads to efficient outcomes with interdependent
values; and (b) by allowing bidders to submit
directed demands (one against each other bid-
der), it is possible to obtain efficient outcomes
with interdependent values and n bidders.

I conjecture that essentially the same two
steps can be replicated for the auction design
herein. That is, with interdependent values and
two bidders, the efficient dynamic auction for
heterogeneous commodities should also lead to
efficient outcomes; and, again, by allowing bid-
ders to submit directed demands (one against
each other bidder), it should be possible to
obtain efficient outcomes with interdependent
values and n bidders.

At the same time, such a complication of the
current auction design is not entirely in the spirit
of the current article. Even the n parallel auc-
tions version of the current design has been
critiqued as requiring excessive communication
and for requesting bids that may be of minimal
payoff relevance to the bidders making them.
Introducing directed demands into the design
would be a further step in the direction of in-
creasing the required communication and com-
plicating the auction.

Despite their theoretical limitations, simple
clean auction designs have distinct advantages
over the more complicated mechanisms that are
required for achieving full efficiency. These ad-
vantages are difficult to model formally and
tend not to be treated in the existing literature.
Nevertheless, the relatively simple designs of
the predecessor and current articles seem likely
to fare well on matters of cognitive simplicity
and robustness. If bidders are easily able to
understand the auction design, they seem more
likely to bid consistently with equilibrium be-
havior. And if an auction design cleanly reflects
intuitive first principles, it is more likely to
perform robustly in environments somewhat
different from stylized economic models.

The viewpoint of the predecessor article for
homogeneous goods has been that a good com-
promise between these competing consider-
ations is to utilize an auction design that is
dynamic (so as to give some recognition of
value interdependencies) while still simple at
every step. The heterogeneous commodities de-
sign of the current article attempts to adhere to
this philosophy as much as possible. By so
doing, it aspires to introduce efficient auction
procedures sufficiently transparent and robust
that they might someday find themselves
adopted into practical usage.
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APPENDIX A: PROOFS OF LEMMAS AND THEOREMS

PROOF OF LEMMA 1:
By Theorem 9-26 of Apostol (1957), since pk is continuous on [0, T] and each xj

k (and, hence, x�i
k )

is of bounded variation on [0, T], each Stieltjes integral �0
T pk(t) dx�i

k (t) exists.

PROOF OF LEMMA 2:
The Stieltjes integral �0

T pk(t) dxj
k(p(t)) exists if and only if the Stieltjes integral �0

T xj
k(p(t)) dpk(t)

exists. Consequently, by integration by parts,

(13) �
0

T

p�t	 � dxj�p�t		 � p�T	 � xj�p�T		 � p�0	 � xj�p�0		 � �
0

T

xj�p�t		 � dp�t	, for all j � N.

Let � denote the (piecewise smooth) curve in �K described by p(t), t � [0, T]. The integral on the
right side of equation (13) may be rewritten as the line integral �� xj � dp. (For a formal definition
of the line integral, see Apostol, 1957, Definition 10-32.) Since Vj� is a convex function and �xj�
is a measurable selection from its subdifferential (see equation (3), above, and the surrounding text),
Theorem 1 of Vijay Krishna and Eliot Maenner (2001) guarantees that the line integral is indepen-
dent of path and equals �� xj � dp � �Vj(p(T)) � Vj(p(0)). Noting that Vj(p(t)) � Uj(xj(p(t))) � p(t) �
xj(p(t)),

(14) �
0

T

p�t	 � dxj�p�t		 � Uj�xj�p�T			 � Uj�xj�p�0			,

and summing over all j � i yields equation (8).

PROOF OF LEMMA 3:
With strictly concave utility functions and compact, convex consumption sets, observe that the

demand correspondences are single-valued and continuous in price. Given that equation (9) describ-
ing Walrasian tâtonnement is uniformly bounded, all price paths p� are Lipschitz-continuous in t,
and sincere bidding induces continuous actions xi� by each bidder that are of bounded variation in
t for each coordinate k. Hence, Lemmas 1 and 2 apply. Defining the Lyapunov function, L�, by
equation (10) (see, for example, Varian, 1981, pp. 104–06) and applying equation (3), we find that

(15) L̇ �
dL�p�t		

dt
� �S � �

i � 1

n

qi(p(t))	 � ṗ�t	, almost everywhere in t.

Observe that, in the adjustment process of equation (9), ṗk has the opposite sign as Sk � ¥i�1
n qi

k(p).
Hence, equation (15) implies that L̇ � 0 at all Walrasian equilibrium price vectors and L̇ � 0 at all
other price vectors. Note that L� as defined by equation (10) is convex, and so any local minimum
is also a global minimum. Letting L* � limt3L(p(t)), we conclude that L* is the minimum of L�,
and p* associated with L* is a Walrasian equilibrium price vector.

PROOF OF THEOREM 1:
By Lemma 2, bidder i’s payoff from any bidding strategy �i � �i that causes the auction to

terminate at time T with price vector p(T) and with bidder i receiving quantity xi(T) is
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(16) Ui �xi�T		 � ai�T	 � Ui�xi�T		 � p�0	 � �S � q�i�p�0		� � �
0

T

p�t	 � dq�i�p�t		

� Ui�xi�T		 � p�0	 � �S � q�i�p�0		� � U�i�q� �i�p�T			 � U�i�q� �i�p�0			.

In order for the auction to terminate at time T, given the opposing bidders’ strategies of q� �i(p�),
bidder i must bid xi(T) � S � q�i(p(T)). Consequently, bidder i receives payoff of

(17) Ui �S � q�i�p�T			 � U�i�q� �i�p�T			 � 
p�0	 � �S � q�i�p�0		� � U�i�q� �i�p�0			�.

Since the expression within braces in expression (17)—determined only by the starting price and the
other bidders’ starting actions—is a constant, bidder i maximizes expression (17) by maximizing the
first two terms. These first two terms coincide with social surplus for the allocation associated with
p(T).

Moreover, given the quasilinearity of utility, the Theorems of Welfare Economics imply that any
Walrasian equilibrium is associated with a surplus-maximizing allocation, and vice versa. Conse-
quently, bidder i’s payoff is maximized if and only if a Walrasian equilibrium price vector is the
endpoint. By Lemma 3, bidder i can attain this maximum by bidding sincerely.

PROOF OF THEOREM 2:
Suppose that all opposing bidders j � i bid sincerely in the auction game. One available strategy

for bidder i is also to bid sincerely. By Lemma 3, price then converges to a Walrasian equilibrium
price vector and, by Theorem 1, the strategy is a best response for bidder i. Furthermore, the payoff
in expression (17) then evaluates to bidder i’s payoff from the modified VCG mechanism with price
of p(0). This holds for every bidder i � 1, ... , n, proving the theorem.

PROOF OF THEOREM 3:
Following the proof of Theorem 1, observe that if the initial price is chosen such that the market

without bidder i clears at p(0), then the term p(0) � [S � q�i(p(0))] in expression (17) equals zero
and, by the First Theorem of Welfare Economics, the term U�i(q� �i(p(0))) in expression (17) equals
W*�i of Definition 2. The remaining payoff term, when maximized, is thus exactly bidder i’s payoff
from the VCG mechanism.

PROOF OF THEOREM 4:
First, let us consider the full parallel auction game in which all 2n steps are carried out. Observe

that the determination of p�i has no relevance to the payoff of any bidder except for bidder i, and
bidder i’s demand reports are ignored in the price adjustment of step i. Hence, by Lemma 3, sincere
bidding at each step i � 1, ... , n is a best response for every bidder, yielding a Walrasian equilibrium
price vector p�i for the economy without bidder i. Meanwhile, the same reasoning as in the proof
of Theorem 2 applies at each step i � n � 1, ... , 2n, so starting from price vector p�i, sincere bidding
is a best response for every bidder, yielding a Walrasian equilibrium price vector p* for the economy
with all bidders. Further observe that the results of steps n � 1, ... , 2n are consistent with one another
(i.e., they yield the same allocations), and the payment of each bidder i is given by the line integral
of equation (7) along the path from p�i to p*. As in Theorem 3, it equals exactly the VCG payment
of bidder i.

Second, let us consider the shortcut procedure which, without loss of generality, consists of steps
1, ... , n and step 2n. As in the previous paragraph, at each step i � 1, ... , n � 1, the determination
of p�i has no relevance to the payoff of any bidder except for bidder i, and so sincere bidding is an
equilibrium yielding a price vector p�i. At step n, bidder i (1 	 i 	 n � 1) now has the capability
and potential incentive for manipulating the determination of price vector p�n, since her payoff is
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now calculated through p�n. Observe, however, that bidder i’s payment is given by the line integral
of equation (7) along the union of three paths: the path from p�i to p(0); the path from p(0) to p�n;
and the path from p�n to p*. Consequently, by Lemma 2, if each opposing bidder bids sincerely
according to a strictly concave utility function, the line integral along the union of the three paths is
path independent and evaluates the same as in step n � i of the previous paragraph. In particular,
it does not depend on p�n and, by the same reasoning as in the proof of Theorem 1, bidder i
maximizes her payoff by selecting a Walrasian equilibrium price vector p* as the endpoint. Thus,
sincere bidding at steps n and 2n is a best response and yields bidder i her VCG payoff. Finally,
bidder n’s payoff is determined in exactly the same way as in the full parallel auction game and so,
as in the previous paragraph, sincere bidding at steps n and 2n is also a best response for bidder n.

PROOF OF THEOREM 2�:
By the Global Convergence Theorem of the companion paper (Ausubel, 2005) restated in

Appendix B, the global Walrasian tâtonnement algorithm converges from any arbitrary integer-
valued initial price vector p(0) to a Walrasian equilibrium price vector in finitely many iterations.

The proof concludes similarly to the proof of Theorem 2.

APPENDIX B: TÂTONNEMENT ALGORITHM FOR DISCRETE GOODS

This Appendix outlines the tâtonnement algorithm for discrete goods that is utilized in Section VII
of the article. A full development of the algorithm and its properties, including complete proofs, may
be found in a companion paper (Ausubel, 2005).

The first step in the argument developing a tâtonnement algorithm establishes that, under
Assumptions (A1�)–(A3�), if a Walrasian equilibrium exists, then Walrasian equilibrium price
vectors are associated with minima of the Lyapunov function in equation (10). A related duality
result concerning equation (10) was first identified by Milgrom (2004, equation (8.8)). In the
companion paper, a complete proof is provided of Milgrom’s insight, and the result is then utilized
to prove:

PROPOSITION 1: In the discrete goods model with Assumptions (A1�)–(A3�), suppose that a
Walrasian equilibrium exists. Then the set of Walrasian equilibrium price vectors equals the arg min
of L� defined by equation (10), and the set of Walrasian equilibria equals the set of all (p*, x*) such
that p* minimizes L� and (x*1, ... , x*n) maximizes ¥i�1

n Ui(xi) subject to xi � Xi, for all i � 1, ... ,
n, and ¥i�1

n xi � S.

Since the addition of the substitutes condition (A4�) guarantees the existence of Walrasian
equilibrium (Kelso and Crawford, 1982), making Assumptions (A1�)–(A4�) assures that the hypoth-
esis of Proposition 1 is satisfied. In turn, the substitutes condition (A4�) is provided a convenient
characterization by Ausubel and Milgrom (2002, Theorem 10): commodities are substitutes for
bidder i if and only if the indirect utility function, Vi�, is a submodular function. At the same time,
even without the substitutes condition, the indirect utility function is convex. Given that the
Lyapunov function L� is the sum of a linear function and the indirect utility functions of the n
bidders, it follows that L� is a submodular function, as well as a convex function.

Recall that L� is defined to be a submodular function if, for all elements p and p� of the domain,
the following inequality holds:

(18) L�p 
 p�	 � L�p � p�	 	 L�p	 � L�p�	,

where p 
 p� denotes the coordinate-by-coordinate maximum of p and p�, and p � p� denotes the
coordinate-by-coordinate minimum. Let p and p� be any two minimizers of L�. From inequality
(18), observe that L(p 
 p�) 	 L(p) and L(p � p�) 	 L(p); that is, p 
 p� and p � p� are also
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minimizers of L�. Thus, the set of minimizers of L� over the lattice of price vectors is itself a
sublattice. One can further show that, if the data of the problem are integers, then the lowest and
highest minimizers are also integers. (See the companion paper or apply Proposition 3.) We have:

COROLLARY TO PROPOSITION 1: In the discrete goods model with Assumptions (A1�)–(A4�),
the set of Walrasian equilibrium price vectors is a nonempty lattice and the lowest and highest
Walrasian equilibrium price vectors, p and p� , consist of integers.

Suppose that bidder i reports her demand correspondence Qi(p) evaluated at an integer-valued
price vector p. There is a simple procedure that can be used to identify candidate optimal commodity
bundles in a neighborhood of p.

DEFINITION 5: Let p be any integer-valued price vector, and let Qi(p) be bidder i’s demand
correspondence evaluated at p. Let � be any price vector belonging to the unit K-dimensional cube
{� : 0 	 � 	 1}, where the symbol 0 denotes the K-dimensional vector (0, ... , 0) and the symbol
1 denotes the K-dimensional vector (1, ... , 1). Select:

(19) x̃i � arg minx � Qi �p	
� � x� and ỹi � arg maxx � Qi �p	
� � x�

In other words, x̃i is selected to be an element of Qi(p) that increases in cost the least as the price
vector rises from p to p � �, and ỹi is selected to be an element of Qi(p) that decreases in cost the
most as the price vector falls from p to p � �.

Given the integer values assumed in Assumption (A1�), observe that a small change in prices (i.e.,
a price change causing a bidder’s total payment to increase or decrease by less than one) from an
integer-valued price vector cannot add any new commodity bundle into the demand correspondence,
implying that x̃i and ỹi of equation (19) are optimal commodity bundles. Gul and Stacchetti (1999,
Lemma 2) show that substitutes preferences imply the single-improvement property: if xi is not
optimal for bidder i at a given price, then there exists an alternative commodity bundle x�i such that
#(xix�i) 	 1, #(x�i xi) 	 1, and bidder i strictly prefers x�i to xi. (That is, x�i is formed by adding at most
one good and subtracting at most one good from xi.) The single-improvement property may be
exploited to establish a very powerful result: for a bidder with substitutes preferences, x̃i continues
to be optimal provided that each price is increased by no more than one and ỹi continues to be
optimal provided that each price is decreased by no more than one. We have the following result,
which is central to both the tâtonnement algorithm and its application to an efficient dynamic
auction, and so its proof is also included:

PROPOSITION 2: If Assumptions (A1�)–(A4�) hold for bidder i, then x̃i and ỹi of equation (19)
satisfy:

(20) x̃i�Qi (p � ��) and ỹi�Qi(p � ��), for all scalars � � 0 such that 0 	 �� 	 1.

PROOF OF PROPOSITION 2:
Suppose to the contrary that there exists � � 0 such that 0 	 �� 	 1 but x̃i � Qi(p � ��). By

the single-improvement property, there exists x�i such that #(x̃ix�i) 	 1, #(x�i x̃i) 	 1, and bidder i
strictly prefers x�i to x̃i at p � ��. By construction, x̃i is optimal at p � �� among all elements of
Qi(p); consequently, x�i � Qi(p). Given the assumption included in (A1�) that bidders’ values are
integers, this means that Ui(x�i) � p � x�i 	 Ui(x̃i) � p � x̃i � 1. Meanwhile, since 0 	 �� 	 1 and
#(x̃ix�i) 	 1, we necessarily have �� � x̃i 	 �� � x�i � 1. Combining these two inequalities, we
conclude that Ui(x�i) � (p � ��) � x�i 	 Ui(x̃i) � (p � ��) � x̃i, contradicting that bidder i prefers
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x�i to x̃i at p � ��. An analogous contradiction is obtained if there exists � � 0 such that 0 	 ��
	 1 but ỹi � Qi(p � ��).

The third step in the argument developing a tâtonnement algorithm is to define our price
adjustment rules. Given a current price vector p(t), the auctioneer asks each bidder i to report its
demand correspondence Qi� evaluated at p(t). Using equation (19) and Proposition 2, the auctioneer
can extend the report to identify an optimal commodity bundle at every point in the unit K-
dimensional cubes {p � � : 0 	 � 	 1} and {p � � : 0 	 � 	 1}. While the demand that may
be selected at a particular price vector is not necessarily unique, all optimal demands yield the same
indirect utility, so that the indirect utility function Vi� of each bidder i, once specified at p(t), has
a unique extension to the unit K-dimensional cubes. Consequently, the Lyapunov function L� of
equation (10) also has a unique extension.

The auctioneer then determines the price vector on the lattice {p � � : 0 	 � 	 1} that minimizes
the Lyapunov function L� and uses this as the next price vector, p(t � 1). This will be the ascending
price adjustment rule. Alternatively, the auctioneer determines the price vector on the lattice {p �
� : 0 	 � 	 1} that minimizes L�. This will be the descending price adjustment rule.

In general, the Lyapunov function L� is likely to have multiple minimizers. In this event, the
auctioneer selects among them a minimal minimizer, for the ascending rule, or a maximal minimizer,
for the descending rule. We define the minimal and maximal minimizers as follows:

DEFINITION 6 (minimal and maximal minimizers): Given integer-valued price vector p and
Lyapunov function L� defined on {p � � : 0 	 � 	 1}, a minimal minimizer p� is defined by

(21) p� � arg minp̂ � 
p � � : 0 	 � 	 1�
L�p̂	�,

with the property that, for any p� such that p 	 p� 	 p� and p� � p�, we have L(p�) � L(p�). Given
Lyapunov function L� defined on {p � � : 0 	 � 	 1}, a maximal minimizer p� is defined by

(22) p� � arg minp̂ � 
p � � : 0 	 � 	 1�
L�p̂	�,

with the property that, for any p� such that p� 	 p� 	 p and p� � p�, we have L(p�) � L(p�).

Thus, in Definition 6, the price vector p� is a minimal minimizer in the sense that it minimizes
the Lyapunov function L� and there is no alternative price vector, at least as small in every
coordinate, that yields as low a value. The price vector p� is a maximal minimizer in the sense that
it minimizes the Lyapunov function L� and there is no alternative price vector, at least as large in
every coordinate, that yields as low a value. Since the Lyapunov function L� is submodular under
(A4�) and truthful reporting, the set of minimizers is a sublattice and there is a (unique) lowest and
highest minimizer. Moreover, application of Proposition 2 allows us to demonstrate that the minimal
and maximal minimizers are integer valued. In the companion paper, we prove the following result:

PROPOSITION 3: In the discrete goods model with Assumptions (A1�)–(A4�) and truthful report-
ing by bidders, the minimal minimizer p� of equation (21) and the maximal minimizer p� of
equation (22) are uniquely defined and integer valued.

In light of Proposition 3, it is unnecessary to search everywhere in the unit K-dimensional cubes
{p � � : 0 	 � 	 1} and {p � � : 0 	 � 	 1} for minima. It is sufficient to search only among
vertices of the unit K-dimensional cubes and one would be guaranteed of achieving the same
minimum in the Lyapunov function. This motivates the actual definition that we will use in
specifying the tâtonnement process:
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DEFINITION 7 (minimal and maximal minimizers among vertices): For E � {1, ... , K}, let 1E

denote the price vector whose kth coordinate equals 1, for k � E, and equals 0, for k � E. Given
integer-valued price vector p(t) and Lyapunov function L� defined on {p(t) � � : 0 	 � 	 1} and
{p(t) � � : 0 	 � 	 1}, define the functions

(23) �� �E	 � L�p�t	 � 1E	 and ���E	 � L�p�t	 � 1E	.

In the ascending price adjustment rule, the next price vector is a minimal minimizer defined by
p(t � 1) � p(t) � 1E�, where E� is defined by

(24) E� � arg minÊ � 
1, ... , K�
���Ê	�,

with the property that, for any E� which is a strict subset of E�, we have ��(E�) � ��(E�). In the
descending price adjustment rule, the next price vector is a maximal minimizer defined by p(t � 1) �
p(t) � 1E�, where E� is defined by

(25) E� � arg minÊ � 
1, ... , K�
���Ê	�,

with the property that, for any E� which is a strict subset of E�, we have ��(E�) � ��(E�).

Thus, in Definition 7, the set E� is a minimal minimizing set in the sense that E� minimizes the
Lyapunov function ��� and there is no strict subset that yields as low a value. The set E� is also
a minimal minimizing set in the sense that E� minimizes the Lyapunov function ��� and there is
no strict subset that yields as low a value. However, the implied price, p(t � 1) � p(t) � 1E�, is a
maximal minimizer, since there is no alternative price vector, at least as great in every coordinate,
that yields as low a value.

Even if reports are not truthful, the minimization problems of equations (24) and (25) are each
guaranteed to have at least one minimal minimizer, since the respective domains (each comprising
the set of all subsets of commodities) are finite. In this event, if the minimization problem has more
than one minimal minimizer, the auctioneer arbitrarily selects any one.

In the tâtonnement algorithm, the price adjustment rule of Definition 7 will be applied iteratively.
It continues so long as p(t � 1) � p(t) and it terminates at the first time T such that p(T � 1) � p(T).
The fourth step in the argument developing the tâtonnement algorithm is to show that the ascending
price adjustment rule terminates at p(T) � p. Otherwise, the submodularity of L� allows one to
construct p� � p(T) such that L(p�) � L(p(T)), and the convexity of L� guarantees that such a p�
exists in a neighborhood of p(T), contradicting that the adjustment rule terminated at time T.
Similarly, the descending price adjustment rule terminates at p(T) 	 p� . We have:

PROPOSITION 4: For the ascending price adjustment rule, if p(T � 1) � p(T) then p(T) � p. For
the descending price adjustment rule, if p(T � 1) � p(T) then p(T) 	 p� .

The fifth and final step in the argument developing a tâtonnement algorithm is to show that the
ascending (descending) price adjustment rule never “overshoots” the lowest (highest) Walrasian
equilibrium price vector. The proof, which can be found in the companion paper, follows by
supposing that there exists price vector p(t) such that p(t) 	 p but p(t � 1)k � pk for some coordinate
k (1 	 k 	 K). Then, it can be shown as a consequence of submodularity that p(t � 1) � p yields
as low a value for L� as p(t � 1), contradicting that p(t � 1) is a minimal minimizer. An analogous
argument establishes the result for the descending adjustment rule. We have:

PROPOSITION 5: For the ascending price adjustment rule, if p(t) 	 p, then p(t � 1) 	 p. For the
descending price adjustment rule, if p(t) � p� , then p(t � 1) � p� .

627VOL. 96 NO. 3 AUSUBEL: AN EFFICIENT DYNAMIC AUCTION FOR HETEROGENEOUS COMMODITIES



The global Walrasian tâtonnement algorithm is specified in Section VII. Using Propositions 1–5
and noting that the Lyapunov function is integer-valued and decreases by a positive integer amount
at every iteration, the following main result is established in the companion paper:

GLOBAL CONVERGENCE THEOREM: In the discrete goods model with Assumptions (A1�)–
(A4�), starting from any integer-valued initial price vector and given truthful reporting by agents,
the global Walrasian tâtonnement algorithm converges to a Walrasian equilibrium price vector in
finitely many iterations.
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