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When bidders exhibit multi-unit demands, standard auction methods generally yield
inefficient outcomes. This article proposes a new ascending-bid auction for homo-
geneous goods, such as Treasury bills or telecommunications spectrum. The auc-
tioneer announces a price and bidders respond with quantities. Items are awarded
at the current price whenever they are “clinched,” and the price is incremented
until the market clears. With private values, this (dynamic) auction yields the same
outcome as the (sealed-bid) Vickrey auction, but has advantages of simplicity and
privacy preservation. With interdependent values, this auction may retain efficiency,
whereas the Vickrey auction suffers from a generalized Winner’s Curse. (JEL D44)

The auctions literature has provided us with
two fundamental prescriptions guiding effective
auction design. First, an auction should be struc-
tured so that the price paid by a player—
conditional on winning—is as independent as
possible of her own bids (William Vickrey,
1961). Ideally, the winner’s price should de-
pend solely on opposing participants’ bids—as
in the sealed-bid, second-price auction—so that
each participant has full incentive to reveal
truthfully her value for the good. Second, an
auction should be structured in an open fashion

that maximizes the information made available
to each participant at the time she places her
bids (Paul R. Milgrom and Robert J. Weber,
1982a). When bidders’ signals are affiliated and
there is a common-value component to valua-
tion, an open ascending-bid format may induce
participants to bid more aggressively (on aver-
age) than in a sealed-bid format, since partici-
pants can infer greater information about their
opponents’ signals at the time they place their
final bids.

In single-item environments, these dual pre-
scriptions are often taken to imply the desirabil-
ity of the English auction and to explain its
prevalence (see, for example, the excellent sur-
veys of R. Preston McAfee and John McMillan,
1987; Milgrom, 1987). For auctions where bid-
ders acquire multiple items, however, no one
appears to have combined these two broad in-
sights and taken them to their logical conclu-
sion. The current article does precisely that: I
propose a new ascending-bid auction format
for multiple objects that literally takes heed
of the two traditional prescriptions for auction
design.1
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1 Some readers may feel that my opening paragraphs
overstate the case made in the literature for dynamic auction
formats or, perhaps, the case for using auction mechanisms
at all. Indeed, the revenue rankings favoring dynamic auc-
tions depend critically on several strong assumptions, in-
cluding affiliated random variables, symmetry, and risk
neutrality. Moreover, when buyers have strongly interde-
pendent values, some may consider auctions to be poor
ways to generate revenues and may argue that other proce-
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The starting point for understanding the de-
sign proposed herein is to consider the uniform-
price auction. Recall that the classic English
auction for a single object can be sensibly col-
lapsed down to a sealed-bid, second-price auc-
tion. Analogously, most existing ascending-bid
auction designs for identical objects can be sen-
sibly collapsed down to the uniform-price auc-
tion, in which bidders simultaneously submit
bids comprising demand curves, the auctioneer
determines the clearing price, and all bids ex-
ceeding the clearing price are deemed winning
bids at the clearing price. Unfortunately, the
uniform-price auction possesses a continuum of
equilibria yielding less than the competitive
price (Robert Wilson, 1979; Kerry Back and
Jaime F. Zender, 1993) and, indeed, with pri-
vate information, every equilibrium of the
uniform-price auction yields inefficient out-
comes with positive probability (Ausubel and
Peter Cramton, 2002). The reason for ineffi-
ciency is that uniform pricing creates strong
incentives for “demand reduction”: a bidder
will bid less than her value for a marginal unit,
in order to depress the price that she pays for
inframarginal units.

More extreme results are possible if the auc-
tion is explicitly sequential. Ausubel and Jesse
A. Schwartz (1999) show that a two-bidder,
alternating-bid version of the uniform-price as-
cending auction possesses a unique subgame
perfect equilibrium. The first bidder bids the
opening price on slightly more than half the
units, the second bidder bids the next possible
price on the remaining units, and the game ends.
Thus, the allocation need not bear any connec-
tion to an efficient outcome, and the price (one

bid increment above the reserve price) need not
bear any connection to a competitive price.
While this prediction is admittedly extreme, it
was almost perfectly borne out, empirically, in
an October 1999 German spectrum auction.2

By way of contrast, the (multi-unit) Vickrey
auction is an effective static design when bid-
ders with pure private values have tastes for
consuming more than one object. Again, bid-
ders submit sealed bids comprising demand
curves, the auctioneer determines the clearing
price, and all bids exceeding the clearing price
are deemed winning bids. The price paid for
each unit won, however, is neither the amount
of the bid nor the clearing price, but the oppor-
tunity cost of assigning this unit to the winning
bidder. For discrete objects, if bidder i is to be
awarded k objects, then she is charged the
amount of the kth highest rejected bid (other
than her own) for her first unit, the (k � 1)st

highest rejected bid (other than her own) for her
second unit, ... , and the highest rejected bid
(other than her own) for her kth unit. For M
divisible objects, Figure 1 depicts the outcome:
xi(p) denotes bidder i’s demand curve, M �
x�i(p) denotes the residual supply after sub-
tracting out the demands of all other bidders, p*
denotes the market-clearing price if all bidders
participate in the auction, and p*�i denotes the
market-clearing price in the absence of bidder i.
The Vickrey auction awards a quantity of xi(p*)
to bidder i, and requires a payment equal to the
area of the shaded region in Figure 1. Thus,
each participant’s payment (conditional upon
winning a given quantity) is independent of her
own bids, embodying the first prescription of
auction design.

dures (such as posted prices) may raise higher revenues.
Nevertheless, in recent years, when economists and game
theorists have been called upon to recommend selling pro-
cedures, most notably in cases of governments offering
telecommunications spectrum, they have generally advo-
cated using dynamic auctions. At the same time, with the
rise in recent years of online bazaars such as eBay, casual
empiricism suggests that dynamic auctions have gained
market share at the expense of sealed-bid auctions, and that
auction mechanisms have gained market share at the ex-
pense of non-auction mechanisms. Finally, the potential
advantages of posted prices may be obtained in the auction
procedure proposed in the current article by simply append-
ing a reserve price or a supply curve to the otherwise
efficient auction.

2 As recounted by Philippe Jehiel and Benny Moldovanu
(2000), ten licenses for virtually homogeneous spectrum
were offered to the four German mobile phone incumbents.
In the first round of bidding, Mannesmann placed high bids
of DM 36,360,000 per MHz on each of licenses 1 through
5 and high bids of DM 40,000,000 per MHz on each of
licenses 6 through 10. In the second round of bidding,
T-Mobil raised Mannesmann on licenses 1 through 5 by
bidding a price of DM 40,010,000 (the minimum bid incre-
ment was 10 percent), while letting Mannesmann maintain
the high bids on licenses 6 through 10. In the third round of
bidding, no new bids were entered, and so the auction ended
in two rounds with the two largest incumbents dividing the
market almost equally at an apparently uncompetitive low
price.
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There would appear to be significant advan-
tages, however, if a multi-unit auction format
could also reflect the second prescription of
auction design. The principal questions under
consideration may thus be stated:

Can the analogy between the English auc-
tion and the second-price auction be com-
pleted for multiple units? In particular,
when bidders have pure private values,
does there exist a simple ascending-bid
auction for homogeneous goods whose
static representation is the (multi-unit)
Vickrey auction? And, to the extent that
the analogy can be completed, will the
ascending-bid auction outperform the
sealed-bid auction in interdependent
values environments generalizing the
Milgrom-Weber symmetric model?

This article provides a substantial affirma-
tive answer. A new ascending-bid auction is
proposed, which operates as follows. The auc-
tioneer calls a price, bidders respond with quan-
tities, and the process iterates with increasing
prices until demand is no greater than supply. A
bidder’s payment does not, however, equal her
final quantity times the final price. Rather, at
each price p, the auctioneer determines whether,
for any bidder i, the aggregate demand x�i(p) of
bidder i’s rivals is less than the supply M. If so,
the difference is deemed “clinched,” and any
goods newly clinched are awarded to bidder i at
price p.

For example, suppose that two identical ob-
jects are available and that three bidders—A, B,
and C—initially bid for quantities of 2, 1, and 1,
respectively. Suppose that the bidders continue
to bid these quantities until price p, when Bid-
der C reduces from 1 unit to 0, dropping out of
the auction. While there continues to be excess
demand, Bidder A’s opponents now collectively
demand only one unit, while two units are avail-
able. Bidder A therefore clinches one unit at
price p, and the auction (for the remaining ob-
ject) continues.

In the new auction design, a bidder’s pay-
ment for inframarginal units is effectively de-
coupled from her bids for marginal units,
eliminating any incentive for demand reduction.
Consequently, with private values, sincere bid-
ding by every bidder is an equilibrium, yielding
the same efficient outcome as the Vickrey auc-
tion. Moreover, under incomplete information
and a “full support” assumption, sincere bidding
is the unique outcome of iterated weak domi-
nance, just as sincere bidding is the unique
outcome of weak dominance in the Vickrey
auction. Thus, the new ascending-bid auction
design has an analogous relationship to the
(multi-unit) Vickrey auction that the English
auction has to the second-price auction.

Furthermore, consider a symmetric setting in
which bidders have constant marginal values
that are interdependent in the sense that each
bidder’s value depends on her rivals’ signals.
(While restrictive, this model strictly general-
izes the classic Milgrom and Weber frame-
work.) Let M denote the supply of objects and
let �i denote the number of objects desired by
bidder i. If �i � � and M/� is an integer,
efficient equilibria exist in both the static and
dynamic auctions, but the seller’s expected rev-
enues are greater in the dynamic auction, repli-
cating Milgrom and Weber’s point. For the
remaining parameter values, the new (dynamic)
auction format outperforms the (static) Vickrey
auction on efficiency: efficient equilibria exist
in the dynamic auction, but are not present in
the static auction.

Simplicity or transparency to bidders should
be viewed as one important attribute and ad-
vantage of the proposed auction. While the
single-item Vickrey auction is well known, the
multi-unit version proposed by Vickrey in the
same 1961 article remains relatively obscure

FIGURE 1. PAYMENT RULE IN THE VICKREY AUCTION
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even among economists, and is hardly ever ad-
vocated for real-world use. One reason seems to
be that many believe it is too complicated for
practitioners to understand, even in the private
values environment where the traditional theory
finds no informational advantages to a dynamic
auction over a static auction.3 By contrast, the
ascending-bid design proposed here seems sim-
ple enough to be understood by any aficionado
of baseball pennant races. This prediction ap-
pears to be borne out in the early experimental
evidence (see Section VI).

Privacy preservation of the winning bid-
ders’ values is another attribute and advan-
tage of the new ascending-bid auction. Noting
that English auctions are quite prevalent in
the real world while sealed-bid second-price
auctions are comparatively rare, Michael H.
Rothkopf et al. (1990) offer a possible expla-
nation: bidders will be reluctant to reveal
their private values truthfully in an auction if
either there may be cheating by the auctioneer
or there will be subsequent auctions or nego-
tiations in which the information revealed can
be used against them.4 Such considerations
favor ascending-bid auctions, since winning
bidders need not reveal their entire demand
curves, only the portion below the winning
price.5

The following articles constitute a less-than-
exhaustive list of related research. Milgrom and
Weber (1982b, pp. 4–5) introduce the uniform-
price ascending-bid auction when bidders have
unit demands and there are multiple identical
objects, and extend their (1982a) analysis of
symmetric environments with affiliated infor-
mation to this multi-unit context. Eric S.
Maskin (1992) demonstrates that, even for
single-item auctions with asymmetric bidders
and interdependent information, the English
auction is more likely to yield efficiency than
the sealed-bid second-price auction. Maskin and
John G. Riley (1989) examine optimal auctions
for multiple identical objects in an independent
private values setting. Alexander S. Kelso and
Vincent P. Crawford (1982), Gabrielle De-
mange et al. (1986), Sushil Bikhchandani and
John W. Mamer (1997), Bikhchandani (1999),
Faruk Gul and Ennio Stacchetti (1999, 2000)
and Milgrom (2000) study various auction pro-
cedures for multiple items and their relationship
with Walrasian prices under complete informa-
tion. Bikhchandani and Joseph M. Ostroy
(2001) and Bikhchandani et al. (2002) formu-
late the auction problem as a linear program-
ming problem and reinterpret the auction design
herein as a primal-dual algorithm. Motty Perry
and Philip J. Reny (2001, 2002) study more
general homogeneous goods environments with
interdependent values and extend the auction
design herein to such environments. Partha Das-
gupta and Maskin (2000) define a sealed-bid
auction procedure designed to attain efficiency
with heterogeneous items. Vijay Krishna and
Perry (1998) study the Vickrey auction in an
independent private values setting.

The article is organized as follows. Section I
informally describes the new ascending-bid
auction design via an illustrative example. Sec-
tion II presents the formal model. Section III
analyzes the private values case, demonstrating
that sincere bidding is an equilibrium and that,
under incomplete information and a “full sup-
port” assumption, it is the unique outcome of
iterated weak dominance. Section IV treats, in a
continuous-time formulation, a symmetric model

3 Indeed, the subtlety of the Vickrey auction has been a
problem even in experimental auction studies involving
merely a single object. John H. Kagel et al. (1987) found
that bidders with affiliated private values behaved closer to
the dominant strategy in ascending-clock auctions than in
sealed-bid second-price auctions.

4 Richard Engelbrecht-Wiggans and Charles M. Kahn
(1991) and Rothkopf and Ronald M. Harstad (1995) also
provide models emphasizing the importance of protecting
the privacy of winners’ valuations.

5 For example, suppose that the government sells a spec-
trum license valued by the highest bidder at $1 billion but
by the second-highest bidder at only $100 million in a
sealed-bid second-price auction. There are at least three
potential problems here. First, there is likely to be a public
relations disaster, as the ensuing newspaper headlines read,
“Billion-dollar communications license given away for 10
cents on the dollar.” Second, there may be a problem of
seller cheating: after opening the submitted bids, the auc-
tioneer may ask his friend, “Mind if I insert a bogus $997
million bid in your name? It won’t cost you anything, but it
will earn me a lot of money.” Third, revelation of the
winner’s billion-dollar value may imperil her subsequent
bargaining position with equipment suppliers. By contrast,
an English auction avoids these problems, revealing only

that the high bidder’s value exceeded $100 million. (See
also the nice discussion of this point in McMillan, 1994,
especially p. 148.)
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of interdependent values, where bidders have
affiliated signals and exhibit constant marginal
values. Section V discusses the limitations of
the interdependent-values analysis. Section VI
concludes. Proofs appear in the Appendix.

I. An Illustrative Example

I will illustrate my proposal for an ascending-
bid, multi-unit auction with an example loosely
patterned after the first U.S. spectrum auction,
the Nationwide Narrowband Auction. There are
five identical licenses for auction.6 Bidders have
taste for more than one license, but each is
limited to winning at most three licenses.7

There are five bidders with values in the rele-
vant range, and their marginal values are given
as in Table 1 (where numbers are expressed in
millions of dollars).

For example, if Bidder A were to purchase
two licenses at a price of 75 each, her total
utility from the transaction would be computed
by: uA(1) � uA(2) � 75 � 75 � 123 � 113 �
150 � 86. In this example, bidders are pre-
sumed to possess complete information about
their rivals’ valuations.

The proposed auction is operated as an
ascending-clock auction. The auctioneer an-
nounces a price, p, and each bidder i responds

with a quantity, qi(p). The auctioneer then cal-
culates the aggregate demand and increases the
price until the market clears. Payments are cal-
culated according to a “clinching” rule. Suppose
that the auction begins with the auctioneer an-
nouncing a price of $10 million (� �). Bidders
A to E, if bidding sincerely according to the
valuations of Table 1, would respond with de-
mands of 3, 1, 3, 2, and 2, respectively. The
aggregate demand of 11 exceeds the available
supply of 5, so the auction must proceed further.
Assume that the auctioneer increases the price
continuously. Bidder E reduces his quantity de-
manded from 2 to 1 at $25 million, Bidder E
drops out of the auction completely at $45 mil-
lion, and Bidder C reduces his quantity de-
manded from 3 to 2 at $49 million, yielding:

Price Bidder A Bidder B Bidder C Bidder D Bidder E

49 3 1 2 2 0

The aggregate demand, now 8, continues to
exceed the available supply of 5, so the price
must rise further. When the price reaches $65
million, Bidder D reduces her demand from 2 to
1, but the aggregate demand of 7 continues to
exceed the available supply of 5:

Price Bidder A Bidder B Bidder C Bidder D Bidder E

65 3 1 2 1 0

Let us examine this situation carefully,
however, from Bidder A’s perspective. The
demands of all bidders other than Bidder A
(i.e., 1 � 2 � 1 � 0) total only 4, while 5
licenses are available for sale. If Bidders B to
E bid monotonically, Bidder A is now math-
ematically guaranteed to win at least one li-
cense. In the language of this article (and in
the standard language of American sports

6 In actuality, the FCC’s Nationwide Narrowband Auc-
tion offered ten licenses of three different types: five (es-
sentially identical) 50/50 kHz paired licenses; three
(essentially identical) 50/12.5 kHz paired licenses; and two
(essentially identical) 50 kHz unpaired licenses. For an
extraordinarily cogent discussion of the Nationwide Nar-
rowband Auction, see Cramton (1995).

7 In actuality, the FCC limited bidders to acquiring three
licenses, either through the auction or through resale. Ob-
serve that the total number of licenses is not an integer
multiple of each bidder’s limitation on purchases, so with
incomplete information, the inefficiency result of Ausubel
and Cramton (2002, Theorem 1) is applicable, even if the
marginal values for the first, second, and third licenses are
equal.

TABLE 1—BIDDER VALUATIONS IN ILLUSTRATIVE EXAMPLE

Bidder A Bidder B Bidder C Bidder D Bidder E

Marginal value (1 unit) 123 75 125 85 45
Marginal value (2 units) 113 5 125 65 25
Marginal value (3 units) 103 3 49 7 5
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writing), Bidder A has clinched winning one
unit. The rules of the auction take this calcu-
lation quite literally, by awarding each bidder
any units that she clinches, at the clinching
price. Bidder A thus wins a license at $65 million.

Since there is still excess demand, price con-
tinues upward. With continued sincere bidding
relative to the valuations in Table 1, the next
change in demands occurs at a price of $75
million. Bidder B drops out of the auction, but
the aggregate demand of 6 continues to exceed
the available supply of 5:

Price Bidder A Bidder B Bidder C Bidder D Bidder E

75 3 0 2 1 0

Again examine the situation from Bidder A’s
perspective. Her opponents collectively de-
mand only 0 � 2 � 1 � 0 � 3 units,
whereas 5 units are available. It may now be
said that she has clinched winning 2 units:
whatever happens now (provided that her ri-
vals bid monotonically), she is certain to win
at least 2 units. Hence, the auction awards a
second unit to Bidder A at the new clinching
price of $75 million. By the same token, let us
examine this situation from Bidder C’s per-
spective. Bidder C’s opponents collectively
demand only 3 � 0 � 1 � 0 � 4 units,
whereas 5 units are available. He has clinched
winning 1 unit: whatever happens now (pro-
vided that his rivals bid monotonically), he is
certain to win at least 1 unit. Hence, the
auction awards one unit to Bidder C at a price
of $75 million.

There continues to be excess demand until
the price reaches $85 million. Bidder D then
drops out of the auction, yielding:

Price Bidder A Bidder B Bidder C Bidder D Bidder E

85 3 0 2 0 0

At $85 million, the market clears. Bidder A,
who had already clinched a first unit at $65
million and a second at $75 million, wins a third
unit at $85 million. Bidder C, who had already
clinched a first unit at $75 million, wins a sec-

ond unit at $85 million. In summary, we have
the following auction outcome:

Bidder A Bidder B Bidder C Bidder D Bidder E

Units won 3 0 2 0 0
Payments 65�75

�85
0 75�85 0 0

Observe that the outcome is efficient: the
auction has put the licenses in the hands of
bidders who value them the most. Also ob-
serve that the new (dynamic) auction has ex-
actly replicated the outcome of the (sealed-
bid) Vickrey auction. Bidder A won her first
unit at the third-highest rejected bid, her sec-
ond unit at the second-highest rejected bid,
and her third unit at the highest rejected bid.
Bidder C won his first unit at the second-
highest rejected bid and his second unit at the
highest rejected bid.

One interesting observation is that if Bidder
A had been subject to a binding budget con-
straint of strictly between $225 and $255 mil-
lion in this example, then the standard Vickrey
auction would have likely failed to deliver the
efficient outcome. In the sealed-bid implemen-
tation asking bidders to report their valuations
using downward-sloping demand curves, the
budget-constrained Bidder A would have been
unable to afford to report that her marginal
value for a third unit exceeded $85 million and
so the item would instead have been awarded to
Bidder D. There is no such difficulty in the
proposed ascending-bid auction: Bidder A
would fail to win three units only if her budget
constraint were less than $225 million, a limit
so low that it would prevent her from paying the
true opportunity cost of the third unit.8

8 If a budget-constrained multi-unit bidder bids only against
single-unit bidders without budget constraints, then the pro-
posed ascending-bid auction yields increased efficiency and
revenues as compared to the sealed-bid Vickrey auction. In
general multi-unit environments with budget constraints, how-
ever, the effect is ambiguous for two reasons. First, the ascend-
ing-bid auction facilitates the expression of full valuations by
multi-unit bidders. If single-unit bidders themselves face bud-
get constraints, then the multi-unit bidder may already win
more in the sealed-bid auction than is efficient—despite her
own budget constraint—and the ascending-bid auction may
then exacerbate this effect by relaxing her budget constraint.
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Next, let us reexamine the example of Table
1, in order to see what outcome would have
ensued if we had instead applied a uniform-
pricing rule. As before, the auctioneer calls
prices, bidders respond with quantities, and the
price is incremented until p* is reached, at
which there is no excess demand. In a uniform-
price ascending-clock auction, however, any
bidder i assigned a final quantity x*i pays the
amount p*x*i. Then, there exists an equilibrium
in which the auction concludes at a price of
$75 million and with an inefficient allocation.
More strikingly, if the example is perturbed
so that Pr{uA(3) � k} � �, for every k �
76, ... , 84, 86 and for small but positive �,
this inefficient equilibrium is the unique out-
come of iterated weak dominance. By con-
trast, the same criterion—applied to the
ascending auction with a clinching rule—se-
lects the sincere bidding equilibrium (see
Theorem 2 for the general argument).

To analyze the perturbed example, let us sup-
pose that the prior bidding has been sincere and
consider the game at a price of $75 million. The
standing bids of Bidders A to E are 3, 1, 2, 1,
and 0, respectively. Observe that it is weakly
dominant for Bidder D to maintain a quantity of
1 for all prices less than $85 million and then to
reduce her quantity to 0 (since, with the per-
turbed uA(3), Bidder A has a positive probabil-
ity of reducing from 3 to 2 at any price between
$75 and $85 million). Similarly, it is weakly
dominant for Bidder B to reduce her quantity to
0 at $75 million. Following elimination of these
strategies for Bidders D and B, Bidder A (if she
has uA(3) � 85) has two candidate optimal
actions: she can continue to bid sincerely, win-
ning 3 items at a price of $85 million (giving her
surplus of $84 million); or she can reduce her
demand, thereby immediately ending the auc-
tion and winning 2 items at a price of $75
million (giving her surplus of $86 million).
Thus, uniform pricing uniquely gives a final

price of $75 million and an inefficient allocation
of goods of (2, 0, 2, 1, 0) as the outcome of
iterated weak dominance.9 By contrast, a
clinching rule uniquely yields an efficient allo-
cation (Theorem 2), and despite giving away
one license at a bargain $65 million in this
example, yields $10 million more in revenue.10

Most other conventional auction approaches
also yield inefficient equilibria when applied to
the example of Table 1. One approach is to sell
the identical objects, one after another, by suc-
cessive single-item English auctions. This, for
example, is how Sotheby’s attempted to auction
seven satellite transponders in November 1981
(see Milgrom and Weber, 1982b). Observe that
there is then a tendency toward intertemporal
arbitrage, which lends the auction process a
uniform-price character.

A more sophisticated approach is the simul-
taneous multiple-round (SMR) auction used by
the Federal Communications Commission
(FCC) to assign spectrum licenses.11 Bidders
successively name prices on individual items;
and the bidding is not deemed to have con-
cluded for any single item until it stops for all
items. In such a format, there is an even stronger
tendency toward arbitrage, so that similar items
sell for similar prices. Most strikingly, in the
real-world Nationwide Narrowband Auction on
which Example 1 was patterned, the five virtu-
ally identical 50/50 kHz paired licenses each
sold for exactly $80 million;12 subsequent FCC
auctions have displayed only minor amounts of
price discrepancy for similar licenses.

To the extent that prices are arbitraged under
either of these approaches, essentially the same
inefficiencies should result as in the uniform-
price ascending-bid auction. If either five suc-
cessive single-item auctions or the FCC’s SMR
auction were used in Example 1, Bidder A does

Second, multi-unit bidders who bid against budget-constrained
opponents may have incentive to overbid on some units in
order to deplete their opponents’ budgets. This complicated
effect may occur in both the sealed-bid and ascending-bid
auctions, rendering the comparison ambiguous. The effect of
budget constraints on auction strategies and outcomes will be
analyzed further in future work.

9 In the full iterated weak dominance argument (omitted
here, for brevity), we would argue also that neither Bidder
A nor Bidder C reduces demand below 2 and that neither
Bidder B nor Bidder D reduces demand below 1 before the
price reaches $75 million.

10 The revenue ranking of the alternative ascending-bid
auction versus the uniform-price ascending-bid auction is
ambiguous.

11 See Cramton (1995) and Milgrom (2000).
12 See Cramton (1995). Moreover, bidders could submit

any integer prices in excess of a (nonbinding) minimum bid
increment.
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best by bidding only up to a price of $75 mil-
lion. With the five successive auctions, Bidder
A might consequently lose the first three auc-
tions to Bidder C (2 units) and Bidder D (1
unit); with the high marginal values out of the
way, however, Bidder A assures herself of win-
ning the last two auctions at $75 million each.
Similarly, with the SMR auction, two of Bidder
A’s $75 million bids would not be outbid.

Finally, let us consider the two sealed-bid
auction formats that have generally been used
for U.S. (and other governments’) Treasury auc-
tions: the pay-as-bid auction and the uniform-
price auction.13 As applied to Example 1, these
two auctions again have the property that all
equilibria in undominated strategies are ineffi-
cient. For the uniform-price auction, this fol-
lows the same argument as before: in an
efficient equilibrium in undominated strategies,
Bidder D’s bid of $85 million and Bidder B’s
bid of $75 million need to be rejected. Bidder A
calculates that she can improve her demand so
that she wins only two items. For the pay-as-bid
auction, we can apply almost identical reason-
ing: in an efficient equilibrium, the winning bids
must all be at least $85 million; otherwise,
unsatisfied Bidder D could profitably deviate.
But Bidder A could then substitute two bids of
$75 million (� �) for her three bids of $85
million, improving her payoff.14

II. The Model

There are at least two useful ways to formu-
late a mathematical model of the new auction.
In the first, the price clock advances in discrete
(e.g., integer) steps, and bidders’ marginal val-
uations are taken from the same set of discrete

(e.g., integer) values. In the second, the price
clock operates in continuous time, enabling full
separation of bidders’ continuous signals. Sec-
tions II and III focus on the first, simpler for-
mulation. The model is sufficiently rich to
provide a relatively comprehensive treatment of
private values. Moreover, most practical imple-
mentations of auctions include some amount of
discreteness, giving rise to a positive probability
of ties, and the analysis of the discrete formu-
lation includes a rather complete treatment of
ties. (Continuous-time games obviate this prob-
lem, since a tie is then a zero-probability event.)
Section IV introduces and studies the second
formulation, which is required for a treatment of
efficiency using the standard (continuous) mod-
els of interdependent values.

A seller wishes to allocate M homogeneous
goods among n bidders, N � {1, ... , n}. Each
bidder i may be assigned any quantity xi in the
consumption set Xi, subject to the feasibility con-
straint that ¥i�1

n xi � M. We simultaneously treat
two interesting cases: Xi � [0, �i], so that the good
is perfectly divisible; or Xi � {0, 1, 2, ... , �i}, so
that the good is discrete. (In either case, 0 � �i �
M.) Bidder i’s utility is assumed to be quasilinear,
equaling her pure private value, Ui(xi), for the
quantity xi she receives less the total payment, yi,
that she is obligated to pay: Ui(xi) � yi. The value
Ui� is assumed to be the integral of a marginal
value ui�, and so Ui(xi) � �0

xi ui(q) dq. Each
bidder’s marginal value function, ui�, may be
publicly known, making this a game of complete
information, or privately known, making this a
game of incomplete information. In either case,
we assume that all marginal values are uniformly
bounded above by u� � 0 and below by zero. The
marginal value ui : [0, �i]3 � is assumed to be
weakly decreasing in q and integer valued. Thus,
bidders exhibit diminishing marginal utilities, Wal-
rasian price(s) are guaranteed to exist, and the lowest
Walrasian price is an integer between 0 and u�.

In order to simplify the following presenta-
tion, we will place two constraints on bidding
strategies. First, bidding will be constrained
by a monotone activity rule—equation (1)
below—that is, bidders will be required to bid
(weakly) downward-sloping demand curves.
Second, bidders will be constrained not to bid
for smaller quantities than they have already
clinched (equation [5] below). While neither
constraint is required for the results established

13 These formats are defined and studied in detail in
Ausubel and Cramton (2002).

14 The pay-as-bid and uniform-price auctions also possess
efficient equilibria, but only if we allow bidders to use weakly
dominated strategies. For Example 1, following Bikhchandani
(1999), it is an efficient equilibrium of the pay-as-bid auction
if Bidder A submits three (winning) bids of 85 (� �), Bidder
C submits two (winning) bids of 85 (� �), Bidder D submits
a (losing) bid of 85, and some bidder submits an additional
(losing) bid, b, of at least 76. Observe, however, that this
requires that the additional losing bid, b, exceed the bidder’s
marginal value. If b � 76, Bidder A can profitably deviate by
instead bidding only b � �, thereby settling for only two
objects. Similar reasoning applies to the uniform-price auction.
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in this section,15 both constraints simplify
the description of the auction to the economist
or to the bidder, and both would likely be im-
posed in real-world auctions.16

The auction is modeled as a dynamic game in
discrete time. At each time t � 0, 1, 2, ... , T, the
price pt � t is communicated to (or already
known by) the n bidders, and each bidder i
responds by bidding a quantity xi

t � Xi. The
presentation is simplest if bidders are con-
strained to bid monotonically:

(1) Monotone activity rule: xi
t � xi

t � 1,

for all i � 1, ... , n

and all t � 1, ... , T.

The final time, T, after which the auction exog-
enously ends, is selected so as not to bind, i.e.,
T � u� .

Suppose that the auction is fully subscribed at
the starting price: ¥i�1

n xi
0 � M. Then the auc-

tion continues until such time that there is no
excess demand, or until the exogenous ending
time T is reached, whichever occurs sooner.
Thus, after each time t � 0, ... , T, the auction-
eer determines whether ¥i�1

n xi
t � M. If this

inequality is satisfied, then the current time t is
designated the last time of the auction: we write
L � t. Each bidder i is assigned a final quantity
x*i that satisfies xi

L � x*i � xi
L�1 and ¥i�1

n x*i �
M.17 If this inequality is not satisfied but t � T,

the exogenous ending time, then the current
time T is designated the last time of the auction:
we write L � T. Each bidder i is assigned a final
quantity x*i that satisfies x*i � xi

L and ¥i�1
n x*i �

M.18 Finally, if there remains excess demand
and t � T, the auction game proceeds to time
t � 1 (with associated price pt�1 � t � 1) and
the process repeats.

At any time t, we define the vector of cumu-
lative clinches, {Ci

t}i�1
n , by:

(2) Ci
t � max�0, M � �

j�i

xj
t�,

for all t � 0, ... , L � 1 and i�1, ... , n, and

(3) Ci
L � x*i ,

where L is the last auction round and

x*i is the final quantity assigned to bidder i.

We define the vector of current clinches,
{ci

t}i�1
n , at time t as the difference between the

cumulative clinches at time t and the cumulative
clinches at time t � 1, i.e.,

(4) ci
t � Ci

t � Ci
t � 1,

for t � 1, ... , L and ci
0 � Ci

0, for all i � 1, ... , n.

As discussed above, in order to simplify the
presentation, the bidder is also constrained to
bid no smaller a quantity than her prior cumu-
lative clinches:

(5) xi
t � Ci

t � 1,

for all i � 1, ... , n and all t � 1, ... , T.

15 The constraint of a monotone activity rule is dropped in
the sequel paper, Ausubel (2002), where clinching is replaced
by notions of “crediting” and “debiting,” yet similar efficiency
results are obtained. The constraint of not allowing bidding for
smaller quantities than have already been clinched is irrelevant
when suitable restrictions are placed on the rationing rule, for
example, as in footnotes 17 and 18.

16 In real-world multi-item auctions, activity rules are
often imposed. The concern is that without an activity rule,
a bidder with serious interest in the items for auction may
choose to wait to bid, as a “snake in the grass,” until the
auction appears nearly ready to close. The activity rule
prevents a bidder from concealing her true intentions until
late in the auction, by requiring her to bid on a given
quantity early in the auction in order to preserve the right to
bid on this quantity late in the auction.

17 If ¥i�1
n xi

L � M, then there is a need for rationing some
of the bidders in order to sell the entire quantity M. So long as
it is consistent with xi

L � x*
i � xi

L�1 and ¥i�1
n x*

i � M, the
rationing rule may be specified relatively arbitrarily, but it must
satisfy the following monotonicity property: if xi

L � xi
L�1, then

the expected quantity E [x*i ] assigned to bidder i must be
strictly greater than her final bid xi

L, and if the final bid xi
L of

bidder i is increased, while holding the final bids x�i
L of all

opposing bidders fixed, then the (probability distribution on
the) quantity x*

i assigned to bidder i must increase.
18 The rationing rule may be specified relatively arbi-

trarily, but it must satisfy the following monotonicity prop-
erty: if the final bid xi

L of bidder i is increased, while holding
the final bids x�i

L of all opposing bidders fixed, then the
(probability distribution on the) quantity x*

i assigned to
bidder i must increase.
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The payment rule is that the payment for each
unit is the price at which it is clinched. In
general (including continuous time) games, let
p(t) denote the price at time t and let Ci(t)
denote the cumulative clinches based on the
bids at time t. Then bidder i’s total payment is
the following Stieltjes integral:

(6) yi � �
0

L

p	t
 dCi 	t
.

In the discrete-time notation of the current sec-
tion, the payment equation (6) may equivalently
be written:

(7) yi � �
t � 0

L

ptci
t.

However, if ¥i�1
n xi

0 � M, then each bidder i is
assigned the quantity xi

0 at the starting (zero)
price.

A full specification of an ascending-bid auc-
tion game also requires some precision in stip-
ulating the informational assumptions, as
different informational assumptions potentially
lead to different outcomes. Let ht � {x 1

t�, ... ,
xn

t�}t��t denote the history of play prior to time t
and let hi

t denote the summary of the history that
is made observable to bidder i (above and be-
yond her own prior bids). The following are
three of the most interesting available informa-
tional rules:

FULL BID INFORMATION: The summary
of the history observable to bidder i is:
hi

t � {x1
t�, ... , xn

t�}t��t, i.e., the complete
history of all bids by all bidders.

AGGREGATE BID INFORMATION: The sum-
mary of the history observable to bidder i
is: hi

t � {¥j�1
n xj

t�}t��t, i.e., the complete
history of the aggregate demand of all
bidders.

NO BID INFORMATION: The summary of
the history observable to bidder i is: hi

t �
1, if ¥j�1

n xj
t�1 � M, and 0, otherwise, i.e.,

whether the auction is still open.
Given the informational assumption chosen, let
Hi

t denote the set of all possible histories ob-
servable to bidder i at time t. In each of the
theorems below, if the informational assump-

tion is not otherwise specified, then the result
holds for all three informational rules.

A strategy �i : {0, ... , T} � Hi
t3 Xi of player

i (i � 1, ... , n) is any function of times and
observable histories to quantities that is consis-
tent with the bidding constraints, and the strat-
egy space i is the set of all such functions �i(t,
hi

t). The information structure of the auction
game may be one of complete or incomplete
information regarding opposing bidders’ valua-
tions. With complete information, each bidder
is fully informed of the functions {Uj�}j�1

n ,
and (if there is also full bid information) the
appropriate equilibrium concept is subgame
perfect equilibrium. With incomplete informa-
tion and pure private values, each bidder i is
informed only of her own valuation function
Ui� and of the joint probability distribution
F� from which the profile {Uj�}j�1

n is drawn.
In static games of incomplete information, au-
thors sometimes advocate ex post equilibrium,
which requires that the strategy for each player
would remain optimal if the player were to learn
her opponents’ types (see Jacques Crémer and
Richard P. McLean, 1985). In the current con-
text of a dynamic game, the equilibrium concept
that we will define and use is ex post perfect
equilibrium, which imposes this same condition
at every node of the auction game:

EX POST PERFECT EQUILIBRIUM. The strategy n-
tuple {�i}i�1

n is said to comprise an ex post
perfect equilibrium if for every time t, fol-
lowing any history ht, and for every realiza-
tion {Ui}i�1

n of private information, the n-
tuple of continuation strategies {�i( � , � �t, hi

t,
Ui)}i�1

n constitutes a Nash equilibrium of the
game in which the realization of {Ui}i�1

n is
common knowledge.

Alternatively, we could have explicitly defined
beliefs for each bidder and stated the theorems
of this article in terms of the perfect Bayesian
equilibrium concept.19 (Indeed, the results in

19 We would begin by specifying that, after every his-
tory, each player i has posterior beliefs, denoted �i( � �t, hi

t,
Ui), over opponents’ utility functions, U�i� � {Uj�}j�i.
The n-tuple {�i, �i}i�1

n is then defined to comprise a perfect
Bayesian equilibrium if the strategies �i � i, if the beliefs
�i are updated by Bayes’ rule whenever possible, and if
following any history ht of play prior to time t, �i is a best
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Section IV involving interdependent valuations
will utilize perfect Bayesian equilibrium.) Stat-
ing the private values results in their current
form, however, gives them a number of addi-
tional desirable properties, e.g., the results are
independent of the underlying distributions of
bidders’ types (see also Crémer and McLean,
1985; Maskin, 1992; Ausubel, 1999; Perry and
Reny, 2001, 2002). The results as stated also
encompass the complete-information version of
the model, since ex post perfect equilibrium
then reduces to the familiar equilibrium concept
of subgame perfect equilibrium.

III. Results with Private Values

This section provides the private values re-
sults of the article. Sincere bidding is an ex post
perfect equilibrium of the model of Section II.
Furthermore, under incomplete information and
a “full-support” assumption, it is the unique
outcome of iterated weak dominance. We begin
by defining sincere bidding, which informally
means “you just bid what you think it is worth”:

DEFINITION 1: The sincere demand of bidder
i at price p is: Qi(p) � inf{arg maxxi�Xi

{Ui(xi) � pxi}}. Sincere bidding is the strategy
in which, subject to the constraints posed by the
monotone activity rule and her previous
clinches, bidder i bids her sincere demand at
every time t and after every history hi

t:

(8) xi
t � min�xi

t � 1, max�Qi	p
t
, Ci

t � 1��,

for all t � 1, ... , T, and xi
0 � Qi	p

0
.

For example, given the illustrative valuations
of Bidder D in Table 1, the sincere bid is: xD

t �
3, for t � 0, ... , 6; xD

t � 2, for t � 7, ... , 64;
xD

t � 1, for t � 65, ... , 84; and xD
t � 0, for t �

85, ... , T. This, however, assumes that the con-
straint CD

t�1 � xD
t � xD

t�1 is not binding due to
the history of play in the auction. Sincere bid-
ding is specified in Definition 1 so that the
bidder never bids more than her quantity in the
previous period and never bids less than the
quantity that she has already clinched.

Note that the assignment of goods in the auc-
tion has been specified (see Section II, para. 5) in
such a way that bidder i may be required to pur-
chase more than x*i � xi

L units at price pL (that is,
a larger number of units than she bid for at that
price, albeit no larger a number than xi

L�1, the
number she bid for at the previous price). Never-
theless, observe that, given the sincere-bidding
strategy specified in Definition 1, there is never
any ex post regret. Any time t in which a sincere
bidder i reduces her bid, she is indifferent between
receiving her prior bid xi

t�1 and her current bid xi
t.

For example, using the strategy in the previous
paragraph, Bidder D could potentially win 2 units
at a price of 65, even though xD

65 � 1. Her mar-
ginal value equals 65, however, so she is in fact
indifferent to winning 1 or 2 units at 65.

We are now ready to state our first theorem.
All of the theorems are proved in the Appendix.

THEOREM 1: In the alternative ascending-bid
auction with private values, sincere bidding by
all bidders is an ex post perfect equilibrium,20

yielding the efficient outcome of the Vickrey
auction. Furthermore, with no bid information,
sincere bidding is a weakly dominant strategy
for every bidder after every history.

Theorem 1 notwithstanding, there may exist
other equilibria besides the sincere-bidding
equilibrium. Consider the following example
with two bidders, subscripted by A and B, and
two identical items. Suppose that uA(1) � 4;
uA(2) � 2; uB(1) � 3; and uB(2) � 1. There is
a sincere-bidding equilibrium in which bidder A
bids for two units at t � 0, 1; one unit at t � 2,
3; and zero units at t � 4. Bidder B bids for two
units at t � 0; one unit at t � 1, 2; and zero units
at t � 3. Each bidder wins one unit, with Bidder
A paying 1 and Bidder B paying 2. However,
there also exists a “low revenue” equilibrium in
which Bidder A bids for one unit at t � 0, 1, 2,
3, and zero units at t � 4, while Bidder B bids
for one unit at t � 0, 1, 2, and zero units at t �
3. In the low-revenue equilibrium, each bidder
again wins one unit, but each bidder pays zero.
There also exists a continuum of other equilibria

response (given beliefs) for every player i in the continua-
tion game against {�j}j�i.

20 With full bid information and under complete infor-
mation regarding bidders’ valuations, this statement simpli-
fies to saying that sincere bidding by every bidder is a
subgame perfect equilibrium.
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in this example.21 Each of these equilibria
corresponds to an equilibrium of the Vickrey auc-
tion. For example, the low-revenue equilibrium
corresponds to the equilibrium of the Vickrey
auction in which Bidder A submits bids of 4 and
0, and in which Bidder B submits bids of 3 and 0.

In the Vickrey auction, the additional equi-
libria are discarded by eliminating (weakly)
dominated strategies.22 More intricate reason-
ing is generally required to eliminate the addi-
tional equilibria in the alternative ascending-bid
auction. The reason is that, with full or aggre-
gate bid information, insincere bidding is not nec-
essarily dominated. For example, suppose that for
some bizarre reason, bidder j uses the strategy of
maintaining xj

t � xj
0 so long as xi � K, for some

positive constant K, but of dropping to xj
t�1 � 0 in

the first period following that xi
t � K. Then it is

possible that bidder i may improve her payoff by
reducing her demand to K at a price p where her
marginal utility, ui(K), still exceeds p.

The additional equilibria may be eliminated,
however, using a combination of iterated weak
dominance and incomplete information. In the
above example, suppose that the marginal val-
ues of the respective bidders are instead distrib-
uted according to:

	uA 	1
, uA 	2

 � �
(4, 2), with probability 1 � 11�
(4, 1), with probability �
	4, 0
, with probability �
	3, 2
, with probability �
	3, 1
, with probability �
	3, 0
, with probability �
	2, 2
, with probability �
	2, 1
, with probability �
	2, 0
, with probability �
	1, 1
, with probability �
	1, 0
, with probability �
	0, 0
, with probability �

,

	uB 	1
, uB 	2

 � �
	3, 1
, with probability 1 � 6�
	3, 0
, with probability �
	2, 1
, with probability �
	2, 0
, with probability �
	1, 1
, with probability �
	1, 0
, with probability �
	0, 0
, with probability �

.

Then it is straightforward to see that, with a
single round of elimination of weakly domi-
nated strategies, one can eliminate the possibil-
ity that either bidder will prematurely reduce
demand from one unit to zero. With a second
round of elimination, one can eliminate the pos-
sibility that either bidder will prematurely re-
duce demand from two units to one—once her
opponent has already reduced to one unit. And
with a third round of elimination, one can elim-
inate the possibility that either bidder will pre-
maturely reduce demand from two units to
one—before her opponent has already reduced
to one unit.

More generally, let us assume incomplete in-
formation and make the following assumption:

DEFINITION 2: For any nonnegative integer
k, let �(k) denote the set of all weakly decreas-
ing functions 	 : Xi3 {0, ... , k}. In the private
values model with incomplete information, bid-
der j is said to satisfy the full support assump-
tion if there exists u� j � 0 such that the
probability distribution from which bidder j’s
marginal value function uj� is drawn has sup-
port equal to the full set �(u� j).

23

The role of the full support assumption is to
guarantee that, conditional on a sincere bid,
xj(t), at time t, there is both a positive probabil-
ity that the next sincere bid satisfies xj(t � 1) �
xj(t) � � (provided, of course, that t � 1 � u� j)
and a positive probability that the next sincere
bid satisfies xj(t � 1) � �, for every � � 0. If the
full support assumption holds for all bidders j �
i, then every bid by bidder i matters.24 The next

21 In addition, there exists a third (pure) equilibrium
strategy for bidder A, in which bidder A bids for two units
at t � 0; one unit at t � 1, 2, 3; and zero units at t � 4. A
continuum of equilibria is constructed by pairing each mix-
ture for bidder A over the three aforementioned pure strat-
egies with each mixture for bidder B over the two
aforementioned pure strategies. I am grateful to an anony-
mous referee for providing this example.

22 For example, bidder A submitting bids of 4 and 0 is
weakly dominated by bidder A (sincerely) submitting bids
of 4 and 2, since if bidder B (unexpectedly) submitted bids
of 1 and 1, bidder A would then attain a higher payoff.

23 If, instead of being drawn independently, the utility
functions of the bidders are drawn from a joint probability
distribution, then the analogous condition can be required
on the marginal distribution for bidder i, given any realiza-
tion for bidders �i.

24 Conversely, suppose in an example similar to that of
Table 1 that Bidder D’s marginal value for a second unit
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theorem shows that, under private values, in-
complete information and the full support as-
sumption, sincere bidding is the unique
outcome of iterated weak dominance:

THEOREM 2: Under private values, incomplete
information and the full support assumption, sin-
cere bidding by all bidders is the unique outcome
of iterated elimination of weakly dominated strat-
egies in the alternative ascending-bid auction.25

Observe the following special cases of The-
orem 2. For a single item, sincere bidding is the
unique outcome of iterated weak dominance in
the English auction. For M identical items and
bidders with unit demands, sincere bidding is
the unique outcome of iterated weak dominance
in the uniform-price ascending auction. Both of
these special cases obviously also require the
full support assumption, which specialized to
these cases is simply the requirement that the
support of ui(1) is a set {0, ... , u� i}.

One other observation is worth making at this
juncture. The reason that we are able to obtain
exactly the Vickrey outcome (as opposed to
merely an approximation) in the discrete auc-
tion game is our assumption that all marginal
valuations are integers. As a consequence, all
payments in the Vickrey auction are integers,
and there is no loss of information in eliciting
bids only at integer prices. In the interdependent
values model of the next section, however, mar-
ginal valuations may take any nonnegative real
values, so it is then necessary to utilize a con-
tinuous game in order to obtain full efficiency.

IV. Results in a Continuous-Time Game with
Symmetric, Interdependent Values

Among the most influential results in the
single-item auction literature is the compari-

son between the second-price auction (a static
auction) and the English auction (the associ-
ated dynamic auction) in a symmetric model
with affiliated values. Each format exhibits an
efficient equilibrium, but the efficient equilib-
rium of the dynamic auction yields higher
expected revenues than that of the static auc-
tion (Milgrom and Weber, 1982a).26 The
analogous comparison, for auctions of multi-
ple identical objects, is the comparison be-
tween the Vickrey auction and the alternative
ascending-bid auction of this article. We find
in this section that, in a symmetric model with
flat demands and affiliated values, the dy-
namic auction has two advantages over the
static auction. First, exactly as in Milgrom
and Weber’s analysis, the dynamic auction
provides greater linkage between the payment
and the bidders’ signals, increasing the sell-
er’s expected revenues. Second, a “Champi-
on’s Plague” (or generalized Winner’s Curse)
emerges that is not present in the single-item
analysis, adversely affecting the efficiency of
the static auction.

A seller offers M discrete (and indivisible)
units of a homogeneous good. The n bidders
have “flat demands”: each bidder i obtains con-
stant marginal utility of Vi from each of up to �i
units of the good, but zero marginal utility from
any more than �i units, where the capacity �i
satisfies 0 � �i � M. Let the capacities be
sufficiently large that there is competition for
every unit of the good (i.e., ¥j�i �j � M). The
marginal values Vi (i � 1, ... , n) are assumed to
derive from affiliated signals. Let S � (S1, ... ,
Sn) be a vector of n real-valued signals which
are privately observed by the n respective bid-
ders. Also let S�i denote the (n � 1) signals
other than that observed by bidder i, without the
identities of the individual bidders indicated.
Following Milgrom and Weber (1982a), it will
be assumed that:

(A.1) Vi � v(Si, S�i), where v� is the same
nonnegative-valued function for every
bidder i (i � 1, ... , n), v� is continuous
in all its arguments, v� is strictly in-

equals 65 but that there is zero probability that any opposing
bidder’s marginal value is anywhere in the interval [60, 70].
Then sincere bidding is not quite mandated: it is irrelevant
to Bidder D’s payoff at which price in [60, 70] she reduces
her quantity from 2 to 1.

25 Elimination or iterated elimination of weakly domi-
nated strategies is sometimes criticized because its outcome
may depend on the order of elimination. Observe, however,
that Theorem 2 establishes order independence in this par-
ticular context.

26 Milgrom and Weber (1982a) also compare the sealed-
bid first-price auction of a single item. For a comparison
involving the pay-as-bid auction (the multi-unit version of
the first-price auction), see Ausubel and Cramton (2002).
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creasing in its first argument, and v� is
nondecreasing in its remaining argu-
ments.27

(A.2) E[Vi] � �, for every bidder i (i � 1, ... ,
n).

(A.3) The variables (S1, ... , Sn) are affiliated.
(A.4) The joint density, f( � , ... , � ), of (S1, ... ,

Sn) is symmetric in its arguments.

Loosely speaking, the affiliation assumption
(A.3) requires that the agents’ signals, Si, be
nonnegatively correlated with one another.
More precisely, let s and s� be possible realiza-
tions of (S1, ... , Sn). Let s � s� and s � s� denote
their componentwise maximum and minimum,
respectively. We say that (S1, ... , Sn) are affili-
ated if f(s � s�) f(s � s�) � f(s) f(s�), for all s and
s� (see Milgrom and Weber, 1982a, p. 1098).

It will often be helpful to let S�ij denote the
(n � 2)-tuple of signals received by bidders
other than i and j, and to assume also:

(A.5) Vi � v (Si, Sj, S�ij) � v (Sj, Si, S�ij) � Vj,
whenever Si � Sj.

In order to accommodate full separation by
bidders in their signals—which is necessary for
efficiency in a model with a continuum of sig-
nals—we change our model to a continuous-
time game. But, once going to a continuous-
time game, we need to treat the possibility that
bidder i’s strategy may be to reduce her quantity
at a given time, while bidder j’s strategy may be
to reduce his quantity at the soonest possible
instant after bidder i reduces her quantity. Ide-
ally, we should allow “moves that occur con-
secutively but at the same moment in time”
(Leo K. Simon and Maxwell B. Stinchcombe,
1989, p. 1181).

The game may thus be conceptualized by
thinking of “time” as being represented by a
pair, (t, r), where t is given by a continuous
ascending clock and r is given by an implicit
discrete ascending counter. Times are ordered
lexicographically: first in t; and second in r.
Generally speaking, the clock time t increments
continuously, and each bidder is free to reduce

her quantity at any clock time. If, however,
bidder i reduces her quantity at a given clock
time t, bidder j is allowed to respond by reduc-
ing his quantity at the same clock time t (but,
nevertheless, after bidder i’s move). This is the
role of the counter r: if bidder i reduces her
quantity at (t, r), the next available time that
follows is (t, r � 1). Each time that some bidder
reduces her quantity, the counter increments
instead of the clock; and when players have
finished reducing their quantities at the current
clock time, the clock resumes instead.

Whenever the clock is ascending, we shall
make full use of the continuous-time framework
by specifying that price is a continuous and
strictly-increasing function of time and, in fact,
for simplicity dp/dt � 1. There is no conceptual
or game-theoretic reason, however, why the
clock needs to resume at the same price as
where it stopped and, in fact, we have consid-
erable latitude in specifying the price at which
the clock resumes. We shall consider two vari-
ations on the continuous-time auction rules:

STOPPING THE CLOCK: Whenever a bid-
der reduces her quantity demanded, the
price clock pauses to enable other quan-
tity reductions. The clock then resumes its
ascent at the same price where it stopped,
so that p(t) � t.

TURNING BACK THE CLOCK: The same
procedure is followed as in “stopping the
clock.” Whenever any bidder reduces her
quantity to zero, however, the price clock
is restarted at zero, so that p(t) � t � t0,
where t0 is the most recent time at which
some bidder has reduced to zero.28

There will be no confusion if we suppress the
implicit counter r from our notation. Any his-
tory of the auction game can be uniquely sum-
marized by a finite string of pairs: h � (t0;
x0), ... , (tL; xL). Each t� denotes the time of the
�th occasion on which one or more bidders
strictly decreased her quantity, and each x� de-

27 As noted by Milgrom and Weber (1982a, p. 1100), the
“nondegeneracy assumption” that a bidder’s expected value
is strictly increasing in her own signal is unnecessary for the
results to hold, but greatly simplifies the proofs.

28 In the working paper version (Ausubel, 1997), arbi-
trary restarting prices were allowed as a function of the
history, in the “turning back the clock” variation. Here, we
restrict attention to restarting prices of zero, in order both to
simplify the exposition and to limit the information about
the bidders’ distributions that needs to be known by the
auctioneer.
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notes the vector of quantities demanded by bid-
ders 1, ... , n beginning at that occasion. Since
quantities are discrete, and given the monotone
activity rule, the length of any history h is
bounded by the number of objects. Together
with the current time, h fully summarizes the
prior play of the game.29 Further, let xi(h) de-
note bidder i’s current quantity and let Ci(h) �
M � ¥j�i xj(h) denote bidder i’s cumulative
clinches after history h.

Let si denote the realization of the private
signal Si received by bidder i, and let hi denote
the summary of the history which is made ob-
servable to bidder i. A pure strategy for bidder
i is a pair of functions, 
i(si, hi) and �i(si, hi), of
private signals and observable summaries of the
history. Then 
i(si, hi) provides the earliest
price at which bidder i will decrease her de-
mand, and �i(si, hi) provides the quantity to
which she will decrease her demand, under the
hypothesis that no opposing bidder j reduces his
own quantity first. (It need not indicate what
bidder i will do if some opposing bidder does
reduce his quantity first, since then the history
changes from h to h�, and so bidder i would
instead play according to (
i(si, h�i), �i(si, h�i)).
The function �i(si, hi) is restricted to generate
bids that are consistent with the monotone ac-
tivity rule and that are never bids for fewer units
than have already been clinched. Payments are
defined analogously as in Section II.

For bidders with private values (that is, Vi �
v(Si)), Theorems 1 and 2 continue to hold in the
continuous-time framework of this section.
Theorem 2 is established in this framework by
first eliminating all strategies except sincere
bidding following histories such that the aggre-

gate demand of all bidders equals M � 1, then
eliminating all strategies except sincere bidding
following histories such that the aggregate de-
mand of all bidders equals M � 2, etc. The
proofs are omitted from the article.

For bidders with interdependent values (that
is, Vi � v(Si, S�i) nontrivially depends on S�i),
the analysis dichotomizes into two cases:30 (i)
bidders have identical capacities (�i � �) and
the number of available items is an integer
multiple of the bidders’ capacities; and (ii) bid-
ders’ capacities are unequal or the number of
available items is not an integer multiple of the
bidders’ capacities. The intuitive explanation
for the difference between these two cases is
that when m � M/� is an integer, the model is
closely related to one in which bidders possess
unit demands and compete for m indivisible
objects. There, symmetric equilibria with flat
bid functions exist, yielding full efficiency.
When m � M/� is not an integer or the �i are
not equal, however, symmetric equilibria with
flat bid functions no longer exist.

First, in the case where M/� is an integer, the
static and dynamic auctions both have efficient
equilibria but, due to the affiliated values, the
expected revenues of the dynamic auction are
greater:

THEOREM 3: Let the bidders have identical
capacities, �, and let m � M/� be an integer.
Then in a symmetric model with interdependent
values satisfying (A.1)–(A.4), both the Vickrey
auction and the alternative ascending-bid auc-
tion have efficient equilibria. Each attains full
efficiency, but the alternative ascending-bid
auction raises expected revenues the same as or
higher than the Vickrey auction.31

In the case where M/� is not an integer, or the
�i are not equal, however, the static auction
does not admit efficient equilibria in the inter-
dependent values models, while the dynamic
auction possesses an efficient equilibrium. The
intuition for the result builds upon the cele-
brated “Winner’s Curse”:

29 To see the richness of the histories that this framework
and notation allow, consider the history h � (0; 3, 2, 2, 2),
(15; 3, 1, 2, 2), (15; 3, 1, 2, 0), (27; 3, 0, 2, 0). This should
be interpreted as saying that Bidders A to D began by
bidding 3, 2, 2, and 2, respectively. At a price of 15, Bidder
B reduced from 2 units to 1. Immediately after—and at the
same price of 15—Bidder D responded by reducing from 2
units to 0. The interpretation of the remaining point in
history h depends on whether we are using the “stopping-
the-clock” or the “turning-back-the-clock” variation. With
stopping the clock, p(27) � 27, meaning that Bidder B
reduced from 1 unit to 0 at a price of 27. With turning back
the clock, p(27) � 27 � 15 � 12 (since t � 15 is the most
recent time at which some bidder has reduced to zero),
meaning that Bidder B reduced from 1 unit to 0 at a price of
12.

30 This dichotomy parallels our analysis of the uniform-
price auction in Ausubel and Cramton (2002).

31 Theorem 3 holds regardless of whether the rule gov-
erning the price process is “stopping the clock” or “turning
back the clock.”

1466 THE AMERICAN ECONOMIC REVIEW DECEMBER 2004



THE WINNER’S CURSE: In a single-item auction
with interdependent values, a bidder’s ex-
pected value conditional on winning the
item is less than her unconditional expected
value.

Now consider, for example, the flat demands
model with M � 3 and � � 2. If the goods are
assigned efficiently, then winning one unit in-
dicates to a bidder that her signal equaled the
second-order statistic of all bidders’ signals,
while winning two units indicates to a bidder
that her signal equaled the first-order statistic of
all bidders’ signals. Winning more units is
“worse news” than winning fewer units. (See
also Ausubel and Cramton, 2002.) Thus, the flat
demands model with assumptions (A.1)–(A.5)
exhibits:

THE CHAMPION’S PLAGUE (OR GENERALIZED WIN-
NER’S CURSE): In a multiple-item auction with
interdependent values, a bidder’s expected
value conditional on winning a larger quan-
tity is less than her expected value condi-
tional on winning a smaller quantity.

Observe that the static auction does not allow
bidders to account for the Champion’s Plague in
their bidding without impairing efficiency,
while the dynamic auction does. We have:

THEOREM 4: Let the bidders have either
identical capacities �, where M/� is not an
integer, or unequal capacities �i. Then in a
symmetric model with interdependent values
satisfying (A.1)–(A.5), all equilibria of the
Vickrey auction are inefficient. The turning-
back-the-clock version of the alternative as-
cending-bid auction, however, possesses an
efficient equilibrium. Moreover, if bidders’ sig-
nals are independent, then the alternative
ascending-bid auction raises strictly higher ex-
pected revenues than the Vickrey auction.

If bidders’ signals are independent, then in
the “flat demands” model studied in this section,
revenue maximization uniquely coincides with
efficiency (Ausubel and Cramton, 1999, Propo-
sition 1). Consequently, the fourth sentence of
Theorem 4 follows from the third sentence of
Theorem 4. It is an open question whether this
revenue ranking extends to flat demands in a

symmetric model where signals are strictly
affiliated.

At the same time, Theorem 4 should not be
misinterpreted to suggest that there does not
exist any efficient static mechanism in this en-
vironment. Indeed, in Appendix B of the work-
ing paper version (now a separate paper,
Ausubel, 1999), as well as in Philippe Jehiel and
Benny Moldovanu (2001) and Perry and Reny
(2002), an efficient direct mechanism is de-
rived. Rather, the correct interpretation of The-
orem 4 is merely that the rules of the standard
Vickrey auction do not allow efficiency in the
face of value interdependencies.

V. Limitations of the Auction Design for
Interdependent Values

While the properties of the proposed auction
design are quite powerful for environments of
private values, there are two basic limitations of
the proposed auction design as applied to envi-
ronments of interdependent values. First, the set
of interdependent-values environments consid-
ered is quite limited. Second, the “turning-back-
the-clock” rule required to treat the limited set
of interdependent-values environments (but not
needed for private-values environments) intro-
duces possibilities for manipulation. This sec-
tion discusses each of these two limitations.

The interdependent-values environments
treated in Section IV are limited to those with
symmetric bidders each possessing “flat de-
mand curves.” Each bidder i has a capacity �i
and a constant marginal value Vi for all quanti-
ties in the interval [0, �i]. The constancy of
marginal value in the interval [0, �i] is common
knowledge; the private information relates only
to the level of Vi. This restriction excludes many
interesting examples. For example, a bidder is
not permitted to have a parameterized family of
downward-sloping linear demand curves such
as Vi(qi, S) � v(S) � qi, for qi � [0, v(S)]. The
reason why such a family is excluded is as
follows. If the bidding within this parameterized
family of downward-sloping linear demand
curves were fully separating, then opponents
could infer the bidder’s exact type based on the
quantity she bid at price zero. Given that this
bidder will continue to bid positive quantities at
positive prices, however, she has incentive to
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distort her bid downward in order to reduce her
opponents’ beliefs and thereby win goods more
cheaply. This incentive makes the equilibrium
complex and inefficient.

The reason for limiting attention to bidders
with flat demand curves is that such bidders
have no incentive to distort in the way described
in the previous paragraph. The bidder does not
fully reveal her private signal until she drops out
of the auction, and by then it is too late for the
information to be used against her. This makes
it possible to construct equilibria without infor-
mational distortion, and the clinching rule elim-
inates incentive for noninformational quantity
distortion.

While this limitation on environments is
unfortunately strong, it is not so severe as to
render the interdependent-values results irrel-
evant. First, while confining, the family of
environments treated here is nevertheless a
strict generalization of the Milgrom and We-
ber (1982a) model, which continues to be
used as the basis for most theoretical and
empirical analyses of ascending-bid auctions
with interdependent values. Second, while de-
termining equilibria for bidders with interde-
pendent values but strictly downward-sloping
demand curves will be a formidable task—
precisely because a fully efficient equilibrium
does not exist—it still seems likely that the
proposed dynamic-auction format will
achieve greater efficiencies than the corre-
sponding static auction. Third, it can be ar-
gued that even the “general” interdependent-
values environments for which efficient direct
mechanisms can be constructed are not all
that general. They still require making strong
assumptions such as that each bidder’s signal
is one-dimensional (see Maskin, 1992; Jehiel
and Moldovanu, 2001), as well as value
monotonicity and a single-crossing property
(see Crémer and McLean, 1985; Ausubel,
1999).

The “turning-back-the-clock” rule that is re-
quired for the efficiency results with interdepen-
dent values introduces some possibilities for
manipulation by bidders. While many forms of
manipulative behavior are possible, the problem
can be seen most easily by considering one very
simple form of manipulation: a bidder’s secret
use of multiple bidding identities. This “shill
bidding” problem, considered in Makoto Yokoo

et al. (2004) and Ausubel and Milgrom (2002),
may be viewed as an extreme form of collu-
sion; a bidder secretly establishes multiple
identities in the auction and bids them in a
coordinated fashion. Consider an auction in
which there is no limitation on the quantity that
may be purchased by an individual bidder.
Suppose that bidders are able to establish ficti-
tious bidding identities without detection by
the seller. A bidder in the “turning-back-the-
clock” auction may elect to establish two ficti-
tious identities and to enter all three identities
(the actual bidder name and the two shill
identities) into the auction. In the extreme
case, the three identities each bid the maximum
quantity until most or all opposing bidders drop
out of the auction. The role of the first shill is to
drop out and thereby guarantee that the auction
restarts at a zero price. The role of the second
shill is to drop out immediately thereafter, caus-
ing the actual bidder to clinch most or all of the
units at essentially zero prices.

Note that this form of manipulation does not
occur in the “stopping-the-clock” version of the
auction. The possibility of inducing the price to
restart is not present. Apart from the restarting
possibility, bidding under a single identity max-
imizes the opportunities for a bidder to clinch
units at low prices, so bidding under multiple
identities would not help—and would likely
harm—the bidder. More precisely, in a private
values environment, and given the (weakly) di-
minishing marginal values assumed in this arti-
cle, a bidder can never benefit from bidding
under multiple identities under “stopping the
clock.” (This follows from the analysis of the
static Vickrey auction by Yokoo et al., 2004;
and Ausubel and Milgrom, 2002.) It is more
difficult to make categorical statements under
interdependent values—since bidders’ expecta-
tions then become important—but it seems
likely that if the multiple identities bid a higher
quantity than the bidder would bid singly, this
would cause opponents to make positive infer-
ences about value, leading the opponents to stay
longer in the auction and harming the manipu-
lative bidder.

Given the possibilities for manipulation in-
troduced by a “turning-back-the-clock” rule, it
seems quite possible that an efficiency- or
revenue-maximizing seller might pass up this
device and settle instead for the “stopping-the-

1468 THE AMERICAN ECONOMIC REVIEW DECEMBER 2004



clock” version in which price never decreases.32

Even for the interdependent-values environ-
ment with flat demand curves, the calculation of
equilibrium under the “stopping-the-clock” rule
is very difficult. One presumes that, while
inferior to those obtained under the “turning-
back-the-clock” rule, the “stopping-the-clock”
equilibria are still probably superior to those of
the sealed-bid multi-unit Vickrey auction.33

Thus, the seller who elects to use the “stopping-
the-clock” rule would likely retain some of the
benefits associated with a dynamic auction,
while greatly reducing the risk of manipulation.

VI. Conclusion

This article has proposed a new ascending-
bid auction for multiple objects. This auction
format occupies the analogous relationship with
respect to the sealed-bid (multi-unit) Vickrey
auction that the English auction occupies with
respect to the sealed-bid second-price auction.
In an environment where bidders have pure
private values, the new dynamic auction game
exhibits a sincere-bidding equilibrium that at-
tains full efficiency and replicates the outcome
of the classic Vickrey auction. For some for-
malizations of the auction game, the sincere

equilibrium is the unique outcome of iterated
weak dominance. In a symmetric environment
where bidders have affiliated signals and inter-
dependent values, the auction continues to pos-
sess an efficient equilibrium, whereas all
equilibria of the standard sealed-bid auctions
are inefficient.

Many of the advantages of dynamic auctions
over static auctions that have been advanced
elsewhere in the literature appear to apply to the
auction format proposed here. When bidders’
signals are affiliated in a symmetric environ-
ment, a dynamic auction may generate greater
revenues than the analogous static auction (Mil-
grom and Weber, 1982a). When bidders’ values
are interdependent, a dynamic auction may al-
locate items more efficiently than the analogous
static auction (Maskin, 1992). When the auction
process otherwise fails to protect the confiden-
tiality of bidders’ valuations, a dynamic auction
may enhance privacy preservation as compared
to the analogous static auction (Rothkopf et al.,
1990). When budget constraints impair the bid-
ding of true valuations in a sealed-bid Vickrey
auction, a dynamic auction may facilitate the
expression of true valuations while staying
within budget limits (Ausubel and Milgrom,
2002). All of these advantages are obtained in
the current article while adhering to the funda-
mental prescription of making bidders’ pay-
ments as independent as possible of their own
reports (Vickrey, 1961).

Some other possible advantages of dynamic
auctions over static auctions are difficult to
model explicitly within standard economics or
game-theory frameworks. For example, as em-
phasized in the introduction, it is generally held
that the English auction is simpler for real-
world bidders to understand than the sealed-bid
second-price auction, leading the English auc-
tion to perform more closely to theory. One
might expect this advantage to carry over to the
comparison between the ascending-bid auction
proposed here and the multi-unit Vickrey auc-
tion. The current article does not contain any
formal analysis of this hypothesis, yet its valid-
ity is clearly important for a real-world seller
deciding among alternative auction formats.
Three sets of researchers, however, have re-
cently run laboratory experiments involving the
new dynamic auction, enabling us to begin ob-
taining some practical insights.

32 Alternatively, as in the working paper version (Aus-
ubel, 1997), the seller might utilize an intermediate version
of the “turning-back-the-clock” rule. For example, after
stopping at time t, the clock is restarted at a price of p � 0.9
supt��t{p(t�)}. Thus, price is allowed to be rolled back
somewhat, but not all the way back to zero. In order to make
an effective choice of the constant, however, the auctioneer
would need to know considerable information about the
structure of bidders’ signals and values.

33 We know that all “stopping-the-clock” equilibria are
inferior to the best “turning-back-the-clock” equilibrium,
since the latter attains the optimum and the former (by
reasoning similar to that of Theorem 4) cannot. Note that the
intuition for the superior performance of the “turning-back-
the-clock” auction is that it allows bidders to adjust dynam-
ically for the Champion’s Plague, lowering their bidding
thresholds after winning units. By similar reasoning, it
seems probable that the “stopping-the-clock” equilibria
would be superior to those of the static Vickrey auction,
since the “stopping-the-clock” format allows bidders to
compensate partially for the Champion’s Plague—they can
reduce their bidding thresholds after winning some units,
but not necessarily as far as they would like to—whereas the
static Vickrey auction does not allow bidders to adjust
dynamically for the Champion’s Plague at all.
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Kagel and Dan Levin (2001) and Kagel et al.
(2003) have tested the proposed auction using a
clever experimental design in which human
subjects play against computers in a two-unit,
private-values setting. Kagel and Levin report
that more than 99 percent of the predicted gains
from trade, and essentially exactly the predicted
revenues, are realized. Kagel et al. compare the
proposed auction with the Vickrey auction,
finding greater allocative efficiency in the pro-
posed auction:

“The Ausubel auction comes significantly
closer to sincere bidding than the static
Vickrey auction even though the latter has
a stronger solution concept (implementa-
tion in weakly dominated strategies ver-
sus iterated deletion of weakly dominated
strategies). This suggests a tradeoff be-
tween the simplicity and transparency of a
mechanism and the strength of its solution
concept for less than fully rational agents”
(Kagel et al., 2003).

Dirk Englemann and Veronika Grimm (2003)
perform two-unit, private-values experiments
using human subjects only, and they report very
similar results. By contrast, Alejandro M. Manelli
et al. (2000) run three-unit, interdependent-
values experiments, obtaining higher revenues
in the dynamic auction but greater efficiency in
the static auction. As in the other experiments,
their subjects understood that it was better to
avoid bidding above their values in the dynamic
than in the static auction. However, their sub-
jects engaged in a different form of overbid-
ding—bidding for all three units when they
were told that they had value for only two
units—and this accounted for the reversal in
efficiency as compared to the other experi-
ments.

There are at least two directions in which the

results of this article can be extended. First, as
discussed in Section V, the treatment here of
interdependent values is very limited. Some
other authors have begun to obtain more general
results for interdependent values. Perry and
Reny (2001) show that, with two bidders, my
auction continues to yield efficient outcomes in
a general specification of interdependent values
based on one-dimensional signals. They further
show that by expanding the procedure to allow
bidders to submit directed demands (one
against each other bidder), it is possible to ob-
tain efficient outcomes with n bidders, identical
objects, and interdependent values based on
one-dimensional signals. Such extensions come
at the cost of greater complexity for bidders
and—similar to the critique of the “turning-
back-the-clock” rule in Section V—they may
introduce new possibilities for manipulation.
Still, it seems likely that the ideas in this article
can be extended to produce practical auction
designs appropriate for richer informational en-
vironments than those treated here.

Second, the current article and most other
recent work on efficient dynamic auctions of
multiple items has restricted attention to homo-
geneous goods. Nevertheless, even in clear real-
world examples of auctions of identical items
(e.g., auctions of three-month Treasury bills),
there often occur in close proximity other auc-
tions of related but different goods (e.g., auc-
tions of six-month Treasury bills). In Ausubel
(2002), I expand the environment to allow bid-
ders with concave utilities over heterogeneous
commodities. Instead of a single price “clock,”
I utilize multiple independent clocks to gener-
alize the auction procedure herein. Subject to
a few caveats, I conclude there that it is
still possible to replicate the outcome of the
Vickrey-Clarke-Groves mechanism with a dy-
namic auction procedure.

APPENDIX

PROOF OF THEOREM 1:
At every point in the alternative ascending-bid auction up until its end, all of the payoff-relevant

events in the auction occur through clinching. The cumulative quantity of clinched units for bidder
i at time (and price) t is given by equations (2) and (3). Observe that the right side of equation (2)
is independent of bidder i’s actions; hence, changing one’s own bid strategy can have no effect on
payoff, except to the extent that: (i) it leads rival bidders to respond; or (ii) it determines one’s own
final quantity x*i.

Since marginal utilities were assumed (weakly) diminishing, the sincere bidding strategy given
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by equation (8) always yields monotonically nonincreasing quantities over time. Moreover, sin-
cere bidding by bidder i always yields a final price p* and final quantity x*i satisfying x*i �
arg maxxi�Xi

{Ui(xi) � p*xi}.
If all rival bidders j � i bid sincerely, then rivals never respond to bidder i’s strategy, except

through price. Hence, sincere bidding is a mutual best response for every bidder—for every
realization of utilities and after every history—and hence it is an ex post perfect equilibrium. Given
the sincere bids of equation (8) and the payoff equation (7), it always yields the efficient outcome
of the Vickrey auction. Moreover, with no bid information, a rival cannot distinguish between two
strategies of bidder i, except to the extent that one or the other ends the auction. Hence, changing
one’s own bid strategy cannot lead rivals using any strategy to respond. We conclude that sincere
bidding is a weakly dominant strategy in the auction with no bid information.

PROOF OF THEOREM 2:
First, we provide an order of elimination that yields sincere bidding as the outcome of iterated

weak dominance. We begin with the last period, T. Since bidders’ marginal valuations are assumed
to be bounded by u� � T, each bidder wishes to minimize the number of units won at time T. Given
that the rationing rules in case of over- or under-subscription are monotonically increasing in the
final bids (see footnotes 17 and 18), the sincere bids xi

T � Ci
T�1 weakly dominate all insincere bids

xi
T � Ci

T�1, and so all strategies specifying insincere bids at time T can be eliminated. Now suppose
that with k iterations of weak dominance, all strategies other than sincere bidding have already been
eliminated at times t � T � k � 1, ... , T. Then the choice of xi

T�k can have no effect on the
subsequent bidding by opponents. By the full support assumption, there is a positive probability that
bidder i’s opponents have valuations leading them each: (i) to bid this period in a neighborhood of
their maximum allowable bids, i.e., xj

T�k � xj
T�k�1 � �, for all j � i; and (ii) to bid next period in

a neighborhood of their minimum allowable bids, i.e., xj
T�k�1 � Cj

T�k � �, for all j � i. If xi
T�k is

greater than bidder i’s sincere demand, then in this event (and again using the assumption that the
rationing rules are monotonically increasing in the final bids [see footnotes 17 and 18]), bidder i will
unprofitably win units at time T � k � 1 that she could have avoided winning by bidding sincerely
at time T � k. Hence, all strategies specifying bids greater than the sincere demand at time T � k
can be eliminated. Also by the full support assumption, there is a positive probability that bidder i’s
opponents have valuations leading them each to bid this period in a neighborhood of their minimum
allowable bids, i.e., xj

T�k � Cj
T�k�1 � �, for all j � i. If xi

T�k is less than bidder i’s sincere demand,
then in this event (and also using the assumption that the rationing rules are monotonically increasing
in the final bids), bidder i will unprofitably forego winning units in period T that she could have won
by bidding sincerely. Hence, all strategies specifying bids less than the sincere demand at time T �
k can be eliminated. By induction, all strategies specifying insincere bids at any time and after any
history of the auction can be eliminated in (T � 1) iterations of weak dominance.

Second, we show that sincere bidding is the unique outcome of iterated weak dominance. First,
sincere bidding is never eliminated. (Suppose otherwise. Consider the first round of elimination in
which sincere bidding is eliminated for any type of any bidder, and let �i denote the strategy that
dominates it. In this round, sincere bidding by all types of all bidders �i is still possible. Against
sincere bidding by bidders �i, and given full support, one can always choose a realization of types
for bidders �i such that sincere bidding yields a higher payoff for bidder i than does �i. This
contradicts that sincere bidding could be eliminated.) Second, given this, and following the proce-
dure of the previous paragraph, all strategies other than sincere bidding can be eliminated in (T �
1) more iterations of weak dominance, independent of the eliminations that have already occurred.

AN EFFICIENT EQUILIBRIUM OF THE ALTERNATIVE ASCENDING-BID AUCTION FOR THE SYMMETRIC

INTERDEPENDENT VALUES MODEL

An equilibrium will be constructed so that every bidder i bids up to her expected valuation,
conditional on the lowest of the other active bidders’ signals equaling her own signal. Upon reaching
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her expected valuation, she will drop to her lowest allowable quantity, Ci(h). Since the bidding
threshold is monotonically increasing in bidder i’s signal si, for each equilibrium history h, bidders
will drop out of the auction in (increasing) order of their signals si, as required for efficiency.
Moreover, each bidder clinches units precisely in those situations where her expected value exceeds
the clinching price, and she fails to clinch units precisely in those situations where her expected value
is less than the clinching price, so each bidder maximizes her payoff against the opposing bidders’
strategies.

For any bidder i (i � 1, ... , n), and for any j ( j � 1, ... , n � 1), let Yj
�i denote the jth-order statistic

of the signals received by all of the bidders excluding bidder i. Using the symmetry assumption A.4,
the distribution of Yj

�i is independent of i, and so the superscript “�i” will henceforth be suppressed
from Yj

�i. Given knowledge of the realizations of the order statistics Yj � yj, ... , Yn�1 � yn�1, we
may define:

(9) wj 	s, y; yj , ... , yn � 1 
 � E�Vi�Si � s, Yj � 1 � y, Yj � yj , ... , Yn � 1 � yn � 1 �,

for j � 2, ... , n.

Without knowledge of the realizations of the order statistics, we may define the corresponding value:

(10) vj 	s, y
 � E�Vi�Si � s, Yj � 1 � y�, for j � 2, ... , n.

Finally, let us define a bidder i to be active after history h if and only if xi(h) � Ci(h). Furthermore,
define J(h) � �{i � N : xi(h) � Ci(h)}� to be the cardinality of the set of active bidders after history
h. Then n � J(h) bidders have dropped out at history h. Let bidder i be one of the remaining active
bidders and suppose that the bidders who have dropped out correspond to the order statistics YJ(h) �
yJ(h), ... , Yn�1 � yn�1. We can define the equilibrium bidding threshold for any active bidder i to
be her expected value for the objects, conditional on the lowest of the other active bidders’ signals
equaling her own signal s (and on the inferred realizations of YJ(h), ... , Yn�1). Algebraically, this is
expressed by:

(11) 
i 	si , h
 � wJ	h
 	si , si ; yJ	h
 , ... , yn � 1 
 and �i	si , h
 � Ci	h
,

where the realizations yJ(h), ... , yn�1 may be inferred, inductively, from the history h and the
equilibrium strategies. Note that no updated inference is drawn from an opponent reducing to xj �
Cj(h).

AN EFFICIENT EQUILIBRIUM OF THE VICKREY AUCTION WHEN m � M/� IS AN INTEGER

By similar reasoning, in the Vickrey auction, with m � M/� an integer, the following bidding
strategy for each bidder, for all quantities q � 1, ... , �, and for all signals si, is an (efficient)
equilibrium:

(12) bi
q	si 
 � vm � 1 	si , si 
, for i � 1, ... , n.

The strategy of equation (12) is almost the same as the bidding threshold of equation (11) evaluated
at J(h) � m � 1, except for the fact that the inferred realizations of Ym�1, ... , Yn�1 are unavailable
in the Vickrey auction.

PROOF OF THEOREM 3:
If all n bidders use the strategies defined by equation (12) (and using the symmetry assumed in

A.1 and A.4), the seller’s expected revenues in the Vickrey auction are given by E[vm�1(Ym,
Ym)�Si � Ym]. Meanwhile, if m � M/� is an integer and if all n bidders use the strategies defined by
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equation (11), the seller’s expected revenues in the alternative ascending-bid auction are given by
E[wm�1(Ym, Ym; Ym�1, ... , Yn�1)�Si � Ym]. Closely following Milgrom and Weber (1982a, Theorem
8), we now demonstrate that the first quantity is no greater than the second quantity. Observe that,
if s � y, then:

vm � 1 	y, y
 � E�Vi�Si � y, Ym � y�

� E�E�Vi�Si � s, Ym � y, Ym � 1 � ym � 1 , ... , Yn � 1 � yn � 1 ��Si � y, Ym � y�

� E�wm � 1 	Si , Ym ; Ym � 1 , ... , Yn � 1 
�Si � y, Ym � y�

� E�wm � 1 	Ym , Ym ; Ym � 1 , ... , Yn � 1 
�Si � y, Ym � y�

� E�wm � 1 	Ym , Ym ; Ym � 1 , ... , Yn � 1 
�Si � s, Ym � y�.

Consequently, taking the conditional expectation of each side of this inequality, given Si � Ym, yields:

E�vm � 1 	Ym , Ym 
�Si � Ym � � E�E�wm � 1 	Ym , Ym ; Ym � 1 , ... , Yn � 1 
�Si , Ym ��Si � Ym �

� E�wm � 1 	Ym , Ym ; Ym � 1 , ... , Yn � 1 
�Si � Ym �.

This inequality establishes that the seller’s expected revenue from the static auction is no greater than
from the dynamic auction, as required.

PROOF OF THEOREM 4:
Suppose, to the contrary, that there exists an ex post efficient equilibrium of the Vickrey auction,

but that �i � � (i � 1, ... , n) and M/� is not an integer. Let m be the greatest integer such that m� �
M. By Lemma 1 of Ausubel and Cramton (2002), full efficiency requires that all bidders use the same
flat bid function: there exists a strictly increasing function � such that bidder i bids bi

q(si) � (si),
for all i � 1, ... , n, for all quantities q � 1, ... , �, and for almost every signal si. If all bidders use
the same flat bid function, however, bidder i’s bid for her first unit is bi

1(si) � vm�2(si, si), since she
wins 1 unit if and only if her signal is at least the (m � 1)st order statistic of rivals’ signals.
Meanwhile, bidder i’s bid for her last unit is bi

�(si) � vm�1(si, si), since she wins � units if and only
if her signal is at least the mth order statistic of rivals’ signals. Consequently, bi

�(si) � bi
1(si),

contradicting the existence of an efficient equilibrium. If the �i are unequal, similar reasoning can be
applied to a bidder with maximum �i.

Meanwhile, the strategies defined by equation (11) provide an ex post efficient equilibrium of the
“turning-back-the-clock” version of the alternative ascending-bid auction.
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