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Abstract

Infinite order vector autoregressive (VAR) models have been used in a number of applications

ranging from spectral density estimation, impulse response analysis, tests for cointegration and unit

roots, to forecasting. For estimation of such models it is necessary to approximate the infinite order

lag structure by finite order VAR’s. In practice, the order of approximation is often selected by

information criteria or by general-to-specific specification tests. Unlike in the finite order VAR case

these selection rules are not consistent in the usual sense and the asymptotic properties of parameter

estimates of the infinite order VAR do not follow as easily as in the finite order case. In this paper

it is shown that the parameter estimates of the infinite order VAR are asymptotically normal with

zero mean when the model is approximated by a finite order VAR with a datadependent lag length.

The requirement for the result to hold is that the selected lag length satisfies certain rate conditions

with probability tending to one. Two examples of selection rules satisfying these requirements

are discussed. Uniform rates of convergence for the parameters of the infinite order VAR are also

established.
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1. Introduction

Infinite order vector autoregressive (VAR(∞)) models are appealing nonparametric specifications for
the covariance structure of stationary processes because they can be justified under relatively weak

restrictions on the Wold representation of a stationary process. In practice, the VAR(∞) specification
needs to be approximated, usually by a VAR(h) model where the truncation parameter h increases

with sample size n. This approach was proposed by Akaike (1969) and Parzen (1974) for the estimation

of spectral densities.

Approximations to VAR(∞) models have received renewed interest in recent years in a number
of econometric applications. Lütkepohl and Saikkonen (1997) consider impulse response functions in

infinite order cointegrated systems. Cointegration tests and inference in systems with infinite order

dynamics are considered by Saikkonen and Luukkonen (1997) and Saikkonen and Lütkepohl (1996). Ng

and Perron (1995, 2000) use flexible autoregressive specifications in augmented Dickey Fuller (ADF)

unit root tests to improve size properties of these tests. Lütkepohl and Poskitt (1996) construct tests

for causality using infinite order vector autoregressive processes. Paparoditis (1996), Inoue and Kilian

(2002) and Goncalves and Kilian (2004) propose bootstrap procedures for VAR(∞) models. Finally,
den Haan and Levin (2000) use prewhitening procedures and VAR(∞) approximations to estimate
heteroskedasticity and autocovariance consistent (HAC) covariance matrices for robust inference. They

use AIC and BIC information criteria to select the order of the approximating VAR and report evidence

that applying standard kernel based smoothing to estimate spectral densities from the prewhitened

residuals does not lead to improvements over estimates that are entirely based on the VAR specification.

The lag length h is the key design parameter in implementing procedures that approximate VAR(∞)
models. The results of Berk (1974) and Lewis and Reinsel (1985) establish rates of convergence nec-

essary for consistency and asymptotic normality. A number of papers using VAR(h) approximations

do not go beyond listing these restrictions on rates as conditions for their results. In practice, such

restrictions however can not be used to construct automated procedures because the lowerbound for the

expansion rate of h depends on unknown properties of the data. Moreover, conditions on the growth

rate of h as a function of the sample size n are not sufficient to choose h in a finite sample. What is

called for are datadependent rules where h is chosen based on information in the sample.

Hannan and Kavalieris (1976) and Hannan and Deistler (1988) analyze the stochastic properties

of feasible rules ĥn based on the AIC and BIC criterion. The AIC information criterion has been

shown to posses minimal mean squared error properties for the estimation of parameters in AR(∞)
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models and minimal integrated mean squared error properties for the estimation of approximations to

the spectral density of AR(∞) models by Shibata (1980, 1981). Ng and Perron (1995) point out that
the AIC criterion violates the conditions on h obtained by Berk (1974) and Lewis and Reinsel (1985).

This leads to expansion rates for h that are too slow to eliminate biases that result in shifts of the

asymptotic limit distribution of the parameters.

Infinite dimensional models have a long tradition in econometric theory. The work of Sargan (1975)

is an early example. The problem of biases caused by parameter spaces that grow in dimension with

the sample size has recently been discussed in econometrics by Bekker (1994). Similar effects can be

found in various contexts, for example in the work of Donald and Newey (2001), Hahn and Kuersteiner

(2002, 2003) and Kuersteiner (2002).

Especially in time series applications finite sample biases can be substantial and may have a domi-

nating effect on inference. Kilian (1998) shows that bootstrap confidence intervals for impulse response

functions are severely affected by finite sample biases in the estimates of the underlying autoregres-

sions. He proposes a bias correction to overcome severe distortions in coverage rates. In panel models

with lagged dependent variables Hahn, Hausman and Kuersteiner (2000) and Hahn and Kuersteiner

(2002) document the predominant effect of finite sample biases on the mean squared error of parameter

estimates.

Ng and Perron (1995) propose a general-to-specific testing approach to select the approximate lag

order in ADF tests where the underlying model is a VAR(∞). Their work extends results of Hall (1994)
for lag order selection in ADF tests when the underlying model is a finite order VAR to the infinite

order case. Ng and Perron (1995) advocate general-to-specific selection rules to overcome the problems

of AIC and BIC in selecting the lag-length in VAR(∞) approximations described above although their
focus is on the performance of unit root tests and not on the estimation of the VAR(∞) parameters.
They show that distributional properties of ADF tests are not affected by biases induced by AIC and

BIC but report simulation evidence demonstrating the advantages in terms of finite sample size of the

ADF tests when parametrized with their lag selection procedure.

In this paper the results of Ng and Perron (1995) are extended to estimation and inference in

VAR(∞) models. It is argued that the convergence properties of ĥn based on model selection procedures
typically are not strong enough to apply the arguments of Eastwood and Gallant (1991) for admissible

estimation. This is true for the general-to-specific approach of Ng and Perron (1995) as well as for

conventional model selection methods based on information criteria. In fact, in infinite dimensional

parameter spaces adaptiveness of selection rules, a concept that has appeared in the literature and will
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be defined more precisely in Section 2, is hard to show. Moreover, the results of Shibata (1980,1981)

do not establish the asymptotic distribution of parameter estimates in an AR(ĥn) model when ĥn is

selected by AIC. Such a result seems to be missing in the literature to this date.

Here, the arguments do not rely on adaptiveness properties of the selection rule. An alternative

proof, based on the work of Lewis and Reinsel (1985) is used to show that h can be replaced by

ĥn determined by the general-to-specific approach of Ng and Perron (1995) without affecting the

limiting distribution of the parameters in the VAR(h) approximation. This leads to fully automated

approximations to the VAR(∞) model that do not suffer from higher order biases as approximations

using AIC and BIC generally would. Nevertheless, in the special case where the underlying process is

a VARMA model, a modification of AIC also can be used without affecting the limiting distribution,

a result that is discussed at the end of Section 2. Uniform rates of convergence for the parameters of

the VAR(ĥn) approximation are also obtained. These rates in turn can be used to establish rates for

functionals of the VAR parameters such as the spectral density matrix.

The main results of the paper are presented in Section 2, Section 3 contains some conclusions and

all the proofs are collected in Section 4.

2. Linear Time Series Models

Let yt ∈ Rp be a strictly stationary time series with an infinite order moving average representation

(2.1) yt = µy + C(L)vt.

Here, µy ∈ Rp is a constant and vt is a strictly stationary and conditionally homoskedastic martingale

difference sequence. The lag polynomial C(L) is defined as C(L) =
P∞

j=0CjL
j where L is the lag

operator.

Assumption A. Let vt ∈ Rp be strictly stationary and ergodic, with E (vt|Ft−1) = 0, E (vtv0t|Ft−1) =

Σv where Σv is a positive definite symmetric matrix of constants. Let vit be the i-th element of vt,

ξ = (ξ1, ..., ξk) ∈ Rk and v = (vi1t1 , ..., v
ik
tk
) such that φi1,...ik,t1,...,tk(ξ) = Eeiξ

0v is the joint character-

istic function with corresponding joint k-th order cumulant function defined as cum∗i1,...,ik(t1, ..., tk) =
∂u1+...+uk

∂ξ
u1
1 ···∂ξukk

|ξ=0 lnφi1,...ik,t1,...,tk(ξ) where ui are nonnegative integers such that u1 + ... + uk = k. By

stationarity it is enough to define cumi1,...,ik(t1, ..., tk−1) = cum
∗
i1,...,ik

(t1, ..., tk−1, 0). Assume that

(2.2)
∞X

t1=−∞
...

∞X
tk−1=−∞

|cumi1,...,ik(t1, ..., tk−1)| <∞
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where the sum converges for all k ≤ 4 and all ij ∈ {1, ..., p} with j ∈ {1, ..., k} .

Assumption A is weaker than the assumptions imposed in Lewis and Reinsel (1985) where inde-

pendence of the innovations is assumed but is somewhat stronger than the assumptions in Hannan

and Deistler (1988, Theorem 7.4.8) who also allow for the more general heteroskedastic case which

is excluded here by the requirement that E (vtv0t|Ft−1) = Σv. Recently, Goncalves and Kilian (2003)

have obtained explicit formulas for the norming constant when the innovations are conditionally het-

eroskedastic. The summability Assumption (2.2) is quite common in the literature on HAC-estimation.

Andrews (1991) for example uses a similar condition and shows that (2.2) is implied by a mixing con-

dition.

Assumption B. The lag polynomial C(L) with coefficient matrices Cj satisfies C0 = Ip,
P∞

j=1 j
1/2 kCjk <

∞ where kAk2 = trAA0 for a square matrix A and detC(z) 6= 0 for |z| ≤ 1 where z ∈ C.

Assumption C. For Cj as defined in Assumption (B) it holds that
P∞

j=1 j
2 kCjk <∞ and detC(z) 6=

0 for |z| ≤ 1.

The summability restriction on the impulse coefficients Cj in Assumptions B and C is stronger

than the condition imposed by Lewis and Reinsel (1985) where only
P∞

j=0 kCjk < ∞ is required. It

is needed here to achieve similar flexibility in the central limit theorem as Lewis and Reinsel (1985).

Assumption B implies that yt has an infinite order VAR representation given by

(2.3) yt = µ+
P∞

j=1 πjyt−j + vt

where µ = C(1)−1µy and C(L)−1 = π(L) with π(L) = I −P∞
j=1 πjL

j . The impulse response function

C(L) of yt is thus a functional of π(L) defined by C(L) = π(L)−1. Another functional of interest is the

spectral density fy(λ) of yt where fy(λ) = (2π)
−1 π(eiλ)−1Σv

¡
π(e−iλ)−1

¢0
. For inferential purposes we

are often interested in fy (0) , the spectral density at frequency zero.

The VAR(∞) representation in (2.3) needs to be approximated in practice by a model with a finite
number of parameters, in the case considered here a VAR(h) model. The approximate model with

VAR coefficient matrices π1,h, ...πh,h is thus given by

(2.4) yt = µy,h + π1,hyt−1 + ...+ πh,hyt−h + vt,h

where Σv,h = Evt,hv
0
t,h is the mean squared prediction error of the approximating model.
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It was shown by Berk (1974) and Lewis and Reinsel (1985) that the parameters (π1,h, ..., πh,h) are

root-n consistent and asymptotically normal for π(h) = (π1, ..., πh) in an appropriate sense to be made

explicit later if h does not increase too quickly, i.e. if h is chosen such that h3/n → 0. At the same

time h must not increase too slowly to avoid asymptotic biases. Berk (1974) shows that h needs to

increase such that n1/2
P∞

j=h+1 πj → 0 as h, n → ∞. In practice such rules are difficult to implement

as they only determine rates of expansion for h and do not lead directly to feasible selection criteria

for h. Ng and Perron (1995) argue that information criteria such as the Akaike criterion do not satisfy1

the conditions of Berk (1974) and Lewis and Reinsel (1985). In general these criteria can not be

used to choose h if asymptotic unbiasedness, as measured by the location of the asymptotic limiting

distribution, is desired. More specifically, if h is such that n1/2
P∞

j=h+1 πj → c 6= 0 then bias terms due
to asymptotic misspecification of the model are of order n−1/2. These biases are more severe than the

usual finite sample biases that are typically of order n−1.

To avoid the problems that arise from using information criteria to select the order of the approxi-

mating model we use the sequential testing procedure analyzed in Ng and Perron (1995). Let π(h) =

(π01, ..., π0h)
0 , Yt,h =

¡
y0t − ȳ0, ..., y0t−h+1 − ȳ0

¢0 where ȳ = n−1
Pn

t=1 yt and Mh =
Pn

t=h+1 Yt−1,hY
0
t−1,h.

Define M−1
h (1) to be the lower-right p× p block of M−1

h . Let Γh be the hp×hp matrix whose (m,n)th

block is Γyyn−m and Γ01,h =
£
Γyy−1, ...,Γ

yy
−h
¤
where Γyyj−i = Cov(yt−i, y

0
t−j). The coefficients of the approxi-

mate model satisfy the equations (π1,h, ..., πh,h) = Γ1,hΓ
−1
h . Let Γ̂1,h = (n− h)−1

Pn−1
t=h Yt,h (yt+1 − ȳ)

0

and Γ̂h = (n− h)−1
Pn−1

t=h Yt,hY
0
t,h.The estimated error covariance matrix is Σ̂v,h = (n−h)−1

Pn
t=h+1 v̂t,hv̂

0
t,h

where v̂t,h = yt − π̂1,hyt−1 − ...− π̂h,hyt−h with coefficients

π̂(h)0 = Γ̂01,hΓ̂
−1
h .

Under Assumptions A and B it follows from Hannan and Deistler (1988, Theorem 7.4.6) that Σ̂v,h →
Σv,h uniformly in h ≤ hmax and hmax = o((n/ logn)1/2). A Wald test for the null hypothesis that the

coefficients of the last lag h are jointly 0 is then, in Ng and Perron’s notation,

J(h, h) = (vec π̂h,h)
0
³
Σ̂v,h ⊗M−1

h (1)
´−1

(vec π̂h,h) .

The following lag order selection procedure from Ng and Perron (1995) is adopted.

Definition 2.1. The general-to-specific procedure chooses i) ĥn = h if, at significance level α, J(h, h)

is the first statistic in the sequence J(i, i), {i = hmax, ..., 1}, which is significantly different from zero or

1A special case where a version of AIC satisfies Berk’s conditions is discussed at the end of this Section.
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ii) ĥn = 0 if J(i, i) is not significantly different from zero for all i = hmax, ..., 1 where hmax is such that

h3max/n→ 0 and n1/2
P∞

j=hmax+1
kπjk→ 0 as n→∞.

Implementation of the general-to-specific procedure may be difficult in practice because the critical

values depend on complicated conditional densities which are not Gaussian in the parameters and

therefore not χ2 for the test statistics. This seems to be the case even though the underlying joint and

marginal densities can be assumed to be Gaussian with easily estimated coefficients2. For a discussion

of these issues see Sen (1979), and in particular Pötscher (1991) and Leeb and Pötscher (2003). Note

that Lemma 3 of Pötscher (1991) does not hold in the present context. This means that the sequence

of test statistics J(i, i), {i = hmax, ..., 1} is not asymptotically independent and thus the conditional
density of J(i, i) is not the same as the marginal density. Whether numerical methods or the bootstrap

could be used to obtain an operational version of the general-to-specific approach is beyond the scope

of this paper.

In order to illustrate the problems with establishing results that allow to substitute h with ĥn in

π̂(h) we consider the lag order estimate ĥn based on the AIC and BIC criteria. The lag order estimate

is defined as ĥn = argmin Q̂n(h) with Q̂n(h) = log det Σ̂v,h+hp2Cn/n where Cn = 2 for AIC and Cn =

logn for BIC. Hannan and Deistler (1988, Theorem 7.4.7) show under slightly different assumptions

than here, that Q̂n(h) can be essentially replaced by Qn(h) = hp2/n(Cn − 1) + tr
¡
Σ−1 (Σv,h − Σ)

¢
.

Shibata (1980)3 argues that Qn(h) can be interpreted as the one step ahead squared prediction error

obtained from predicting yt with an AR(h) model. Misspecification bias manifests itself in the term

Σv,h − Σ that depends amongst other things on the dimension p of yt and affects the choice of h.4

Define h∗n = argminQn(h) as the optimal lag order minimizing the squared prediction error. In the

context of VARMA models which are special cases of (2.3) the results of Hannan and Kavalieris (1984,

1986) imply that if ĥn is selected by AIC or BIC then ĥn − h∗n = op(
√
logn). Eastwood and Gallant

(1991) and Ng and Perron (1995) define the concept of adaptive selection rules. A sequence of random

variables ân is an adaptive selection rule if there is a deterministic rule an such that ân − an = op(1).

The discussion of AIC and BIC based selection rules ĥn shows that these rules are not adaptive for h∗n
in the sense of Eastwood and Gallant (1991) and Ng and Perron (1995).

2 I am grateful to one of the referees for pointing out this fact.
3Hannan and Deistler (1988, p.317) discuss this interpretation.
4Abadir, Hadri and Tzavalis (1999) analyze non-stationary VAR’s where the asymptotic limiting distribution of OLS

estimators is also shifted away from the origin. They find an explicit relation between the dimension p and the bias. The

situation there is however quite different from the one considered here where bias is due to misspecification.
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Similarly, the results of Ng and Perron (1995) imply that ĥn selected by the procedure in Definition

(2.1) satisfies P
³
hmin ≤ ĥn ≤ hmax

´
→ 1 as n→∞ for any sequence hmin such that hmin ≤ hmax and

hmax−hmin →∞. Such a result again is not strong enough to guarantee that ĥn is adaptive forMhmax

where M is an arbitrary positive constant. Any argument that relies on the adaptiveness property of

selection rules to establish that π̂(ĥn) has the same asymptotic properties as π̂(Mhmax) therefore can

not be applied. It may be possible to prove adaptivness properties of selection rules but such results

do not seem to be readily available in the literature.

For this reason an alternative proof strategy is chosen here. The following weaker consequence of

Lemma 5.2 of Ng and Perron (1995) which follows directly from their proof turns out to be sufficient

to establish the feasibility of a fully automatic approximation to the VAR(∞) model.

Lemma 2.2. Let ĥn be given by Definition (2.1). Let hmin be any sequence such that hmax ≥ hmin,

hmax − hmin →∞ and n1/2
P∞

j=hmin+1
kπjk→ 0 as n→ 0. Then limn P (ĥn ≤ hmin) = 0.

The following two main results of this paper establish that the results in Lewis and Reinsel (1985)

essentially remain valid if in π̂(h), h is replaced by ĥn. The proofs establish uniform convergence of

π̂(h) over a set Hn of values h such that ĥn is contained in Hn with probability tending to one.

First, an asymptotic normality result is established for an arbitrary but absolutely summable linear

transformation l(h) of the parameters into the real line. In particular this result implies that arbitrary

finite linear combinations of elements in π̂(ĥn) are asymptotically normal. By the Cramér-Wold theorem

this also implies that any finite combination of elements in π̂(ĥn) is jointly asymptotically normal.

Theorem 2.3. Let ĥn be given by Definition (2.1). i) Let Assumptions (A) and (B) hold. Let

l(h) = (l01, ..., l0h)
0 be the p2h×1 section of an infinite dimensional vector l such that for some constants

M1 and M2, 0 < M1 ≤
P∞

j=1 kljk ≤
√
M2 <∞. Let ωh = l(h)0

¡
Γ−1h ⊗ Σv

¢
l(h). Then limh→∞ ωh = ω

exists and is bounded and

√
nl(ĥn)

0
h
vec(π̂(ĥn)

0 − π(ĥn)
0)
i

d→ N (0, ω) .

ii) Instead of Assumption (B) let Assumption (C) hold. Let hmax be as in Definition (2.1), hmin be

defined as in Lemma (2.2) with ∆n ≡ hmax−hmin →∞, ∆n = O(nδ) for 0 < δ < 1/3 and assume that

there exists some h such that h≤ hmin, ∆n/(hmin−h)→ 0 and h→∞, some h∗∗ such that h∗∗ ≤ hmin,

h∗∗ → ∞ and ∆n/
√
h∗∗ → 0 and a sequence l(h) = (l01,h, ..., l

0
h,h)

0 of p2h × 1 vectors partitioned into
p2 × 1 vectors lj,h such that for some constants M1 and M2, 0 < M1 ≤ kl(h)k2 = l(h)0l(h) ≤M2 <∞
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for all h = 1, 2, ..., and
Ph∗∗

j=1 klj,h − lj,hmaxk2 = o
¡
∆−2n

¢
,
Ph

j=1 j
2 klj,h − lj,hmaxk2 < ∞ as well asPh

j=h+1 klj,hk2 = o(∆−2n ) for all h→∞, hmin ≤ h ≤ hmax. Then

√
n
l(ĥn)

0

ωĥn

h
vec(π̂(ĥn)

0 − π(ĥn)
0)
i

d→ N (0, 1) .

Remark 1. The rate at which ∆n → ∞ can essentially be arbitrarily slow. Thus the restrictions on

h∗∗ and h are quite weak.

Remark 2. Note that the tail summability conditions in the second part of the theorem are automat-

ically satisfied for the fixed vectors l with l0l <∞ that satisfy the additional constraint
P∞

j=h+1 kljk2 =
o
¡
∆−2n

¢
for some h→∞. The second part allows for more general limit theorems where l(h) fluctuates

except in the ’tails’.

Remark 3. While the theorem essentially provides the same results as Lewis and Reinsel (1985) for

many cases of practical interest it nevertheless requires somewhat stronger assumptions both on Ci

and l(h). A different proof strategy may lead to different and maybe less restrictive conditions but it

seems unlikely that a result at the same level of generality as in Lewis and Reinsel (1985) can be shown

without establishing adaptiveness of ĥn.

Remark 4. For i) it also follows that
√
n
³
l(ĥn)

0 vec(π̂(ĥn)0)− l0 vec (π(∞)0)
´

d→ N (0, ω) because

|l0 vec (π(∞)0)| ≤
¯̄̄
l(ĥn)

0 vec(π(ĥn)0)
¯̄̄
+
√
M2

P∞
j=hmin+1

kπjk with √n
P∞

j=hmin+1
kπjk→ 0.

The next result is a refined version of Theorem 1 of Lewis and Reinsel (1985). It establishes a

uniform rate of convergence for the parameter estimates when the lag length is chosen by the general-

to-specific approach of Ng and Perron (1995).

Theorem 2.4. Let Assumptions (A) and (B) hold. Let ĥn be given by Definition (2.1). Then°°°π̂(ĥn)− π(ĥn)
°°° = Op((logn/n)

1/2)

and
P∞

j=ĥn+1
kπjk = op

³
(logn/n)1/2

´
.

The result in Theorem (2.4) is particularly useful to establish consistency and convergence rates

of functionals of π(L) such as the spectral density matrix of yt. The result presented here is stronger

than a corresponding result for nonstochastic lag order selection presented in Lewis and Reinsel (1985,

Theorem 1) where only uniform consistency is established without specifying the convergence rate.
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Theorem (2.4) complements results in Hannan and Deistler (1988, Theorem 7.4.5) where the case of

nonstochastic h sequences is analyzed.

Theorems (2.3) and (2.4) do not rely on a specific model selection procedure. All that is required

for the theorems to apply is that there are sequences hmin and hmax satisfying the conditions stated

previously and a datadependent rule ĥn such that P
³
hmin ≤ ĥn ≤ hmax

´
→ 1 as n → ∞. It is thus

quite plausible that feasibility can be established for a broader class of selection procedures than the

one considered here.

Under more restrictive assumptions this can even be done for AIC based procedures. In fact for

VARMAmodels
P∞

j=h+1 πj = O(ρ−h0 ) where ρ0 is the modulus of a zero of C(z) nearest |z| = 1. Hannan
and Deistler (1988, Theorem 6.6.4 and p.334) show that ĥn selected by AIC satisfies ĥn/h∗n − 1 =
op(1) for h∗n = logn/ (2 log ρ0) . It thus follows that n

1/2
P∞

j=Mh∗n+1
πj = O(n1/2−M/2) which is o(1)

for M > 1. This suggests that at least for VARMA systems AIC could be used as an automatic

order selection criterion for autoregressive approximations5. Feasibility of this approach follows from

Theorems (2.3) and (2.4) because there exist hmin =Mh∗n/2 and hmax = (logn)
a , 1 < a <∞, satisfying

the requirements of the theorems. This shows that for M > 2 and ĥn selected by AIC, the rule Mĥn

can be used instead of the general-to-specific procedure if the underlying model is a VARMA model.

3. Conclusions

In this paper data-dependent selection rules for the specification of VAR(h) approximations to VAR(∞)
models are analyzed. It is shown that the method of Ng and Perron (1995) can be used to produce

a datadependent selection rule ĥn, such that the parameters of the approximating VAR(h) model are

asymptotically normal for the parameters of the underlying VAR(∞) model. The asymptotic normality
result does only hold on essentially finite subsets of the parameter space. Uniform rates of convergence

for the VAR(∞) parameters are thus obtained in addition.
The results presented here extend the existing literature where so far model selection has been

carried out mostly in terms of information criteria. Such criteria are known to result in sizeable higher

order biases. On the other hand, the selection criteria analyzed here do not suffer from these biases. The

paper also reconsiders some existing proof strategies in the context of infinite dimensional parameter

spaces where the concept of consistent model selection is hard to apply.

5 I am grateful to one of the referees for pointing out this fact which is discussed in Hannan and Deistler (1988, p.

262).
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4. Proofs

4.1. Auxiliary Lemmas

The following Lemmas are used in the proof of Theorem 2.3. The matrix norm kAk22 = supl 6=0 l0A0Al/l0l,
known as the two-norm, is adopted from Lewis and Reinsel (1985, p.396) where the less common

notation k.k1 is used. There it is also shown that for two matrices A and B, the inequalities kABk2 ≤
kAk22 kBk2 and kABk2 ≤ kAk2 kBk22 hold. First it is shown that the mean of yt can be replaced by an
estimate without affecting the asymptotics.

Lemma 4.1. Let Y̌t,h =
¡
y0t − µ0y, y0t−1 − µ0y, ..., y0t−h+1 − µ0y

¢0 and let Γ̌1,h = (n− h)−1
Pn−1

t=h Y̌t,h
¡
yt+1 − µy

¢0
and Γ̌h = (n− h)−1

Pn−1
t=h Y̌t,hY̌

0
t,h. Let π̌(ĥn)

0 = Γ̌0
1,ĥn
Γ̌−1
ĥn
and π̂(ĥn) is defined in Section (2). Then°°°π̂(ĥn)− π̌(ĥn)

°°° = op(n
−1/2).

Proof. Choose δ such that 0 < δ < 1/3 and pick a sequence h∗min such that hmax ≥ h∗min,

hmax − h∗min →∞, hmax − h∗min = O(nδ) and n1/2
P∞

j=h∗min+1
kπjk→ 0. Define

hmin = max

½
h∗min, hmax −

³
n1/2

P∞
j=h∗min+1

kπjk
´−1¾

.

It follows that hmin ≤ hmax and

(4.1) min

½
hmax − h∗min,

³
n1/2

P∞
j=h∗min+1

kπjk
´−1¾

= hmax − hmin ≤
³
n1/2

P∞
j=h∗min+1

kπjk
´−1

such that hmax − hmin → ∞. Because hmax − h∗min = O
¡
nδ
¢
it follows that hmax − hmin = O(nδ).

Since hmin ∈ [h∗min, hmax] it also follows that n1/2
P∞

j=hmin+1
kπjk → 0 and (hmin)

3 /n → 0. Let Hn =

{h|hmin ≤ h ≤ hmax} . Note that from Lemma (2.2) it follows that ĥn ∈ Hn with probability tending

to one. Consider °°°π̂(ĥn)− π̌(ĥn)
°°° ≤ °°°Γ̂1,ĥn − Γ̌1,ĥn°°°°°°Γ̂−1ĥn°°°2 + °°°Γ̌1,ĥn°°°2 °°°Γ̂−1ĥn − Γ̌−1ĥn °°°

where

Γ̂1,ĥn − Γ̌1,ĥn =
³
n− ĥn

´−1Pn−1
t=ĥn

Y̌t,ĥn

¡
µy − ȳ

¢0
+
³
1ĥn ⊗ (µy − ȳ)

´³
n− ĥn

´−1 n−1X
t=ĥn

¡
yt+1 − µy

¢0
+
n− 1− ĥn

n− ĥn

³
1ĥn ⊗ (µy − ȳ)

´ ¡
µy − ȳ

¢0

11



It now can be established that

E max
h∈Hn

°°°°°(n− h)−1
n−1X
t=h

¡
yt+1 − µy

¢°°°°°
2

≤
hmaxP

h=hmin

(n− h)−2
n−1X
t,s=h

trE
¡
yt+1 − µy

¢ ¡
ys+1 − µy

¢0
≤ O(nδ) (n− hmax)

−2
n−1X

t,s=hmin

¯̄̄
trE

¡
yt+1 − µy

¢ ¡
ys+1 − µy

¢0 ¯̄̄
= O

³
n−1+δ

´
.

and

E max
h∈Hn

°°°(n− h)−1
Pn−1

t=h Y̌t,h

°°°2 =
hmaxP

h=hmin

(n− h)−2 tr
Pn−1

t,s=hEY̌t,hY̌
0
s,h

≤ ∆n
hmax

(n− hmax)
2

Pn−1
t,s=hmin

tr
°°Γyyt−s°°

= o
³
n−2/3+δ

´
.

Furthermore,
°°1ĥ ⊗ (µy − ȳ)

°°2 = op
¡
n−2/3

¢
such that

°°°Γ̂1,ĥ − Γ̌1,ĥ°°° = op(n
−1/2) by the Markov in-

equality and Lemma (2.2). In the same way,

Γ̂ĥn − Γ̌ĥn =
³
n− ĥn

´−1Pn−1
t=ĥn

Y̌t,ĥn

³
1ĥn ⊗ (µy − ȳ)

´0
+
¡
1ĥ ⊗ (µy − ȳ)

¢ ³
n− ĥn

´−1Pn−1
t=ĥn

Y̌ 0
t,ĥn

+
n− 1− ĥn

n− ĥn

³
1ĥn ⊗ (µy − ȳ)

´³
1ĥn ⊗

¡
µy − ȳ

¢´0
such that

°°°Γ̂ĥn − Γ̌ĥn°°° = op(n
−2/3+δ). By the arguments in the proof of Theorem 1 in Lewis and

Reinsel (1985) it then also follows that
°°°Γ̂−1

ĥn
− Γ̌−1

ĥn

°°° = op(n
−1/2).

Lemma 4.2. If yt has typical element a denoted by yat and wt,i =
¡
yt − µy

¢ ¡
yt−i − µy

¢0 then
E(wt,iw

0
s,j) = Γ

yy
i Γ

yy
−j + γyyt−i+j−sΓ

yy
t−s + Γ

yy
t−s+jΓ

yy
t−i−s +K4

where the scalar coefficient γyyt−s is defined as γ
yy
t−s = E

¡
yt − µy

¢0 ¡
ys − µy

¢
and K4 is a p × p matrix

with typical element (a, b) denoted by [.]a,b and given as

[K4(t, s, i, j)]a,b =
pX

r=1

cumy∗
a,b,r,r(s, t, t− i, s− j).

where cumy∗
a,b,r,r(s, t, t− i, s− j) is defined as

cumy∗
a,b,r,r(s, t, t− i, s− j) = cumy∗

a,b,r,r(j, t− s+ j, t− i+ j − s, 0)

=

pX
j1=1,..,j4=1

∞X
l1=0,...,l4=0

ca,j1l1
cb,j2l2

cr,j3l3
cr,j4l4

cumj1,...,j4(l4 − l1 + j, l4 − l2 + t− s+ j, l4 − l3 + t− i+ j − s)

12



with ca,bj = [Cj ]a,b. It also follows that

∞X
s,t,j=−∞

¯̄̄
cumy∗

a,b,r,r(s, t, t− i, s− j)
¯̄̄
<∞.

Proof. Without loss of generality assume µy = 0. Then the matrix wt,iw
0
s,j = yty

0
sy
0
t−iys−j =

yty
0
s

Pp
r=1 y

r
t−iy

r
s−j has typical element (a, b) equal to y

a
t y

b
s

Pp
r=1 y

r
t−iy

r
s−j . The result follows from ap-

plying E(wxyz) = E (wx)E (yz)+E (wy)E (xz)+E (wz)E (xy)+cum∗ (x, y, w, z) for any set of scalar

random variables x, y, w, z with E(x) = 0 and E |x|4 < ∞ with the same conditions on y,w and z. It

thus follows that

E
£
wt,iw

0
s,j

¤
a,b

=

pX
r=1

E
³
yat y

b
sy

r
t−iy

r
s−j
´

= γyyt−i+j−s
£
Γyyt−s

¤
a,b
+
h
Γyyi Γ

yy
−j
i
a,b
+
h
Γyyt−s+jΓ

yy
t−i−s

i
a,b
+

pX
r=1

cumy∗
a,b,r,r(s, t, t− i, s− j).

For the summability of the cumulant note that

∞X
t1=−∞

· · ·
∞X

t3=−∞
|cumi1,...,ik(l1 + t1 − t4, ..., l4 + t3 − t4)| <∞

uniformly in l1, ...l4 by Assumption (A). The result then follows from the absolute summability of ca,bj
for a, b ∈ {1, ..., p} .

Corollary 4.3. Let Kpp be the p2 × p2 commutation matrix Kpp =
Pp

i,j=1 eie
0
j ⊗ eje

0
i where ei is the

i-th unit p-vector. If yt is a vector of p random variables then

E(yt ⊗ ys)
¡
y0r ⊗ y0q

¢
= Γyyt−r ⊗ Γyys−q + vecΓyys−t

¡
vecΓyyq−r

¢0
+
¡
Γyyt−q ⊗ Γyys−r

¢
Kpp +K4 (t, s, r, q)

where K4 (t, s, r, q) is a matrix with

[K4(t, s, r, q)]a,b = cumy∗
da/pe,amod p,db/pe,bmod p(s, t, r, q)

dae is the smallest integer larger than a and amod p = 0 is interpreted as amod p = p with

∞X
t1,...,t3=−∞

|K4(t1, t2, t3, t4)| <∞.

Proof. Note that (yty0r ⊗ ysy
0
q) = vec ysy

0
t (vec yqy

0
r)
0 = vec ysy0t

¡
vec yry

0
q

¢0
Kpp = (yty

0
q ⊗ ysy

0
r)Kpp.

13



Lemma 4.4. Let Hn be defined as in Lemma (4.1) and let Assumptions (A) hold. Then

E

µ
max
h∈Hn

°°Γ̌h − Γh°°2¶ = O
³
n−2/3+δ

´
.

Proof. Without loss of generality assume that µy = 0. Then

E

µ
max
h∈Hn

°°Γ̌h − Γh°°2¶ ≤ Phmax
h=hmin

E
°°Γ̌h − Γh°°2

≤ Phmax
h=hmin

c0hp
2/(n− h) ≤ ∆nc0

hmaxp
2

n− hmax
= O

³
n−2/3+δ

´
because

E
°°Γ̌h − Γh°°2 =

1

(n− h)2

n−1X
t,s=h

hX
j1,j2=1

trE
³
yt−j1y

0
t−j2 − Γyyj1−j2

´³
ys−j1y

0
s−j2 − Γyyj1−j2

´0
=

1

(n− h)2

n−1X
t,s=h

hX
j1,j2=1

tr
³
γyyt−sΓ

yy
t−s + Γ

yy
t−j2+j1−sΓ

yy
t−j1−s+j2 +K4

´
= O (h/(n− h))

by Lemma 4.2

Lemma 4.5. Let Assumption (A) hold and assume that
P∞

j=1 kCjk < ∞. Then kΓhk2 < ∞ and°°Γ−1h °°2 <∞ uniformly in h. Let xh ∈ Rh with lim suph kxhk <∞. Then kΓhxhk <∞ and
°°Γ−1h xh

°° <
∞. Let Γj,kh be the j, k-th block of Γ−1h . Then,

Ph
j=1

°°°Γyyk−j°°°2 < ∞ and
Ph

j=1

°°°Γj,kh °°°2 < ∞ uniformly

in k, h. Moreover, supj,k
°°°Γj,kh °°° <∞ uniformly in h.

Proof. The properties kΓhk2 < ∞ and
°°Γ−1h °°2 < ∞ follow from Berk (1974, p. 493) and Lewis

and Reinsel (1985, p.397). Then, kΓhxhk ≤ kxhk kΓhk2 < ∞ and
°°Γ−1h xh

°° ≤ kxhk
°°Γ−1h °°2 < ∞.

For the last statement take e0k,h = (0p, ..., 0p, Ip, 0p, ...)
0 where the p × p identity matrix Ip is at the

k-th block. It follows that kek,hk2 = p which is uniformly bounded in h,
Ph

j=1

°°°Γyyk−j°°°2 = kΓhek,hk <
√
p kΓhk2 < ∞ with a similar argument holding for

Ph
j=1

°°°Γj,kh °°°2 . The last assertion follows from°°°Γj,kh °°° = °°°e0j,hΓ−1h ek,h

°°° ≤ p
°°Γ−1h °°2 <∞ for any j, k uniformly in h.

Lemma 4.6. Let Assumptions (A) and (C) hold. Then,
Ph

k=1 k
2
°°Γyyk °° < ∞ and

Ph
k=1

°°°Γj,kh °°° < ∞
uniformly in j, h.

Proof. The first statement follows immediately from Assumption (C). The second result follows

from Hannan and Deistler (1988, Theorem 6.6.11).
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Lemma 4.7. Let Assumptions (A) and (C) and the conditions of Theorem 2.3 hold. Then,Ph
k=h∗

Ph
j=1

°°°Γj,kh °°° = o((hmin − h)−1)

for all h∗, h such that h ≥ hmin ≥ h∗ ≥ h, h∗−h= O(hmin−h), hmin − h∗ = O(hmin−h) and h→ ∞. If

instead of (C), Assumption (B) holds then for any fixed constant k0 <∞ and for hmin, hmax as defined

in Lemma 4.1 it follows that suph∈[hmin,hmax] supj≤k0
Ph

k=hmin+1

°°°Γj,kh °°° → 0 as n → ∞ where the sum

is assumed to be zero for all n where k0 ≥ hmin.

Proof. Let Γ∞ be the infinite dimensional matrix with j,k-th block Γyyk−j for j, k = 1, 2, ....and Γ
−1∞

the inverse of Γ∞ with j, k-th block denoted by Γj,k∞ . From Lewis and Reinsel (1985, p.401) and Hannan

and Deistler (1988, Theorem 7.4.2) it follows thatPh
k=h∗

Ph
j=1

°°°Γj,k∞ °°° ≤ Ph
k=h∗

Ph
j=1

Pj−1
i=0 kπik

°°Σ−1v °° kπi+k−jk(4.2)

≤
°°Σ−1v °°
h∗ − h

³P∞
r=h∗−h r

2 kπrk
´
(
P∞

s=1 kπsk) = o((h∗ − h)−1).

where πj = 0 for j < 0. Next use the bound
°°°Γj,kh °°° ≤ °°°Γj,k∞ °°°+ °°°Γj,kh − Γj,k∞ °°° . From Lewis and Reinsel

(1985, p.402) it follows thatPh
k=h∗

Ph
j=1

°°°Γj,kh − Γj,k∞ °°° ≤ Ph
k=h∗

Ph
j=1

Pj−1
i=0 kπi,i+h−j − πik

°°°Σ−1v,i+h−j°°° kπi+k−j,i+h−jk
+
Ph

k=h∗
Ph

j=1

Pj−1
i=0 kπik

°°°Σ−1v,i+h−j°°° kπi+k−j,i+h−j − πi+k−jk
+
Ph

k=h∗
Ph

j=1

Pj−1
i=0 kπik

°°°Σ−1v,i+h−j − Σ−1v °°° kπi+k−jk
where the last term is o((h∗ − h)−1) because

°°°Σ−1v,i+h−j − Σ−1v °°° = O(1) and the same argument as in

(4.2) applies. Next, note thatPh
k=h∗

Ph
j=1

Pj−1
i=0 kπi,i+h−j − πik

°°°Σ−1v,i+h−j°°° kπi+k−j,i+h−jk
≤ Ph

j=1

Pj−1
i=0 kπi,i+h−j − πik

°°°Σ−1v,i+h−j°°°Ph
k=h∗ kπi+k−j,i+h−j − πi+k−jk

+
Ph

k=h∗
Ph

j=1

Pj−1
i=0 kπi,i+h−j − πik

°°°Σ−1v,i+h−j°°° kπi+k−jk
where the second term again is o((h∗ − h)−1) because of the uniform bound in (4.3). From Hannan

and Deistler (1988, Theorem 6.6.12 and p. 336) it follows thatPh
k=h∗

Ph
j=1 kπi+k−j,i+h−j − πi+k−jk ≤

Ph
j=1

P∞
k=hmin+i−j+1 kπkk

≤ Ph
j=1 (hmin − j)−2

P∞
k=hmin−h k

2 kπkk
= o

³Phmin−1
j=hmin−h j

−2
´
= o((hmin − h)−1)
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where the bound holds uniformly in i = 1, 2, .... Similarly, for all i < j,

kπi,i+h−j − πik ≤
Pi+h−j

s=1 kπs,i+h−j − πsk ≤
P∞

s=i+hmin−h kπsk

where the first inequality follows from the fact that h − j ≥ 0 for all h ∈ Hn and j ≤h and the
second inequality follows from h ≥ hmin and Hannan and Deistler (1988, Theorem 6.6.12 and p. 336).

Substituting for kπi,i+h−j − πik it can then be seen that uniformly for j ≤h,Pj−1
i=0 kπi,i+h−j − πik ≤

Pj−1
i=0

P∞
s=i+hmin−h kπsk(4.3)

≤ P∞
i=0 (i+ hmin − h)−2

P∞
s=i+hmin−h s

2 kπsk
≤ P∞

i=hmin−h i
−2P∞

s=hmin−h s
2 kπsk = o

³
(hmin − h)−1

´
.

This shows that
Ph

k=h∗
Ph

j=1

°°°Γj,kh − Γj,k∞ °°° = o
³
(hmin − h)−1

´
.

For the second part note that

supj≤k0
Ph

k=hmin+1

°°°Γj,k∞ °°° ≤ Pk0
j=1

Ph
k=hmin+1

°°°Γj,k∞ °°°
≤ k0

°°Σ−1v °° ¡P∞
r=hmin−k0 kπrk

¢
(
P∞

s=1 kπsk)→ 0

uniformly in h. Also, note that

Pj−1
i=0 kπi,i+h−j − πik ≤

Pk0
i=0

P∞
s=hmin−k0 kπsk→ 0

as well as

Pk0
j=1

Ph
k=hmin+1

kπi+k−j,i+h−j − πi+k−jk ≤
Pk0

j=0

P∞
k=hmin+1−k0 kπkk→ 0

such that
Ph

k=hmin+1

Pk0
j=1

°°°Γj,kh − Γj,k∞ °°°→ 0 uniformly in h by the same arguments as before.

Lemma 4.8. Let Assumptions (A) and (C) hold, define

Γ−1hmax =

 £Γ−1hmax¤11 £
Γ−1hmax

¤
12£

Γ−1hmax
¤
21

£
Γ−1hmax

¤
22

 ,Γhmax =
 Γ11,hmax Γ12,hmax

Γ21,hmax Γ22,hmax


such that

£
Γ−1hmax

¤
11
is the right upper hp × hp block of Γ−1hmax and similarly for Γ11,hmax and let A =

Γ12,hmaxΓ
−1
22,hmax

Γ21,hmax with typical p× p block (a, b) denoted by Aa,b. ThenPh∗
a=1

Ph
b=1 kAa,bk = o

³
(hmin − h∗)−1

´
for any sequence h∗ such that hmin − h∗ →∞ as h→∞.
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Proof. Note that Aa,b =
Phmax−h

j1,j2=1
Γyyj1+h−aΓ

j1,j2
hmax−hΓ

yy
b−j2−h because Γ22,hmax = Γ11,hmax−h by the

Toeplitz structure of the covariance matrix. Then it follows by Lemma (4.6) that

Ph∗
a=1

Ph
b=1 kAa,bk ≤

Ph∗
a=1

Phmax−h
j1=1

°°°Γyyj1+h−a°°° supj1≤hmax−hPhmax−h
j2=1

°°°Γj1,j2hmax−h
°°°P∞

b=−∞
°°Γyyb °°

≤ c
³Phmax−1

j=1+hmin−h∗ j
°°°Γyyj °°°´ = o

³
(hmin − h∗)−1

´
where supj1≤h

Ph
j2=1

°°°Γj1,j2h

°°°P∞
b=−∞

°°Γyyb °° < c <∞ uniformly in h.

4.2. Proof of Main Theorems

Proof of Theorem 2.3:. The proof is identical for parts i) and ii) unless otherwise stated. Define

hmin and Hn as in the proof of Lemma (4.1). In view of Lemma (4.1) we can assume that µy = 0. We

therefore set ȳ = 0. Let w0n(h) = l(h)0 [vec(π̂(h)0 − π(h)0)] . Note that
√
nw0n(hmax)/ωhmax

d→ N (0, 1)

by Hannan and Deistler (1985, Theorem 7.4.8). Then

√
n

Ã
w0n(ĥn)

ωĥn
− w0n(hmax)

ωhmax

!
=
√
n

ωhmax

³
w0n(ĥn)− w0n(hmax)

´
+ w0n(hmax)

³
ωhmax − ωĥn

´
ωĥnωhmax


where ωh is uniformly bounded from below and above by Lewis and Reinsel (1985, p.400) such that

ωĥn is bounded from below and above with probability one. It is thus enough to show that

(4.4)
√
n
³
w0n(ĥn)− w0n(hmax)

´
= op(1)

and

(4.5) ωhmax − ωĥn = op(1).

Next note that for any η > 0,

P
h¯̄̄√

n
³
w0n(ĥn)−w0n(hmax)

´¯̄̄
> η

i
≤ P

·
max
h∈Hn

¯̄√
n (w0n(h)− w0n(hmax))

¯̄
> η

¸
+P

h
ĥn /∈ Hn

i
where the second probability goes to zero by Lemma (2.2).

Let ut,h = yt −
Ph

j=1 πjyt−j . From Lewis and Reinsel (1985, Equation 2.7) it follows that

w0n(h) = l(h)0 vec
³
(n− h)−1

Pn−1
t=h ut+1,hY

0
t,hΓ̂

−1
h

´

17



such thatp
n− hmax (w0n(h)− w0n(hmax))

=
p
n− hmax

³
(n− h)−1 − (n− hmax)

−1
´
l(h)0 vec

³Pn−1
t=h ut+1,hY

0
t,hΓ̂

−1
h

´
+(n− hmax)

−1/2Pn−1
t=h l(h)0

³
Γ̂−1h Y 0t,h ⊗ Ip

´
vec ((ut+1,h − ut+1,hmax))

+ (n− hmax)
−1/2 l(h)0

³
Γ̂−1h ⊗ Ip

´
vec

³Pn−1
t=h ut+1,hmaxY

0
t,h −

Pn−1
t=hmax

ut+1,hmaxY
0
t,h

´
+(n− hmax)

−1/2
³Pn−1

t=hmax

³
l(h)0

³
Γ̂−1h Yt,h ⊗ Ip

´
− l(hmax)

0
³
Γ̂−1hmaxYt,hmax ⊗ Ip

´´
ut+1,hmax

´
= w4n +w5n +w6n + w7n

where w4n, ..., w7n are defined in the obvious way. First, consider

|w4n| ≤
¯̄̄p

n− hmax

³
(n− h)−1 − (n− hmax)

−1
´¯̄̄
kl(h)k

°°°Γ̂−1h °°°
2

Pn−1
t=h kut+1,hk kYt,hk

≤ ∆n

(n− hmax)3/2

°°°Γ̂−1h °°°
2

Pn−1
t=h kut+1,hk kYt,hk .

In order to establish a bound for maxh∈Hn |w4n| we consider maxh∈Hn

°°°Γ̂−1h °°°
2
,maxh∈Hn kut+1,hk and

maxh∈Hn kYt,hk in turn.
From Lewis and Reinsel (1985,p.397) we have Zh,n =

°°°Γ̂−1h − Γ−1h °°°
2
/F
³°°°Γ̂−1h − Γ−1h °°°

2
+ F

´
≤°°°Γ̂h − Γh°°°

2
where F is a constant such that

°°Γ−1h °°2 ≤ F uniformly in h and E
°°°Γ̂h − Γh°°°2

2
≤

E

µ
maxh∈Hn

°°°Γ̂h − Γh°°°2¶ = O
¡
n−2/3+δ

¢
by Lemma (4.4) such that maxh∈Hn Zh,n = op(n

−1/3+δ/2).

Then, maxh∈Hn

°°°Γ̂−1h − Γ−1h °°°
2
= maxh∈Hn F

2Zh,n/(1− FZh,n) = op(n
−1/3+δ/2) and

(4.6) max
h∈Hn

°°°Γ̂−1h °°°
2
≤ F + max

h∈Hn

°°°Γ̂−1h − Γ−1h °°°
2
= Op(1).

For maxh∈Hn kut+1,hk consider

E

µ
max
h∈Hn

kut+1,hk
¶

= E

µ
max
h∈Hn

°°°yt+1 −Ph
j=1 πjyt+1−j

°°°¶
≤ E kyt+1k+E

µ
max
h∈Hn

Ph
j=1 kπjk kyt+1−jk

¶
≤ E kyt+1k+

P∞
j=1 kπjkE kyt+1−jk <∞

such that maxh∈Hn kut+1,hk = Op(1) by the Markov inequality. Finally, kYt,hk2 =
Ph−1

j=0 kyt−jk2 such
that

E max
h∈Hn

kYt,hk2 = hmaxE kytk2 = o(n1/3).
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These results show that

max
h∈Hn

|w4n| = op

³
∆nn

1/6(n− hmax)
−1/2

´
= op

³
n−1/3+δ

´
For |w5n| consider w5n = w51n + w52n where

w51n = (n− hmax)
−1/2Pn−1

t=h l(h)0
³³
Γ̂−1h − Γ−1h

´
⊗ Ip

´
vec

¡
(ut+1,h − ut+1,hmax)Y

0
t,h

¢
and

w52n (h) = (n− hmax)
−1/2Pn−1

t=h l(h)0
¡
Γ−1h Yt,h ⊗ Ip

¢
vec (ut+1,h − ut+1,hmax) .

For w51n consider

|w51n| ≤ max
h∈Hn

°°°l(h)0 ³³Γ̂−1h − Γ−1h ´⊗ Ip

´°°° (n− hmax)
−1/2Pn−1

t=hmin
max
h∈Hn

°°(ut+1,h − ut+1,hmax)Y
0
t,h

°°
whereEmaxh∈Hn

°°°(ut+1,h − ut+1,hmax)Y
0
t,h

°°° ≤Phmax
j=hmin+1

kπjk
³
E kyt−jk2

´1/2 ³
Emaxh∈Hn kYt,hk2

´1/2
with suptE kytk2 ≤ c <∞ and

E max
h∈Hn

kYt,hk2 = o(n1/3)

from before such that

(n− hmax)
−1/2Pn−1

t=hmin
E max

h∈Hn

°°(ut+1,h − ut+1,hmax)Y
0
t,h

°° ≤ (n− hmin)

n1/2 (n− hmax)
1/2

n1/2c
X

j≥hmin+1
kπjk o(n1/6)

= o(n1/6).

Also,maxh
°°°l(h)0 ³³Γ̂−1h − Γ−1h ´⊗ Ip

´°°° ≤ pM
1/2
2 maxh

°°°Γ̂−1h − Γ−1h °°°
2
= op(n

−1/3+δ/2) such that w51n =

op(1).

Use the notation l(h) =
³
l01,h, ..., l

0
h,h

´0
where lj,h is a p2× 1 vector with lj,h = lj for part i) and Γ

jk
h

is the j, k-th block of Γ−1h and note that

E max
h∈Hn

|w52n (h)|2 ≤
Phmax

h=hmin
E |w52n (h)|2

≤ Phmax
h=hmin

(n− hmax)
−1E

³Pn−1
t=h

Ph
k1,k2=1

Phmax
j=h+1 l

0
k1,h

³
Γk1,k2h yt−k2⊗πjyt−j

´´2
.

From Corollary 4.3 it follows that

E
³Pn−1

t=h

Ph
k1,k2=1

Phmax
j=h+1 l

0
k1,h

³
Γk1,k2h yt−k2⊗πjyt−j

´´2
=

Pn−1
t,s=h

Ph
k1,...,k4=1

Phmax
j1,j2=h+1

l0k1,h vec
µ
πj1Γ

yy
k2−j1

³
Γk1,k2h

´0¶
vec

µ
πj2Γ

yy
k3−j2

³
Γk3,k4h

´0¶0
lk4,h

+
Pn−1

t,s=h

Ph
k1,...,k4=1

Phmax
j1,j2=h+1

l0k1,h

µ
Γk1,k2h Γyyt−s+j2−k2πj2 ⊗ πj1Γ

yy
t−s+k3−j1

³
Γk3,k4h

´0¶
Kpplk4,h

+
Pn−1

t,s=h

Ph
k1,...,k4=1

Phmax
j1,j2=h+1

l0k1,h
³
Γk1,k2h Γyyt−s+k3−k2Γ

k3,k4
h ⊗ πj1Γ

yy
t−s+j2−j1π

0
j2

´
lk4,h

+
Pn−1

t,s=h

Ph
k1,...,k4=1

Phmax
j1,j2=h+1

l0k1,h
³
Γk1,k2h ⊗πj1

´
K4(t− k2, t− j1, s− k3, s− j2)

³
Γk3,k4h ⊗π0j2

´
lk4,h
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For the first term note that

Pn−1
t,s=h

µPhmax
j=h+1

Ph
k1,k2=1

l0k1,h vec
µ
πjΓ

yy
k2−j

³
Γk1,k2h

´0¶¶2
≤ n2p

³Phmax
j=h+1 kπjk2

´µPhmax
j=h+1

°°°Ph
k1,k2=1

l0k1,h
³
Γk1,k2h Γyyj−k2 ⊗ Ip

´°°°2¶
≤ Kn2p

³P∞
j=hmin+1

kπjk
´2

because Phmax
j=h+1

°°°Ph
k1,k2=1

l0k1,h
³
Γk1,k2h Γyyj−k2 ⊗ Ip

´°°°2 ≤ kl(h)k2 °°Γ−1h Γh°°22 < K

where Γh is a matrix with k, l-th element Γ
yy
l+h−k+1 and K is a generic bounded constant that does not

depend on h. Then

Phmax
h=hmin

(n− hmax)
−1Kn2p

³P∞
j=hmin+1

kπjk
´2

= Knp (n− hmax)
−1∆n

³
n1/2

P∞
j=hmin+1

kπjk
´2

≤ Knp (n− hmax)
−1
³
n1/2

P∞
j=hmin+1

kπjk
´
→ 0

where the inequality follows from (4.1). For the second term consider the following term of equal order

Pn−1
t,s=h

°°°Phmax
j=h+1

Ph
k1,k2=1

l0k1
³
Γk1,k2h Γyyt−s+j−k2πj ⊗ Ip

´°°°2 ≤ Knh2max

³P∞
j=hmin+1

kπjk
´2

which only differs by Kpp. The inequality holds because

Pn−1
t,s=h

µPhmax
j=1

°°°Ph
k1,k2=1

l0k1
³
Γk1,k2h Γyyt−k2−s+j ⊗ Ip

´°°°2¶³P∞
j=hmin+1

kπjk2
´

≤ Pn−1
t,s=h

Phmax
j=1

Ph
k2=1

°°°Γyyt−k2−s+j°°°2µPh
k2=1

°°°Ph
k1=1

l0k1,h
³
Γk1,k2h ⊗ Ip

´°°°2¶³P∞
j=hmin+1

kπjk
´2

≤ Phmax
j=1

Phmax
k2=1

Pn−1
u=−n+1 (n− |u|)

°°°Γyyu−k2+j°°°2µPh
k2=1

°°°Ph
k1=1

l0k1,h
³
Γk1,k2h ⊗ Ip

´°°°2¶³P∞
j=hmin+1

kπjk
´2

= O

µ
h2maxn

³P∞
j=hmin+1

kπjk
´2¶

such that the second term is of smaller order than the first term. Note that here

Ph
k2=1

°°°Ph
k1=1

l0k1
³
Γk1,k2h ⊗ Ip

´°°°2 = O(1)

because
°°l(h)0 ¡Γ−1h ⊗ Ip

¢°° ≤ kl(h)k°°Γ−1h °°2 is uniformly bounded in h. Finally, turning to the third
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term,Ph
k1,...,k4=1

¯̄̄
l0k1,h

³
Γk1,k2h ⊗ Ip

´Pn−1
t,s=h

³
Γyyt−s+k3−k2 ⊗

Phmax
j1,j2=h+1

πj1Γ
yy
t−s+j2−j1π

0
j2

´³
Γk3,k4h ⊗ Ip

´
lk4,h

¯̄̄
≤

µPh
k2=1

°°°Ph
k1=1

l0k1
³
Γk1,k2h ⊗ Ip

´°°°2¶1/2µPh
k3=1

°°°Ph
k4=1

³
Γk3,k4h ⊗ Ip

´
lk4

°°°2¶1/2
×
µPh

k2=1

Ph
k3=1

°°°Pn−1
t,s=h

³
Γyyt−s+k3−k2 ⊗

Phmax
j1,j2=h+1

πj1Γ
yy
t−s+j2−j1π

0
j2

´°°°2¶1/2
= O

µ
hmaxn

³P∞
j=hmin+1

kπjk
´2¶

such that the third term is also of smaller order than the first. Finally, the fourth order cumulant term

is of smaller order by Corollary 4.3. Therefore, w52n = op(1).

For |w6n| note

(4.7) |w6n| ≤ max
h∈Hn

°°°l(h)0 ³Γ̂−1h ⊗ Ip

´°°° (n− hmax)
−1/2Phmax

t=hmin
kut+1,hmaxk

°°Y 0t,h°°
where kut+1,hmaxk

°°°Y 0t,h°°° ≤ ³kyt+1k+P∞
j=1 kπjk kyt+1−jk

´
maxh∈Hn

°°°Y 0t,h°°° and
E

µ
kyt+1−jk max

h∈Hn

°°Y 0t,h°°¶ = o(n1/6)

by previous arguments such that the last term in (4.7) is bounded in expectation by

O
³
∆nh

1/2
max (n− hmax)

−1/2
´
= O

³
n−1/3+δ

´
and thus |w6n| = op(1).

Finally, consider |w7n| . We distinguish the following terms

w7n = l(h)0
³³
Γ̂−1h − Γ−1h

´
⊗ Ip

´
vec

³
(n− hmax)

−1/2 (U1n(h) + U2n (h))
´

−l(hmax)0
³³
Γ̂−1hmax − Γ−1hmax

´
⊗ Ip

´
vec

³
(n− hmax)

−1/2 (U1n(hmax) + U2n (hmax))
´

+(n− hmax)
−1/2Pn−1

t=hmax

¡
l(h)0

¡
Γ−1h Yt,h ⊗ Ip

¢− l(hmax)
0 ¡Γ−1hmaxYt,hmax ⊗ Ip

¢¢
ut+1,hmax

= w71n − w72n +w73n

where w71n, ..., w73n are defined in the obvious way and U1n(h) =
Pn−1

t=hmax
vt+1Y

0
t,h and

U2n(h) =
Pn−1

t=hmax
(ut+1,hmax − vt+1)Y

0
t,h.

For the term w72n the proof of Theorem 2 in Lewis and Reinsel (1985) can be applied to show that

w72n = op(1). For w71n and w73n we need additional uniformity arguments. For w71 consider

l(h)0
³³
Γ̂−1h − Γ−1h

´
⊗ Ip

´
= l(h)0

¡
Γ−1h ⊗ Ip

¢ ³³
Γh − Γ̂h

´
⊗ Ip

´³
Γ̂−1h ⊗ Ip

´
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where the vector a(h) ≡ l(h)0
¡
Γ−1h ⊗ Ip

¢
satisfies ka(h)k2 <∞ for all h. Then

|w71n| ≤ max
h∈Hn

°°°a(h)0 ³³Γh − Γ̂h´⊗ Ip

´°°° max
h∈Hn

°°°Γ̂−1h °°°
2
max
h∈Hn

°°°(n− hmax)
−1/2 (U1,n(h) + U2,n(h))

°°°
Using the result in (4.6) it follows that maxh∈Hn

°°°Γ̂−1h °°°
2
= Op(1). Next consider

max
h∈Hn

°°°a(h)0 ³³Γh − Γ̂h´⊗ Ip

´°°°2 ≤ p max
h∈Hn

ka(h)k2 max
h∈Hn

°°°Γh − Γ̂h°°°2
such that it follows from Lemma 4.4 that

E max
h∈Hn

°°°a(h)0 ³³Γh − Γ̂h´⊗ Ip

´°°°2 = O(n−2/3+δ).

Next, consider

E max
h∈Hn

°°°(n− hmax)
−1/2 U1,n(h)

°°°2 ≤ (n− hmax)
−1

n−1X
t=hmax

E
¡
v0t+1vt+1

¢
EY 0t,hmaxYt,hmax = o(n1/3).

Finally,

E max
h∈Hn

°°°(n− hmax)
−1/2 U2,n(h)

°°° ≤ ³E °°Y 0t,hmax°°2´1/2 n− hmax

(n− hmax)
1/2

c
∞X

j=hmax+1

kπjk = o(n1/6)

with supt
¡
E
°°y2t °°¢1/2 ≤ c <∞. This shows maxh∈Hn |w71n| = op(n

−1/3+δ/2n1/6) = op(1).

Next, let ζt,h = l(h)0
¡
Γ−1h Yt,h ⊗ Ip

¢
such that

w73n = (n− hmax)
−1/2Pn−1

t=hmax

¡
ζt,h − ζt,hmax

¢
(ut+1,hmax − vt+1 + vt+1)

and E
°°ζt,h°°2 = l(h)0

¡
Γ−1h ⊗ Ip

¢
l(h) ≤ C <∞ by Lewis and Reinsel (1985, p.399). Then

(n− hmax)
−1/2Pn−1

t=hmax
E
°°¡ζt,h − ζt,hmax

¢
(ut+1,hmax − vt+1)

°°
≤

³
Emaxh∈Hn

°°¡ζt,h − ζt,hmax
¢°°2´1/2 ³E kytk2´1/2 (n− hmax)

1/2
∞X

j=hmax+1

kπjk→ 0

where Emaxh∈Hn

°°¡ζt,h − ζt,hmax
¢°°2 = o(1) by the analysis below and

E
°°°(n− hmax)

−1/2Pn−1
t=hmax

¡
ζt,h − ζt,hmax

¢
vt+1

°°°2
= (n− hmax)

−1Pn−1
s,t=hmax

E
h¡
ζt,h − ζt,hmax

¢
vt+1v

0
s+1

¡
ζs,h − ζs,hmax

¢0i
= E

h¡
ζt,h − ζt,hmax

¢
Σv
¡
ζt,h − ζt,hmax

¢0i
≤ kΣvkE

°°¡ζt,h − ζt,hmax
¢°°2
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where we have used stationarity and the fact that Evt+1v0s+1 = E(vt+1v
0
s+1|Ft) = 0 for t > s and

E(vt+1v
0
t+1|Ft) = Σv.

At this point the proof for Theorem 2.3 i) and ii) proceeds separately. First turn to i). Since

h ≤ hmax,°°ζt,h − ζt,hmax
°° = °°°Ph

j,l=1 l
0
j

³
Γj,lh yt−l ⊗ Ip

´
−Phmax

j,l=1 l
0
j

³
Γj,lhmaxyt−l ⊗ Ip

´°°°
≤Ph

j,l=1

°°°l0j ³³Γj,lh − Γj,lhmax´ yt−l ⊗ Ip

´°°°+Phmax,hmax
j=1,l=hmin+1

°°°l0j ³Γj,lhmax ⊗ Ip

´°°° kyt−lk
+
Phmax,hmax

j=hmin+1,l=1

°°°l0j ³Γj,lhmax ⊗ Ip

´°°° kyt−lk
where suptE kytk2 ≤ c <∞. By Hannan and Deistler (1988, Theorem 6.6.11) there exists a constant

c1 such that suph supj≤h
Ph

l=1

°°°Γj,lh °°° ≤ c1/p <∞. By the second part of Lemma (4.7) and for any ε > 0

there exists a constant k0 < ∞ such that supj≤k0
Phmax

l=hmin+1

°°°Γj,lhmax°°° → 0 and
P∞

j=k0+1
kljk < εc−11 .

Then Phmax,hmax
j=1,l=hmin+1

°°°l0j ³Γj,lhmax ⊗ Ip

´°°° ≤ p supj≤k0
Phmax

l=hmin+1

°°°Γj,lhmax°°°Pk0
j=1 kljk

+p supj≤hmax
Phmax

l=hmin+1

°°°Γj,lhmax°°°P∞
j=k0+1

kljk
≤ o(1) + ε.

Also Phmax,hmax
j=hmin+1,l=1

°°l0j°°°°°Γj,lhmax°°° ≤ supj≤hmaxPhmax
l=1

°°°Γj,lhmax°°°Phmax
j=hmin+1

kljk→ 0

by the assumptions on l. Now define constants c1 = 2
P∞

j=1 kljk and c2 = 4 suph∈Hn
supj≤h

Ph
l=1

°°°Γj,lh °°° .
For any ε > 0 fix integer constants k0, k1 such that

P∞
j=k0+1

kljk < εc−12 and

suph∈Hn
supj≤k0

Ph
l=k1+1

³°°°Γj,lh °°°+ °°°Γj,lhmax°°°´ < εc−11

where the last inequality holds for some k1 and any k0 and all n ≥ n0 for some positive integer n0 <∞
by Lemma (4.7). Then

suph∈Hn

Ph
j,l=1 kljk

°°°Γj,lh − Γj,lhmax°°° ≤ Pk0,k1
j,l=1 kljk suph∈Hn

°°°Γj,lh − Γj,lhmax°°°
+
P∞

j=k0+1
kljk suph∈Hn

supj≤h
Ph

l=1

³°°°Γj,lh °°°+ °°°Γj,lhmax°°°´
+
Pk0

j=1 kljk suph∈Hn
supj≤k0

Ph
l=k1+1

³°°°Γj,lh °°°+ °°°Γj,lhmax°°°´
≤ o(1) + ε

because for fixed k0, k1, suph∈Hn

°°°Γj,lh − Γj,lhmax°°°→ 0 by Lewis and Reinsel (1985, p. 402) and Hannan

and Deistler (1988, Theorem 6.6.12) such that maxh∈Hn

°°ζt,h − ζt,hmax
°° = op(1).
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Now turn to the proof for Theorem 2.3 ii). Partition l(hmax) = (l̃(hmax)0, l̃1(hmax)0)0 where l̃(hmax) =³
l01,hmax , ..., l

0
h,hmax

´0
, l̃1(hmax)

0 =
³
l0h+1,hmax , ..., l

0
hmax,hmax

´0
. Consider

E max
h∈Hn

°°ζt,h − ζt,hmax
°°2 ≤ hmaxX

h=hmin

E
°°ζt,h − ζt,hmax

°°2
with

E
°°ζt,h − ζt,hmax

°°2(4.8)

= l(h)0
¡
Γ−1h ⊗ Ip

¢
l(h)− 2l(h)0 ¡Γ−1h ⊗ Ip

¢
l̃(hmax) + l(hmax)

0 ¡Γ−1hmax ⊗ Ip
¢
l(hmax)

≤
¯̄̄
l(h)0

¡
Γ−1h ⊗ Ip

¢ ³
l(h)− l̃(hmax)

´¯̄̄
+

¯̄̄̄³
l(h)− l̃(hmax)

´0 ¡
Γ−1h ⊗ Ip

¢
l̃(hmax)

¯̄̄̄
+
¯̄̄
l̃(hmax)

0 ¡Γ−1h ⊗ Ip
¢
l̃(hmax)− l(hmax)

0 ¡Γ−1hmax ⊗ Ip
¢
l(hmax)

¯̄̄
.

Note that for any sequence h∗∗ →∞ such that
Ph∗∗

j1=1
klj1,h − lj2,hmaxk2 = o(∆−2n ) and ∆n/

√
h∗∗ → 0,¯̄̄̄³

l(h)− l̃(hmax)
´0 ¡
Γ−1h ⊗ Ip

¢
l̃(hmax)

¯̄̄̄
≤

³Ph∗∗
j1=1

klj1,h − lj1,hmaxk2
´1/2µPh∗∗

j1=1

°°°Ph
j2=1

³
Γj1,j2h ⊗ Ip

´
lj2,hmax

°°°2¶1/2
+
³Ph

j1=h∗∗+1 (j1)
2 klj1,h − lj1,hmaxk2

´1/2µPh
j1=h∗∗+1 (j1)

−2
°°°Ph

j2=1

³
Γj1,j2h ⊗ Ip

´
lj2,hmax

°°°2¶1/2
= o(∆−1n )

since
Ph∗∗

j1=1

°°°Ph
j2=1

³
Γj1,j2h ⊗ Ip

´
lj2,hmax

°°°2 ≤ °°°¡Γ−1h ⊗ Ip
¢
l̃(hmax)

°°°2, °°Γ−1h °°2 is uniformly bounded by
Lewis and Reinsel (1985, p.397) and

°°°l̃(hmax)°°° ≤ √M2 uniformly in h. Since also

Ph
j1=h∗∗+1 j

2
1 klj1,h − lj2,hmaxk2 <∞

andµPh
j1=h∗∗+1 j

−2
1

°°°Ph
j2=1

³
Γj1,j2h ⊗ Ip

´
lj2,hmax

°°°2¶1/2 = O

µ³Ph
j1=h∗∗+1 j

−2
1

´1/2¶
= O

³
1/
√
h∗∗
´

the second term is o(∆−1n ) as well. Finally, consider¯̄̄
l̃(hmax)

0 ¡Γ−1h ⊗ Ip
¢
l̃(hmax)− l(hmax)

0 ¡Γ−1hmax ⊗ Ip
¢
l(hmax)

¯̄̄
≤

¯̄̄
l̃(hmax)

0
³³
Γ−1h −

£
Γ−1hmax

¤
11

´
⊗ Ip

´
l̃(hmax)

¯̄̄
+ 2

¯̄̄
l̃(hmax)

0
³£
Γ−1hmax

¤
12
⊗ Ip

´
l̃1(hmax)

¯̄̄
+
¯̄̄
l̃1(hmax)

0
³£
Γ−1hmax

¤
22
⊗ Ip

´
l̃1(hmax)

¯̄̄
24



where Γ−1hmax and Γhmax are partitioned as in Lemma (4.8) where the notation for the blocks of the

inverse
£
Γ−1hmax

¤
ij
and the blocks Γij,hmax of Γhmax is introduced. Then,

°°°l̃1(hmax)°°° = o(∆−1n ) uniformly

in h because by assumption ∃h≤ hmin such that
Phmax

i=h+1 kli,hmaxk2 = o(∆−2n ). Then,¯̄̄
l̃(hmax)

0
³£
Γ−1hmax

¤
12
⊗ Ip

´
l̃1(hmax)

¯̄̄
= o(∆−1n )

and ¯̄̄
l̃1(hmax)

0
³£
Γ−1hmax

¤
22
⊗ Ip

´
l̃1(hmax)

¯̄̄
= o(∆−1n ).

For the first term define a(h) = l̃(hmax)
0 ¡Γ−1h ⊗ Ip

¢
and ã(h) = l̃(hmax)

0
³£
Γ−1hmax

¤
11
⊗ Ip

´
where

ka(h)k < ∞ and kã (h)k < ∞ uniformly in h. Let A be defined as in Lemma (4.8). Write Γ−1h −£
Γ−1hmax

¤
11
= −Γ−1h A

£
Γ−1hmax

¤
11
by the partitioned inverse formula. Now for h∗ =h+(hmin − h) /2 such

that h≤ h∗ ≤ hmin with h∗−h= (hmin − h) /2 and hmin − h∗ = (hmin − h) /2 it follows that¯̄
a(h)0 (A⊗ Ip) ã(h)

¯̄
=

¯̄̄Ph
i1=1

l0i1,h
Ph

j1,j2=1

Ph
i2=1

³
Γi1,j1h Aj1,j2Γ

j2,i2
hmax
⊗ Ip

´
li2,hmax

¯̄̄
≤

¯̄̄Ph
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l0i1,h
Ph
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³
Γi1,j1h Aj1,j2Γ
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´
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+

 hX
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°°l0i1,h°°2
1/2 hX
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°°°°°°
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³
Γi1,j1h Aj1,j2Γ
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⊗ Ip

´
li2,hmax

°°°°°°
21/2

where the second term is o(∆−1n ) uniformly in h by the assumptions on the sequence l(h) and the fact

that k(A⊗ Ip) ã(h)k is uniformly bounded in h. For the first term consider¯̄̄Ph
i1=1

l0i1,h
Ph

j1,j2=1

Ph
i2=1

³
Γi1,j1h Aj1,j2Γ

j2,i2
hmax
⊗ Ip

´
li2,hmax

¯̄̄
=

¯̄̄Ph
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Ph
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´
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¯̄̄
+ o(∆−1n )

where the order of the error term follows again from
µPh
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¡
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¢
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´
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j2=1

Ph
i2=1

³
Aj1,j2Γ

j2,i2
hmax
⊗ Ip

´
li2,hmax

°°°2¶1/2
≤ c1

Ph∗
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where
°°°Ph

i1=1
l0i1,h

³
Γi1,j1h ⊗ Ip

´°°° < c1 is uniformly bounded,
Ph

j1=h∗
Ph

i1=1

°°°Γi1,j1h

°°°2 = o
³
(hmin − h)−1

´
by Lemma (4.7) and

Ph∗
j1=1

Ph
j2=1

kAj1,j2k
°°°Ph

i2=1

³
Γj2,i2hmax

⊗ Ip

´
li2,hmax

°°° = o
³
(hmin − h)−1

´
because°°°Ph

i2=1

³
Γj2,i2hmax

⊗ Ip

´
li2,hmax

°°° is uniformly bounded and Ph∗
j1=1

Ph
j2=1

kAj1,j2k = o
³
(hmin − h)−1

´
by

Lemma (4.8). It now follows that
Phmax

h=hmin
E
°°ζt,h − ζt,hmax

°°2 = o (∆n/ (hmin − h)) + o(1) such that

|w73n| = op(1) uniformly in h ∈ Hn.

To show (4.5) note that ωĥn − ωhmax = l(ĥn)
0
³
Γ−1
ĥn
⊗ Σv

´
l(ĥn) − l(hmax)

0 ¡Γ−1hmax ⊗Σv¢ l(hmax) so
that the same arguments used to show E

°°ζt,h − ζt,hmax
°°2 → 0 apply. For part i) of the theorem, note

that |ωh| ≤
Ph

j1,j2=1

°°°l0j1°°°°°°³Γj1,j2h ⊗ Σv
´
lj2

°°° ≤ ∞ uniformly in h such that it follows from absolute

convergence arguments that ωh →
P∞

j1,j2=1
l0j1
³
Γj1,j2h ⊗ Σv

´
lj2 < ∞. The statement of part i) of the

theorem then follows from applying the continuous mapping theorem to
√
nw0n(hmax)/ωhmax .

Proof of Theorem (2.4):. Let cn = (logn/n)
1/2 . For all � > 0, P

³°°°π̂(ĥn)− π(ĥn)
°°° > cn�

´
≤

P (maxh∈Hn kπ̂(h)− π(h)k > cn�) + o(1). Since h ∈ Hn implies that h ≤ o(
p
n/ logn) it follows

from An, Chen and Hannan (1982, p. 936) and Hannan and Kavalieris (1986, Theorem 2.1) that

maxh∈Hn

Ph
j=1 kπ̂j,h − πj,hk ≤

Phmax
j=1 kπ̂j,h − πj,hk = Op((logn/n)

1/2). To see this note that as in the

proof of Theorem 2.1 in Hannan and Kavalieris (1986, p.39), we have

Phmax
j=1 kπ̂j,h − πj,hk

°°°Γ̂yyj−k°°° ≤Phmax
j=0 kπjk

°°°Γ̂yyj−k − Γyyj−k°°°+Phmax
j=1 kπj − πj,hk
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for k = 1, ..., hmax where

Phmax
j=1 kπj − πj,hk

°°°Γ̂yyj−k − Γyyj−k°°° = Op(
p
logn/n)

P
hmax

kπjk by Hannan
and Kavalieris (1986). Again, by Hannan and Deistler (1988, Theorem 7.4.3) it follows that

Phmax
j=0 kπjk

°°°Γ̂yyj−k − Γyyj−k°°° = Op(
p
logn/n).

Since
°°°Γ̂yyj−k°°° = Op(1) uniformly by the same result it follows that

Phmax
j=1 kπ̂j,h − πj,hk = Op(

p
logn/n).

Moreover,
Ph

j=1 kπj,h − πjk = O(
P∞

j=h+1 kπjk) by Hannan and Deistler (1988, Theorem 6.6.12). Since
h ≥ hmin and hmin satisfies n1/2

P∞
j=hmin+1

kπjk→ 0 the result follows.
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