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Abstract

Infinite order vector autoregressive (VAR) models have been used in a number of applications
ranging from spectral density estimation, impulse response analysis, tests for cointegration and unit
roots, to forecasting. For estimation of such models it is necessary to approximate the infinite order
lag structure by finite order VAR’s. In practice, the order of approximation is often selected by
information criteria or by general-to-specific specification tests. Unlike in the finite order VAR case
these selection rules are not consistent in the usual sense and the asymptotic properties of parameter
estimates of the infinite order VAR do not follow as easily as in the finite order case. In this paper
it is shown that the parameter estimates of the infinite order VAR are asymptotically normal with
zero mean when the model is approximated by a finite order VAR with a datadependent lag length.
The requirement for the result to hold is that the selected lag length satisfies certain rate conditions
with probability tending to one. Two examples of selection rules satisfying these requirements
are discussed. Uniform rates of convergence for the parameters of the infinite order VAR are also

established.
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1. Introduction

Infinite order vector autoregressive (VAR(c0)) models are appealing nonparametric specifications for
the covariance structure of stationary processes because they can be justified under relatively weak
restrictions on the Wold representation of a stationary process. In practice, the VAR(oc0) specification
needs to be approximated, usually by a VAR(h) model where the truncation parameter h increases
with sample size n. This approach was proposed by Akaike (1969) and Parzen (1974) for the estimation
of spectral densities.

Approximations to VAR(oco) models have received renewed interest in recent years in a number
of econometric applications. Liitkepohl and Saikkonen (1997) consider impulse response functions in
infinite order cointegrated systems. Cointegration tests and inference in systems with infinite order
dynamics are considered by Saikkonen and Luukkonen (1997) and Saikkonen and Liitkepohl (1996). Ng
and Perron (1995, 2000) use flexible autoregressive specifications in augmented Dickey Fuller (ADF)
unit root tests to improve size properties of these tests. Liitkepohl and Poskitt (1996) construct tests
for causality using infinite order vector autoregressive processes. Paparoditis (1996), Inoue and Kilian
(2002) and Goncalves and Kilian (2004) propose bootstrap procedures for VAR(co) models. Finally,
den Haan and Levin (2000) use prewhitening procedures and VAR(oco) approximations to estimate
heteroskedasticity and autocovariance consistent (HAC) covariance matrices for robust inference. They
use AIC and BIC information criteria to select the order of the approximating VAR and report evidence
that applying standard kernel based smoothing to estimate spectral densities from the prewhitened
residuals does not lead to improvements over estimates that are entirely based on the VAR specification.

The lag length h is the key design parameter in implementing procedures that approximate VAR(c0)
models. The results of Berk (1974) and Lewis and Reinsel (1985) establish rates of convergence nec-
essary for consistency and asymptotic normality. A number of papers using VAR(h) approximations
do not go beyond listing these restrictions on rates as conditions for their results. In practice, such
restrictions however can not be used to construct automated procedures because the lowerbound for the
expansion rate of h depends on unknown properties of the data. Moreover, conditions on the growth
rate of h as a function of the sample size n are not sufficient to choose h in a finite sample. What is
called for are datadependent rules where A is chosen based on information in the sample.

Hannan and Kavalieris (1976) and Hannan and Deistler (1988) analyze the stochastic properties
of feasible rules iLn based on the AIC and BIC criterion. The AIC information criterion has been

shown to posses minimal mean squared error properties for the estimation of parameters in AR(co)



models and minimal integrated mean squared error properties for the estimation of approximations to
the spectral density of AR(co) models by Shibata (1980, 1981). Ng and Perron (1995) point out that
the AIC criterion violates the conditions on h obtained by Berk (1974) and Lewis and Reinsel (1985).
This leads to expansion rates for h that are too slow to eliminate biases that result in shifts of the
asymptotic limit distribution of the parameters.

Infinite dimensional models have a long tradition in econometric theory. The work of Sargan (1975)
is an early example. The problem of biases caused by parameter spaces that grow in dimension with
the sample size has recently been discussed in econometrics by Bekker (1994). Similar effects can be
found in various contexts, for example in the work of Donald and Newey (2001), Hahn and Kuersteiner
(2002, 2003) and Kuersteiner (2002).

Especially in time series applications finite sample biases can be substantial and may have a domi-
nating effect on inference. Kilian (1998) shows that bootstrap confidence intervals for impulse response
functions are severely affected by finite sample biases in the estimates of the underlying autoregres-
sions. He proposes a bias correction to overcome severe distortions in coverage rates. In panel models
with lagged dependent variables Hahn, Hausman and Kuersteiner (2000) and Hahn and Kuersteiner
(2002) document the predominant effect of finite sample biases on the mean squared error of parameter
estimates.

Ng and Perron (1995) propose a general-to-specific testing approach to select the approximate lag
order in ADF tests where the underlying model is a VAR (00). Their work extends results of Hall (1994)
for lag order selection in ADF tests when the underlying model is a finite order VAR to the infinite
order case. Ng and Perron (1995) advocate general-to-specific selection rules to overcome the problems
of AIC and BIC in selecting the lag-length in VAR (o0) approximations described above although their
focus is on the performance of unit root tests and not on the estimation of the VAR(co0) parameters.
They show that distributional properties of ADF tests are not affected by biases induced by AIC and
BIC but report simulation evidence demonstrating the advantages in terms of finite sample size of the
ADF tests when parametrized with their lag selection procedure.

In this paper the results of Ng and Perron (1995) are extended to estimation and inference in
VAR(o0) models. It is argued that the convergence properties of h., based on model selection procedures
typically are not strong enough to apply the arguments of Eastwood and Gallant (1991) for admissible
estimation. This is true for the general-to-specific approach of Ng and Perron (1995) as well as for
conventional model selection methods based on information criteria. In fact, in infinite dimensional

parameter spaces adaptiveness of selection rules, a concept that has appeared in the literature and will



be defined more precisely in Section 2, is hard to show. Moreover, the results of Shibata (1980,1981)
do not establish the asymptotic distribution of parameter estimates in an AR(iLn) model when h,, is
selected by AIC. Such a result seems to be missing in the literature to this date.

Here, the arguments do not rely on adaptiveness properties of the selection rule. An alternative
proof, based on the work of Lewis and Reinsel (1985) is used to show that h can be replaced by
hy, determined by the general-to-specific approach of Ng and Perron (1995) without affecting the
limiting distribution of the parameters in the VAR(h) approximation. This leads to fully automated
approximations to the VAR(co) model that do not suffer from higher order biases as approximations
using AIC and BIC generally would. Nevertheless, in the special case where the underlying process is
a VARMA model, a modification of AIC also can be used without affecting the limiting distribution,
a result that is discussed at the end of Section 2. Uniform rates of convergence for the parameters of
the VAR(iLn) approximation are also obtained. These rates in turn can be used to establish rates for
functionals of the VAR parameters such as the spectral density matrix.

The main results of the paper are presented in Section 2, Section 3 contains some conclusions and

all the proofs are collected in Section 4.

2. Linear Time Series Models

Let y; € R? be a strictly stationary time series with an infinite order moving average representation
(2.1) Yt = i, + C(L)vr.

Here, u, € R? is a constant and vy is a strictly stationary and conditionally homoskedastic martingale
difference sequence. The lag polynomial C'(L) is defined as C(L) = Z;io C;L7 where L is the lag

operator.

Assumption A. Let vy € RP be strictly stationary and ergodic, with E (v;|Fi—1) = 0, E (vvp|Fy—1) =
Y., where X, is a positive definite symmetric matrix of constants. Let v;{ be the i-th element of vy,
€= (&,.,&) €RF and v = (vﬁ,,vzl’z) such that ¢;, ;. 4 4, (&) = Ee®€' is the joint character-

istic function with corresponding joint k-th order cumulant function defined as cumy, . (t1, s tr) =
Uit +ug
8§¥1~--85:k
stationarity it is enough to define cum;, _;, (t1,....,t—1) = cumy, (t1,...,tk—1,0). Assume that

le=oIn@;, i, 1,4, (&) where u; are nonnegative integers such that uy + ... + v, = k. By

o0 (o @]
(2.2) S Y feumi, iy (B te1)| < 00

t1=—0o0 tp_1=—00



where the sum converges for all k < 4 and all i; € {1,...,p} with j € {1,...,k}.

Assumption A is weaker than the assumptions imposed in Lewis and Reinsel (1985) where inde-
pendence of the innovations is assumed but is somewhat stronger than the assumptions in Hannan
and Deistler (1988, Theorem 7.4.8) who also allow for the more general heteroskedastic case which
is excluded here by the requirement that F (vvj|F;—1) = X,. Recently, Goncalves and Kilian (2003)
have obtained explicit formulas for the norming constant when the innovations are conditionally het-
eroskedastic. The summability Assumption (2.2) is quite common in the literature on HAC-estimation.
Andrews (1991) for example uses a similar condition and shows that (2.2) is implied by a mixing con-

dition.

Assumption B. The lag polynomial C(L) with coefficient matrices C; satisfies Co = Ip, 372, 205 <
0o where ||A||? = tr AA’ for a square matrix A and det C(z) # 0 for |z| < 1 where z € C.

Assumption C. For C; as defined in Assumption (B) it holds that ) 22, 32 [|C}| < oo and det C(z2) #
0 for |z| < 1.

The summability restriction on the impulse coefficients C; in Assumptions B and C is stronger
than the condition imposed by Lewis and Reinsel (1985) where only 3 72, [|C;|| < oo is required. It
is needed here to achieve similar flexibility in the central limit theorem as Lewis and Reinsel (1985).

Assumption B implies that y; has an infinite order VAR representation given by

(2.3) Yt = [ D050 WiYe—j v

where 1 = C(1)"*p, and C(L)™! = n(L) with w(L) =1 — P m;L7. The impulse response function
C(L) of y; is thus a functional of (L) defined by C(L) = w(L)~!. Another functional of interest is the
spectral density f,(\) of y; where f,(\) = (27) ' 7(e) 1%, (W(e*i)‘)*l),. For inferential purposes we
are often interested in f, (0), the spectral density at frequency zero.

The VAR(00) representation in (2.3) needs to be approximated in practice by a model with a finite
number of parameters, in the case considered here a VAR(h) model. The approximate model with

VAR coefficient matrices 7y p,...mp 5, is thus given by

(2.4) Yt = Py p T TLRYt—1 + oo + ThpYt—h + Ut h

where ¥, j, = Evt,hvah is the mean squared prediction error of the approximating model.



It was shown by Berk (1974) and Lewis and Reinsel (1985) that the parameters (71 p, ..., T ) are
root-n consistent and asymptotically normal for w(h) = (71, ...,73) in an appropriate sense to be made
explicit later if h does not increase too quickly, i.e. if h is chosen such that h3/n — 0. At the same
time h must not increase too slowly to avoid asymptotic biases. Berk (1974) shows that h needs to
increase such that n'/2 Zj’;h 4175 — 0 as h,n — oo. In practice such rules are difficult to implement
as they only determine rates of expansion for A and do not lead directly to feasible selection criteria
for h. Ng and Perron (1995) argue that information criteria such as the Akaike criterion do not satisfy'
the conditions of Berk (1974) and Lewis and Reinsel (1985). In general these criteria can not be
used to choose h if asymptotic unbiasedness, as measured by the location of the asymptotic limiting
distribution, is desired. More specifically, if h is such that n'/2 Zjo’;h 41T — ¢ # 0 then bias terms due
to asymptotic misspecification of the model are of order n~1/2. These biases are more severe than the
usual finite sample biases that are typically of order n=!.

To avoid the problems that arise from using information criteria to select the order of the approxi-
mating model we use the sequential testing procedure analyzed in Ng and Perron (1995). Let w(h) =
(7o) Yon = W =T Yhpr — 37), where § = n=' 30y and My, = 30, YiernY{ 1 p
Define Mgl(l) to be the lower-right p x p block of M,;l. Let I', be the hp x hp matrix whose (m,n)th
block is T2, and I'} ), = [, ...,T%, ] where %, = Cov(yi—i,y;_;). The coefficients of the approxi-
mate model satisfy the equations (71 4, ..., Thp) = Fl,thl. Let fl,h =(m—h)" ?;hl Yin (Y1 — gj)/
and '), = (n— h)f1 Z?;hl Yt,hYt',h- The estimated error covariance matrix is i]v,h = (n—h)"! Z?:h—i—l @t,h@;:,h

where O, = ¥4 — T1,pYt—1 — ... — Th,pYs—n With coefficients
~ ! _ v -1
W(h) = Lhrh .

Under Assumptions A and B it follows from Hannan and Deistler (1988, Theorem 7.4.6) that Ev,h —
Yy,p uniformly in h < Agax and Amax = o((n/ log n)*?). A Wald test for the null hypothesis that the

coefficients of the last lag h are jointly 0 is then, in Ng and Perron’s notation,
. —1
T(hyh) = (vec ) (Sup @ M (1)) (vee fnp)
The following lag order selection procedure from Ng and Perron (1995) is adopted.

Definition 2.1. The general-to-specific procedure chooses i) hy =h if, at significance level o, J(h,h)

is the first statistic in the sequence J(i,1),{% = hmax, ..., 1 }, which is significantly different from zero or

LA special case where a version of AIC satisfies Berk’s conditions is discussed at the end of this Section.



ii) hy, =0 if J (i,4) is not significantly different from zero for all i = hpax, ..., | where hyax is such that

B .. /n— 0 and n'/? > et T3]l — 0 as n — oo.

Implementation of the general-to-specific procedure may be difficult in practice because the critical
values depend on complicated conditional densities which are not Gaussian in the parameters and
therefore not x2 for the test statistics. This seems to be the case even though the underlying joint and
marginal densities can be assumed to be Gaussian with easily estimated coefficients?. For a discussion
of these issues see Sen (1979), and in particular Potscher (1991) and Leeb and Potscher (2003). Note
that Lemma 3 of Pstscher (1991) does not hold in the present context. This means that the sequence
of test statistics J(7,7),{i = hmax,..., 1} is not asymptotically independent and thus the conditional
density of J(i,4) is not the same as the marginal density. Whether numerical methods or the bootstrap
could be used to obtain an operational version of the general-to-specific approach is beyond the scope
of this paper.

In order to illustrate the problems with establishing results that allow to substitute h with hy, in
7(h) we consider the lag order estimate h,, based on the AIC and BIC criteria. The lag order estimate
is defined as h,, = arg min Qn(h) with Qn(h) = log det fjv,h +hp?C,, /n where C,, = 2 for AIC and C,, =
logn for BIC. Hannan and Deistler (1988, Theorem 7.4.7) show under slightly different assumptions
than here, that Q,(h) can be essentially replaced by Qn(h) = hp®/n(Cy, — 1) + tr (S —-).
Shibata (1980) argues that @, (h) can be interpreted as the one step ahead squared prediction error
obtained from predicting y; with an AR(h) model. Misspecification bias manifests itself in the term
Yy,n — 2 that depends amongst other things on the dimension p of y; and affects the choice of h.A
Define b} = argmin @, (h) as the optimal lag order minimizing the squared prediction error. In the
context of VARMA models which are special cases of (2.3) the results of Hannan and Kavalieris (1984,
1986) imply that if h,, is selected by AIC or BIC then h, — h¥ = o,(y/Togn). Eastwood and Gallant
(1991) and Ng and Perron (1995) define the concept of adaptive selection rules. A sequence of random
variables a,, is an adaptive selection rule if there is a deterministic rule a,, such that a, — a, = 0,(1).
The discussion of AIC and BIC based selection rules h,, shows that these rules are not adaptive for h*

in the sense of Eastwood and Gallant (1991) and Ng and Perron (1995).

%1 am grateful to one of the referees for pointing out this fact.
3Hannan and Deistler (1988, p.317) discuss this interpretation.
! Abadir, Hadri and Tzavalis (1999) analyze non-stationary VAR’s where the asymptotic limiting distribution of OLS

estimators is also shifted away from the origin. They find an explicit relation between the dimension p and the bias. The

situation there is however quite different from the one considered here where bias is due to misspecification.



Similarly, the results of Ng and Perron (1995) imply that hy, selected by the procedure in Definition
(2.1) satisfies P (hmin < ﬁn < hmax) — 1 as n — oo for any sequence hpyin such that hpin < hAmax and
hmax — hmin — 00. Such a result again is not strong enough to guarantee that Bn is adaptive for M hmax
where M is an arbitrary positive constant. Any argument that relies on the adaptiveness property of
selection rules to establish that 7 (h,) has the same asymptotic properties as #(Mhmay) therefore can
not be applied. It may be possible to prove adaptivness properties of selection rules but such results
do not seem to be readily available in the literature.

For this reason an alternative proof strategy is chosen here. The following weaker consequence of
Lemma 5.2 of Ng and Perron (1995) which follows directly from their proof turns out to be sufficient

to establish the feasibility of a fully automatic approximation to the VAR(oco) model.

Lemma 2.2. Let iLn be given by Definition (2.1). Let hpin be any sequence such that hpyax > hmin,

Pnax — Pmin — 00 and nl/? Z;ihminﬂ |7 — 0 as n — 0. Then lim, P(iLn < hpmin) = 0.

The following two main results of this paper establish that the results in Lewis and Reinsel (1985)
essentially remain valid if in 7(h), h is replaced by hn,. The proofs establish uniform convergence of
7(h) over a set H, of values h such that iLn is contained in H, with probability tending to one.
First, an asymptotic normality result is established for an arbitrary but absolutely summable linear
transformation [(h) of the parameters into the real line. In particular this result implies that arbitrary
finite linear combinations of elements in ﬁ(izn) are asymptotically normal. By the Cramér-Wold theorem

~

this also implies that any finite combination of elements in 7 (h,) is jointly asymptotically normal.

Theorem 2.3. Let h, be given by Definition (2.1). i) Let Assumptions (A) and (B) hold. Let
I(h) = (I},...,1})) be the p*h x 1 section of an infinite dimensional vector | such that for some constants
My and M, 0 < My <3772 [|[lj]| < /M < co. Let wp = I(h)' (T, ®%,) I(h). Then limj, 0o wp = w

exists and is bounded and
rl(hn) [Vec(fr(izn)’ _ w(iln)')} 4 N(0,w).

ii) Instead of Assumption (B) let Assumption (C) hold. Let hpax be as in Definition (2.1), hmyin be
defined as in Lemma (2.2) with A, = hmax — Pmin — 00, A, = O(n?) for 0 < § < 1/3 and assume that
there exists some h such that h< hmin, An/(Amin—h) — 0 and h— oo, some h** such that h** < hyip,
h** — oo and A, /vVh* — 0 and a sequence I(h) = ( Lhr s b)) of p?h x 1 vectors partitioned into
p? x 1 vectors 1, such that for some constants My and M, 0 < My < 1L(R)|I? = 1(h)'1(h) < My < oo



for all h = 1,2,..., and 307 [1ih = Ll F = 0(872) 0 X021 32 1 = Ljhee | < 00 as well as

St llall? = o(A52) for all b — 00, hunin < h < hmax. Then

(fn)’

wﬁn

vn [vec(fr(ﬁn)' — W(ibn)/)} 4N (0,1).

Remark 1. The rate at which A,, — oo can essentially be arbitrarily slow. Thus the restrictions on

h** and h are quite weak.

Remark 2. Note that the tail summability conditions in the second part of the theorem are automat-
ically satisfied for the fixed vectors | with 'l < oo that satisfy the additional constraint > 22, 4 ||l; 12 =
0 (A?) for some h— oo. The second part allows for more general limit theorems where [(h) fluctuates

except in the ’tails’.

Remark 3. While the theorem essentially provides the same results as Lewis and Reinsel (1985) for
many cases of practical interest it nevertheless requires somewhat stronger assumptions both on C;
and [(h). A different proof strategy may lead to different and maybe less restrictive conditions but it
seems unlikely that a result at the same level of generality as in Lewis and Reinsel (1985) can be shown

without establishing adaptiveness of B

Remark 4. For i) it also follows that /n (l(ﬁn)’vec(ﬁ(ﬁn)’) — 1" vec (7r(oo)’)> <, N (0,w) because
[I! vec (m(00)")| < l(ﬁn)/vec(w(l}n)’) + /My Z;ihmin‘i’l ||7;|| with \/ﬁzﬁhmmﬂ |7;]| — O.

The next result is a refined version of Theorem 1 of Lewis and Reinsel (1985). It establishes a
uniform rate of convergence for the parameter estimates when the lag length is chosen by the general-

to-specific approach of Ng and Perron (1995).
Theorem 2.4. Let Assumptions (A) and (B) hold. Let hy, be given by Definition (2.1). Then

J#t0) = (i) = Oy(108 /)

and 33325 Il = op ((logn/n)'/?).

The result in Theorem (2.4) is particularly useful to establish consistency and convergence rates
of functionals of m(L) such as the spectral density matrix of y;. The result presented here is stronger
than a corresponding result for nonstochastic lag order selection presented in Lewis and Reinsel (1985,

Theorem 1) where only uniform consistency is established without specifying the convergence rate.



Theorem (2.4) complements results in Hannan and Deistler (1988, Theorem 7.4.5) where the case of
nonstochastic h sequences is analyzed.

Theorems (2.3) and (2.4) do not rely on a specific model selection procedure. All that is required
for the theorems to apply is that there are sequences hpmin and hmax satisfying the conditions stated
previously and a datadependent rule iLn such that P (hmm < iLn < hmax> — 1 as n — oo. It is thus
quite plausible that feasibility can be established for a broader class of selection procedures than the
one considered here.

Under more restrictive assumptions this can even be done for AIC based procedures. In fact for
VARMA models 3772, mj = O(py ") where pg is the modulus of a zero of C/(z) nearest |z| = 1. Hannan
and Deistler (1988, Theorem 6.6.4 and p.334) show that h, selected by AIC satisfies h, /b — 1 =
0p(1) for h¥ = logn/ (2logpy). It thus follows that n'/2 Z;’;M%H m; = O(n'/2=M/2) which is o(1)
for M > 1. This suggests that at least for VARMA systems AIC could be used as an automatic
order selection criterion for autoregressive approximations®. Feasibility of this approach follows from
Theorems (2.3) and (2.4) because there exist Amin = M A /2 and hpax = (logn)?, 1 < a < oo, satisfying
the requirements of the theorems. This shows that for M > 2 and hy, selected by AIC, the rule M hin
can be used instead of the general-to-specific procedure if the underlying model is a VARMA model.

3. Conclusions

In this paper data-dependent selection rules for the specification of VAR(h) approximations to VAR (oc0)
models are analyzed. It is shown that the method of Ng and Perron (1995) can be used to produce
a datadependent selection rule iLn, such that the parameters of the approximating VAR(h) model are
asymptotically normal for the parameters of the underlying VAR (co) model. The asymptotic normality
result does only hold on essentially finite subsets of the parameter space. Uniform rates of convergence
for the VAR(c0) parameters are thus obtained in addition.

The results presented here extend the existing literature where so far model selection has been
carried out mostly in terms of information criteria. Such criteria are known to result in sizeable higher
order biases. On the other hand, the selection criteria analyzed here do not suffer from these biases. The
paper also reconsiders some existing proof strategies in the context of infinite dimensional parameter

spaces where the concept of consistent model selection is hard to apply.

°T am grateful to one of the referees for pointing out this fact which is discussed in Hannan and Deistler (1988, p.

262).
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4. Proofs

4.1. Auxiliary Lemmas

The following Lemmas are used in the proof of Theorem 2.3. The matrix norm || A||3 = sup;o I'A"Al/U'l,
known as the two-norm, is adopted from Lewis and Reinsel (1985, p.396) where the less common
notation |.||; is used. There it is also shown that for two matrices A and B, the inequalities | AB|* <
| AJ|2||B||* and ||AB]||* < ||A||* | B||3 hold. First it is shown that the mean of y; can be replaced by an

estimate without affecting the asymptotics.

Lemma 4.1. Let Yt’h = (yg — N;v%’efl — ,u;, A ,u’y), and let Fl,h =(n-— h)f1 ?;hl Yt,h (yt+1 — ,uy)'
and Iy = (n—h)™! K Ythfft’h Let #(hy,) = f’lﬁ f‘gl and #(hy,) is defined in Section (2). Then
Hﬁ(ﬁn) — i(hn)|| = 0p(n=1/2).

Proof. Choose § such that 0 < § < 1/3 and pick a sequence h’. such that hApmax > h

min min’

Pmax — hi — 00, Amax — . = O(n?) and n'/2 3% |7;]| — 0. Define

min min J=hl i+l

—1
i = 00 { B P = (012 523, ) }-

It follows that Amin < Amax and

—1 -1
(4.1) min {hmax — Ninins <n1/2 Z;c:)h:nin—&—l ||7TJ||) } = hmax — Pmin < <TZ1/2 Z?ih;‘mn+1 ||7T]||>

such that hmax — hmin — 00. Because hmax — b}, = O (n‘s) it follows that Amax — Pmin = O(na).
hmax] it also follows that n'/2 > iehmt1 ITjll — 0 and (hamin)® /n — 0. Let H,, =

{Alhmin < h < hmax} . Note that from Lemma (2.2) it follows that h, € H, with probability tending

Since hmin € [h

min’

to one. Consider

. f .7 e * m—1 * S A |
R N [ e
where
R § NS S N B SRS T )
P Lo = (n=hn) S0 Yo (= 9) + (4, @Gy = 9)) (n=hn) D (1 — 1)

t=hn
n—1-— iLn _ _
" (15, @ (1, = 9) (1, ~ 9)
n— hy,

11



It now can be established that

n—1 h n—1
71 max 72 /
E,{g?jﬁ ) Z (yt+1 Hoy < h}h; (n—h) Z trE (yt+1 - My) (ys+1 - :U’y)
t=h min t,s=h
n—1
_ /
< O(nts) (n - hmax) 2 Z ‘tI‘E (yt+1 - Ny) (ys+1 - :uy)
tvszhmin
= 0 (n_1+5> .
and
—1 —n-1 2 funax —2 n—1 YRR Ve,
Emax|[(n =) S | = 3 (- n) ey, BV,
he€Hn h=nRmin ’ 7
h
< A e T ITEL ]

(TL _h )2 t,5=hmin
max

= o0 (n_2/3+5) .

Furthermore, ||1; ® (p, — ?j)H2 = 0, (n™%/3) such that Hf‘l i =TI hH = 0,(n"'/?) by the Markov in-

equality and Lemma (2.2). In the same way,

. 3 Nl o IRY ~ Nl
Dy, — T, = (n=ho) S050 Vi, (1,9 0 —0) + (1@ G —9) (n—ha)  Si50 ¥
n—1-hy, B IRY
t—— (1 ® (hy y)) (1,;” ® (1y — y))
n— hy
such that Hf‘hn — fﬁnH = op(nfz/ 3+9). By the arguments in the proof of Theorem 1 in Lewis and

Reinsel (1985) it then also follows that Hf;l - f;” =o0p(n"1/?). m
Lemma 4.2. Ify; has typical element a denoted by yf and w;; = (yt — ,uy) (yt,i — yy)/ then
E(wt Zw ) Fyyryy + 715 o Srilys + F1‘, s+jF?tJyz S + IC4

where the scalar coefficient v{?, is defined as v{Y, = F (yt — uy)/ (ys — ,uy) and K4 is a p X p matrix
with typical element (a,b) denoted by [, and given as

(Kalt,s,i,5)], Zcumabrrstt i,8—7J).
where Cumgbrr(s,t,t — 14,8 — j) Is defined as
cumgb”(s,t,t—i,s—j) :cumZTbmr(j,t—s—Fj,t—z’—i—j—8,0)
P 00
b ‘ . o
- Z Z Cll’]lCZQ’JQCZ;JBCZ]4 cumy, . j, (l4 —h+gly—lo+t—s+jlg—Ilg+t—i+7— S)

12



with c?’b = [C}], - It also follows that

oo
Z ’cumszvm(s,t,t —i,8—7)| < oc.
5,t,j=—00
Proof. Without loss of generality assume p, = 0. Then the matrix wmw;’j = Yl Ys—j =
wyl S byl oyl j has typical element (a,b) equal to yfyg b, Yi—iYs—j- The result follows from ap-
plying F(wzyz) = E (wx) E (yz)+ E (wy) E (z2)+ FE (wz) E (xy) +cum™* (x, y, w, z) for any set of scalar
random variables z,y, w, z with E(z) = 0 and E |z|* < co with the same conditions on y,w and z. It

thus follows that

P

b
Elwgwi,],, = > E (y?ysy%"fiyélj‘)
r=1
p
* . .
= W T+ [P0 O] D el (st — ).
b b 7‘:1

For the summability of the cumulant note that

oo (o]

Z cee Z ’Cllmil7,.,7ik(l1 4+t —ta, . lg +t3 — t4)‘ < 0

t1=—0o0 tz=—0o0
uniformly in Iy, ...l4 by Assumption (A). The result then follows from the absolute summability of c?’b

fora,be {1,..,p}. m

Corollary 4.3. Let K, be the p? x p? commutation matrix Ky =57

ij=1€i€; ® ej€; where e; is the

i-th unit p-vector. If y; is a vector of p random variables then
E(y: @ ys) (Y @ yy) =T7, @TY  +vecT¥, (vec Fiﬁr), + (T7Y, @T%,) Kpp + Ka (t,5,7,q)

where K4 (t, s,7,q) Is a matrix with

— y*
Kalt: 5,7 )ap = CUDFa 1) 0 mod . b/p) b mod p (5672 )

[a] is the smallest integer larger than a and amodp = 0 is interpreted as a modp = p with

(o ¢]
Z |K4(t17t27t37t4)| < 0.

t1,...,t3=—00

Proof. Note that (y:y, ® ysy,) = vecysy; (vec yayh) = vecysy, (vec yry;)/ Kpp = (41Yq @ Ysyy) Kpp-

13



Lemma 4.4. Let H,, be defined as in Lemma (4.1) and let Assumptions (A) hold. Then
. 2y —2/3+45
Elm I'y =T = < > .
<he% [[Th = Ta| ) O(n

Proof. Without loss of generality assume that p,, = 0. Then

= 2
E Iy-r < max T, —T
(g I - 0al*) < Shog, B0 -1
2 hmaxp2 2/3468
< R cohp®/(n = h) < Apcg—"— = O (n— /3+ )
min _hmax
because
< 2 !/
EHFh_FhH = _ 2 Z Z trE(@/t let —j2 _F]1 ]2> (ysfjlyg_h _F.Z;f*.h)
n t,s= h]17J2 1
- n_ 2 Z Z tr( tygsrtygs+rlfyyjz+31 sFtyygl —s+72 +IC4> :O(h/(n_h))
t,s=h ji,j2=1

by Lemma 4.2 m

Lemma 4.5. Let Assumption (A) hold and assume that > 2, ||Cj|| < oco. Then |Thl, < oo and
1T 1H2 < 0o uniformly in h. Let x;, € R with hmsuph |@|| < co. Then ||y < oo and ||T;, th <
oo. Let I‘flk be the j, k-th block ofI‘hl. Then, ) j:l “Fk_ H < oo and Z HFJkH < oo uniformly

in k, h. Moreover, sup HF%W < oo uniformly in h.

Proof. The properties ||T'y|l, < co and HI‘}:]‘H2 < oo follow from Berk (1974, p. 493) and Lewis
and Reinsel (1985, p.397). Then, |[Tyzp| < |zl ||Th]l; < oo and HF,:la:hH < ||z HF,:le < oo.
For the last statement take e;ch = (0p, ..., 0p, I, 0p, ...)" where the p x p identity matrix I, is at the

k-th block. Tt follows that ||egp||> = p which is uniformly bounded in h, Z] 1 HFyy H = |Thexnl <
VPIIThlly < oo with a similar argument holding for Zj:l HF?}’ H . The last assertion follows from
HF?L’]{‘ = e&hf,;lekﬁH <p HF,:IHQ < oo for any j, k uniformly in h. m

Lemma 4.6. Let Assumptions (A) and (C) hold. Then, 22:1 k2 ||T%]| < oo and ZZZI HI‘?LkH < 00

uniformly in j, h.

Proof. The first statement follows immediately from Assumption (C). The second result follows

from Hannan and Deistler (1988, Theorem 6.6.11). m

14



Lemma 4.7. Let Assumptions (A) and (C) and the conditions of Theorem 2.3 hold. Then,

S X [ 08Y]| = o — )7

for all h*, h such that h > huyin > h* > h, h*—h= O(hmin—"h), hmin — h* = O(hmin—h) and h— oo. If
instead of (C), Assumption (B) holds then for any fixed constant kg < oo and for hpyin, hmax as defined
in Lemma 4.1 it follows that Suppefp, . ... SUP <k, Z]];thin+l HF%kH — 0 as n — oo where the sum

is assumed to be zero for all n where kg > hmin.

Proof. Let I'y, be the infinite dimensional matrix with j,k-th block F%yﬂ. for j,k=1,2,....and Fgol
the inverse of I's, with 7, k-th block denoted by I'2¥. From Lewis and Reinsel (1985, p.401) and Hannan
and Deistler (1988, Theorem 7.4.2) it follows that

h h h i—1 —
(42)  Thoe TharE| < S X S5 Il 55 I

1
< ULE_Q (Seeon 2 e} (252 sl = of (" = )7,

where 7; = 0 for j < 0. Next use the bound HF‘ZLkH < HI“Z,fH + HF%k — FJOOICH . From Lewis and Reinsel
(1985, p.402) it follows that

h h ik ik h h
Shon Sha || - = Shoe SR S s — mill [ S5k | Imissoans
h h
Y S XI5 el ||E k|| Wi ksines — il

h h
e Xy S Il Bk -

0! Imias

where the last term is o((h* — h) ') because HE” ith—j -3t

(4.2) applies. Next, note that

’ = O(1) and the same argument as in

h h
S S S Imisons = mil [ S5k | Wresnsansl
h -1
< i1 iz Imiivn— — mill sz i+h=j ‘

h h
+Zk:h* 7:12 ||7rzz+h —J 771” HEU ith— ]H ||7Ti+k—j||

Zk—h* T ith—sith—j — Tith—j|

where the second term again is o((h* — k) ') because of the uniform bound in (4.3). From Hannan

and Deistler (1988, Theorem 6.6.12 and p. 336) it follows that

h h h
D hmne 2t ITik—givh—j = Tivk—ill < D501 D hen i vigen 17kl

h -2
i (anin — )7 302 i B2 [l
0 <Z;me Y 2) = 0((hmin —h) ™)

mln

IN



where the bound holds uniformly in ¢ = 1, 2, .... Similarly, for all ¢ < j,

"
I7iirn—j — mill < 3my 7 s itn—g — sl < 2ais hpnn 175l

where the first inequality follows from the fact that h — j > 0 for all h € H, and j <h and the
second inequality follows from h > hp;, and Hannan and Deistler (1988, Theorem 6.6.12 and p. 336).

Substituting for ||7; ;4n—; — ;|| it can then be seen that uniformly for j <h,

i1 i1
(4.3) Yoo lmiirn— —mill < 30 e, n sl
. —2
< 220 (i hmin — h) Zzii-s—hmin—@ 5% |||
S Eht a5 Il = 0 (i = 1))

This shows that Zzzh* ]ﬁ»:l HF{Lk — FjookH =0 ((hmin — h)71> .
For the second part note that

IN

S Sl |1
ko |50 (202 o ell) (222 llmsl)) — O

h J,k

IN

uniformly in h. Also, note that
S0 i = mill < 20 S22 I — 0
as well as
D320 Skt ikt = ikl < 32520 SR 1y 7kl = 0
such that ZZ:hmin 41 250:1 HF ‘;Lk — F%okH — 0 uniformly in h by the same arguments as before. m

Lemma 4.8. Let Assumptions (A) and (C) hold, define

l—‘gl — [F}:n}ax] 11 [F]:n}ax] 12 N Fllvhmax F127hmax
max — —
[Fhmax] 21 [Fhmax] 22 F217hmax F227hmax

such that [Fgﬂlm]n is the right upper hp x hp block of I‘;nlm and similarly for I'1q .. and let A =

max

]‘—‘127hmax]‘—‘2721’h I'21 hmax With typical p x p block (a,b) denoted by Aqp. Then

R h —1
St S [l = 0 (hin = 1))
for any sequence h* such that hpyi, — h* — 00 as h — oo.
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Proof. Note that A,; = tha"_h rs I‘f;’h 7h1“ggj27h because 'y p,

j17j2:1 j1+h*a max = Fllyhmaxfh by the

max

Toeplitz structure of the covariance matrix. Then it follows by Lemma (4.6) that

A

h* h h* heo—h
P2/ w0 [V D DD v il | VTR

hmax—1 SITYy
C(Zg:uhminfh*f I'j

hmaxfh j b j
SUDj, <hpax—h Zj2:1 HF{fmﬁth Zl?i—oo HngH
) = o (e = 1)

e oo T < ¢ < 0o uniformly in h. =

IN

! h J1,J2
where sup; <5 >, 1 HFh

4.2. Proof of Main Theorems

Proof of Theorem 2.3:. The proof is identical for parts i) and ii) unless otherwise stated. Define
hmin and H,, as in the proof of Lemma (4.1). In view of Lemma (4.1) we can assume that ty = 0. We
therefore set § = 0. Let wo,(h) = I(h) [vec(7(h)" — 7(h)")]. Note that /nwon(hmax)/Wh,. 4N (0,1)
by Hannan and Deistler (1985, Theorem 7.4.8). Then

\/ﬁ (wOn(ﬁn) B wOn(hmax)> _ \/T_l Whmax (wOH(iLN) - wOn(hmax)> + wOn(hmax) (Whmax - wﬁﬂ)

wiL Whmax U)}‘anJhmax

n

where wy, is uniformly bounded from below and above by Lewis and Reinsel (1985, p.400) such that

wj, is bounded from below and above with probability one. It is thus enough to show that
(4.4) Vvn (won(ﬁn) - wOn(hmax)> = op(1)

and

(4.5) wh,
Next note that for any n > 0,

P [V (wou(ha) = won(bmax) )| > 0] < P [,gon [V (won (1) = won (o)) | > 1
+P [ﬁn ¢ Hn}

where the second probability goes to zero by Lemma (2.2).
Let uep =y — Z?:l mjy—;. From Lewis and Reinsel (1985, Equation 2.7) it follows that

won(h) = 1(RY vee ((n = )™ S0 wesnnYial7")

17



such that

vn— max (wOn h) wOn(hmaX))

— N — Rmax ((n h)~ ! (n—hmax)_l)l(h)’vec (Z?:_}futﬂ’h}/zhf’,:l)
(1= hana) ™7 05 UBY (07 © Iy ) vee (Ut = Wttt )
(1= hana) ™2 1RY (D7 @ I ) Voo (000 Uttt Vi = 0T Ut Vi)
(0= ) 7 (15 (U0 (05 Yer © £y) = Hhman)' (E5L, Yoo @ L) ) 410

= W4p + Wsn + Wen + Wrp
where wyy,, ..., w7, are defined in the obvious way. First, consider

il = Vi s (0= )7 = (0= ) ™) I[P, S Nl e

An _
= 0= T )2 H 1” S ih el [ ¥enll -

maxpen, |uciin| and

In order to establish a bound for maxyecp, |wan| we consider maxpep, HF;I‘ ,
2
maxpen, ||Yzn| in turn.

From Lewis and Reinsel (1985,p.397) we have Zp, = Hf‘gl — F}:1H2/F (Hf;l - F;1H2 + F)

IN

Hf’h—FhH2 where F' is a constant such that HF}:]‘HQ < F uniformly in h and EHf‘h—FhH2

IN

. 2
E <maXheHn Iy — FhH > =0 (n*2/3+5) by Lemma (4.4) such that maxpep, Zn, = op(n~1/319/2).

Then, maxpem, Hf,;l - F,;1H2 = maxpen, F2Znn/(1 — FZp,) = op(n_1/3+5/2) and

4.
0 PR

f,fH < F + max
heHy,

e s Y OX ()

For maxpep,, ||ust1,5] consider

E = F
(st ) = & (g

h
t+1 — -_7T't17'H
max |1y > i1 TiYt1—j

IN

h
Bl + & (e Sl Il 1)
Bl + 554 sl Bl 1l < oo

IN

such that maxpep, ||usr1,n]| = Op(1) by the Markov inequality. Finally, ||V;]* = Z?;é lye—j]|* such
that
E v 12 =p 2 _ 0 1/3
max || Yy p[|” = hmaxE [lye]|” = o(n"/?).
heH,

18



These results show that
_ A /S — b —1/2) _ ( —1/3+6)
i?el%l}i |wan| = 0p < w7 P (n = hmax) op (n
For |ws,| consider ws,, = ws1y, + ws2, where
wsin = (1= huax) 2 U UR) (0 = 031) © 1) vee (uessn = wess ) Yi)
and
ws2n (h) = (n — hmaLX)il/2 Z?;Izl l(h)/ (Fizlyt,h ® Ip) vec (Ut1,n — ut+1,hmax) .

For ws1, consider

|ws1n| < max
heH,

R (07! =13 ) @ £y | (0 = P ™2 52050, a0 1 = e ) Vi |

!/
where F/ maxpcH,, (Ut+1 h — U1, hmax Y

N\ 1/2 2\ 1/2
ol < S Il (B lwi-a?) (EmaXheHn Ly

with sup, E ||ys||> < ¢ < oo and
E Vi 12 = o(nl/3
max [[¥; " = o(n ™)

from before such that

— — n J— h .
(n — hmax) 1/2 ;z: lmm E maX H Ut p1,h — U, o) tthH < 1/2( min) e nl/2c Z HWJH O(nl/ﬁ)
n (n o hmax) ]th1n+1
= o(n/%).

Also, maxp, Hl(h), <<fi:1 - F}f) ® Ip) H < pM21/2 maxy, Hf’;l — I‘;l = op(n_1/3+5/2) such that ws1, =
op(1).
/ .
Use the notation I(h) = < Lo o l27h> where 1, is a p? x 1 vector with [, = I; for part i) and I’?lk

is the j, k-th block of Fgl and note that

.

E max [wson ()]? < S0 E |wsan (h)[?
hEHn min
max - max k17k2 2
< Zh Pommin (n— hmax) ( Zkl,kg 1 Zj =h+1 lkl,h (Fh ytfk2®7rjyt—j>) .
From Corollary 4.3 it follows that
hmax kla 2
< Zkl ko= ].Z =h+1 k?l, (F yt k2®77]yt .7))

!
!/ /
— hmax Y k17k2 Y k37k4
- Zt ,s=h Zkl, Lka=1 Jj1,j2=h+1 lkl,h vec <7T]11_‘k2 —J1 (Fh ) > vec <7T]2Pk3 —J2 <Fh lk47h
/
k1,k2 yy ) WYY ks3,ka
Zts thl, Jka=1 Z]l,jg =h+1 k?l <]‘—‘ Ft S+jo2— k‘Qﬂ-JQ ®7r.71]‘—‘tfs+k37j1 Fh Kpplk4,h

hmax k1,k2 yy k3,k4 Yy
Zts thl, Jka=1 Zjl,j2=h+1 k1,h (F Ft s+ks— Fh ®7T]1Ft s+j2—7J1 .72 lk47

B ko . : s
+ e thl, Kzt o U n (F ' 2®7T31>’C4(t—k2,t—31,8—k3,5—12) (F ° 4®7Tg2> Ua,h
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For the first term note that
1 h E1k2 ) 2
n— max yy )
tseh <Zj_h+1 S kgt Uiy VeC (WJFkQ —j <Fh1 2) >>
2
hmax 2 hmax k ,k}
n p < j=h+1 ||7T]” ) ( j=h+1 HZkl ko=1 lkl ( ! 2F‘Z;yk2 & Ip) H >

< Kn2p (Z;ihmin-i-l ||7T]||>

IN

because

S [ St (T2, @ 1) [ < ) o T < K

where I'j, is a matrix with k, [-th element Fl th_ny1 and K is a generic bounded constant that does not

depend on h. Then

2
hmax -1
S (0= ) K (52, 1)
2
= Knp(n—hmax) Ay (n1/2 Zc')o:hmin“rl 17 ||>

< Knp (n - hmax) ( 12 Z] =hmin+1 H7rj||> —0

where the inequality follows from (4.1). For the second term consider the following term of equal order

2
hmax h lc ki
[ty S sty (ET s 0 1) || < B (S 1)

which only differs by K,,,. The inequality holds because

2
1 max k 7k 2
?s h <Z Zkl,kg 1lk1 ( ' ZF?ka s+j ®Ip>H ) (Z;ihmin+l [ )
hmax k1 ko 00 2
S e s | (S [t (TR @ 1)) (S e 1)
2 2
h h k1,k
P | (St [ St (05 9.1 ) (S 1)

IN

hmax hmax
< Zj:l Zk‘z 1Zu——n+1 (n — |ul) ‘

0 <hr2nax” (Zﬁhmml ||7T7H>2>

such that the second term is of smaller order than the first term. Note that here

2
222:1 HZZl:l Uy <F21’k2 ® Ip) H =0(1)

because [|I(h)’ T,'® L) < [lim)| HF#HQ is uniformly bounded in h. Finally, turning to the third

20



term,

h k ,k —1 hmax k 7k
Zkl,...7k4:1 ;Cl,h (F b ® I ) :L,s:h (Ftygs—i-kg—kg ® Z]l J2=h+1 WJIF? S+j2— ]171-;2) (F o @ I, ) lk‘4,h‘
9 1/2 2 1/2
_ h h K
(2 hat, (% o 5) ) (Sho b (0 o))
hmax
(Zkz 1Zk3 1 HZts h( t—s+ks—ko ®Z]17J2 =h+1 7Tﬂlrty 5+72 J17T92>

‘2> 1/2
= 0 (o (S I

such that the third term is also of smaller order than the first. Finally, the fourth order cumulant term

IN

is of smaller order by Corollary 4.3. Therefore, wsa, = 0,(1).

For |wey,| note

4.7 <
(4.7) |wen| max

10 (T @ 1 )| (0 = o)™ S8 e e[V

/
Yin

| < (et + 520 Ul s macne, [[¥7,| and

max” H

where ||upy1p

! _ 1/6
£ (a5 e [} = ot
by previous arguments such that the last term in (4.7) is bounded in expectation by
O (Auhtf2 (1 = ) ™/%) = O (n71/3+9)

and thus |wey,| = 0p(1).

Finally, consider |wz,|. We distinguish the following terms

win = U(h) ((f,;l - r,;l) ® 1,,) vec ((n ~ hnax) Y2 (Ui (h) + Usn, (h)))
~Uhma) (Tt = Tak) @ ) vee (7 = hmax) ™/ (Uin(max) + Uz (hna)))

+ (n - hmaX) 1z Zt hmax ( (h)/ (Ffjlyt,h ® Ip) - l(hmaX) (F riath hmax @ 1, )) WUt+1,hmax

= W7lp — Wr2n + W73n
where wr1p, ..., wrs, are defined in the obvious way and Uy, (h) = Z?;hlmax V1Y) ' and

Uan(h) = >/ hmax( i+ Lmax — Vit1) Yip-

For the term wrgy, the proof of Theorem 2 in Lewis and Reinsel (1985) can be applied to show that

wran = 0p(1). For wri, and wrs, we need additional uniformity arguments. For wyq consider

iy (O =1t) @ b)) =1y (0t @ 1) ((Tw = Tn) @ 1) (T3 @ 1)
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where the vector a(h) = I(h) (I',! @ I,) satisfies la(h)||* < oo for all h. Then

(1~ o)™/ (U10(1) + U (1)

oty (10— £2) 1) | e

heH,

0, m

|wr1n| < max
2 heH,

heH,

A

Using the result in (4.6) it follows that maxpegm, Ffjl”z = Op(1). Next consider

/ )
— <
a(h) (T = 14) @fp)H p pa |a(h) | max

max Fh — FhH

heH,

such that it follows from Lemma 4.4 that

2
/ T — —2/3446
El?é%{}i a(h) ((Fh I‘h> ®Ip)H O(n )

Next, consider

1/2 2 .=

B i (0 = huna) ™2 U ()| < (0 = huna) ™ t_; E (v 110041) BY! Vi = 0(n1%).

Finally,

—1/2 y N\1/2 N — hmax S R 1/6

B o | (n = haax) ™ V()| < (B||Ype”) T hZH 1l = o(n/°)
X J=Nmax

with sup, (E Hy,?”)l/2 < ¢ < 00. This shows maxpep, [wrin| = 0,(n~Y/3+9/2n1/6) = o (1).
Next, let ¢;p, = I(h) (Flem ® I) such that
wrgn = (0 — hamax) 7> 3000 (Con = Copman) (Ut L — Ve1 + Vi)

and E HCt,hHQ =1(h) (F;l ® Ip) l(h) < C < oo by Lewis and Reinsel (1985, p.399). Then

(n — humax) 2 02 o B (Con = Cthmmae) (Ut 1, b — Veg1)|

1/2 1/2 °
< (Bwasien, [|Con = Conned IP) T (Blwel?) ™ (0 = hma)> 30 il =0

j:hmax+1

where E'maxpep,, H (Cen = Cohma) H2 = 0(1) by the analysis below and

B [0~ hana) 2 T35 (o o) v |

(n = hmax) ' Y0t B [(Ct,h = Cthman) Vet 1Vs1 (Cop — C&hmax)/]
E (Gt = Cone) Do (Cen = Cons)'|

1Zull E ]| ot = Gt I

IN
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where we have used stationarity and the fact that Evi1v, , = E(vipv,,|F:) = 0 for t > s and
E(vi1vp4|F) = Zo.

At this point the proof for Theorem 2.3 i) and ii) proceeds separately. First turn to i). Since
h < hmax,

max l
Hzgz 1% (ng Yt— Z®I) Z;Ll 1Y (F] max ytfl®fp)H
G =T ) v )|+ st 6 (T3 @ ) || el

+ maX7 max l‘; <P‘77 ® Ip) H ||yt7l||

1¢eh = St

< Zj,l:l

j hm1n+1 l 1 hmax

where sup, E ||y¢||* < ¢ < co. By Hannan and Deistler (1988, Theorem 6.6.11) there exists a constant
c1 such that supy, sup, <, Z?_l HI‘j’lH < ¢1/p < o0. By the second part of Lemma (4.7) and for any € > 0

there exists a constant kg < oo such that sup;y, Zl Y HI",’JMXH — 0and 3322, ([ < ecyt.
Then
hm x;hm X l ‘,l k
sheetee [ (T e B)|| < psuper, St [T S
max ‘7l
DD 1 [T || 5k I
< o(1) +e.
Also
hm X’hm X l max "l hm X
Z a1'n1n“l’a]-l 1 Hl, H HF‘]max < Supj<hmax Zl 3 F.;lmax Z] aLmln‘i’]- Hl H - O

by the assumptions on I. Now define constants c; = 2372 [/l and c2 = 4sup,e g, sup;j<p, Zlh:1 HF?{Z H .

For any ¢ > 0 fix integer constants ko, k1 such that > 22, ) [|1;]| < ecy ! and

h ]71 -77l _1
SUPhe H,, SUPj <k Zl:k1+1 (HI‘h H + HFhmaxH> <&

where the last inequality holds for some k1 and any kg and all n > ng for some positive integer ng < 0o

by Lemma (4.7). Then

h il l ko,k j 1 sl
supnerm, S Il |05 =3[ < SRl supen, |13 - T3
h 1 l
+ 252 ko1 il suPpem, supj<p 31y <HFJ H + Hrgzmx )
l ’
+ZJ 1 125l SUPpe pr, SUD <k STy 11 <HFJ H + Hrjmax )
< o(l)+e

because for fixed ko, k1, supsep, HI‘?{Z — I‘i’fnaxH — 0 by Lewis and Reinsel (1985, p. 402) and Hannan
and Deistler (1988, Theorem 6.6.12) such that maxpep, ||Crn — Cpmae || = 0p(1)-
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Now turn to the proof for Theorem 2.3 ii). Partition {(Amax) = (lN(hmaX)', Zl(hmax)')’ where Z(hmax) =

! L /
/ / ! __ ! / :
(ll,hmaxv“"lh,hmax> y L (hmax)' = <lh+1,hmax> ""lhmax,hmax> . Consider

hmax

o = e < 30 B G G
—min

with

2

(4.8) E|Cen = Conman
= 1(h) (T}, @ ) 1(h) = 2U(h) (T}," @ Ip) I(hmax) + L(hmax) (T}, @ Ip) 1(7max)

1RY (T @ 1,) (1R) = U(hma) )| +

@m—ﬂmmDXqﬁ®@ﬂmmﬂ

IN

+Wmmy@f®gﬂmmg—«mmywﬁw®@ﬂmmg.

Note that for any sequence h** — oo such that Z?:;l i = Lig b |2 = 0(A52) and A,,/vB** — 0,

(1) = 1) (057 1) )|

2)1/2
h 2L . 2\ 2 (<n S N T I AY?
+ Zjlzh**+1 (Jl) || Jish ]1yhmax|| Zjlzh**—‘rl (Jl) ng:l h ® P | Yj2,hmax

= oA

n

. 1/2 o L
h 2 h h ,
< (S0 Wi = L) (zjlzl |2 (T8 © 1) Ui
2)1/2

2, HF}:1H2 is uniformly bounded by

* % ; 5 2 ~
Since Z;ll:l “2?2:1 (F‘;L17J2 ® Ip) lj27hmax S H (]‘—‘}71 ® Ip) l(hmax)

Lewis and Reinsel (1985, p.397) and HZ(hmax)‘ < +/My uniformly in A. Since also

h . 2
Zjlzh**+l .7]? Hl,]l,h - leahmaxH < &Y
and

2) o <<Z§1:w+1jf2)” 2) =0 (1/Vi)

the second term is o(A, 1) as well. Finally, consider

h —2 h 15
(Zj1=h**+1 Y Hijzl <Fi1 ”® Ip) Ljs himax

(hmax) - l(hmax)/ (F}:iax ® Ip) l(hmax)

= ’Z(hmax), ((Fgl N [F}:Irllax]ll> ® Ip) [(hmax)

+ )l](hmax)/ ([r—l 1, ® Ip) 1 (hmax)

o~
—
>
=)
Q
tl
~—
—~
s
—_
"BN
~—~—
gl

+2 ’Z(hmax), <|:F]:r31ax:| 12® Ip) I1(hmax)
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where ng}ax and I'y, . are partitioned as in Lemma (4.8) where the notation for the blocks of the

inverse [F_l ] - and the blocks I';j ... of 'y is introduced. Then,

(hmax H = o(A,; 1) uniformly

max

in h because by assumption 3h< hpin such that th}j’;l 173 honas II> = 0(A72). Then,

1) ([T, 015 © Tp) i (hama)| =

ma.x

and
) ([0 ) Jp) )| = 0(271).

For the first term define a(h) = (Amax)’ (T, ' ®1,) and a(h) = I(hmax)’ ([F,::;ax]ll ® Ip> where
la(h)|| < oo and [|a@(h)| < oo uniformly in h. Let A be defined as in Lemma (4.8). Write I',* —

[F,:nlm] 0= 1A [th:'llax] 1 by the partitioned inverse formula. Now for h* =h+ (hpyin — k) /2 such
that h< h* < hpyin with A*—h= (hyin — h) /2 and hmin — h* = (Amin — k) /2 it follows that
‘a(h)/ (A ® Ip) a’(h)‘ = ‘Z’Ll 1 ’Ll,h Z]L]Z 1 212 1 (FZIJIAJI ]2]‘—‘]2712 ® I ) li27hmax
< ‘Zzl 1 11 h Zgl Jo=1 ZZQ 1 <F;11’]1Aj1,jzrgzi;:( ® IP) liQ,hmax
N 2 1/2 L L 2\ 1/2
+ Z Hlllth Z Z Z ( Zl’JlAjl’]ZFJZJj ® I ) li27hmax
i1=h+1 i1=h+1 ||j1,j2=1i2=1

where the second term is o(A,; ) uniformly in h by the assumptions on the sequence I(h) and the fact

that ||(A® Ip)a(h)]| is uniformly bounded in h. For the first term consider

11,01 4 J2)i2 .
‘le 1 ll,h Z]l,jz IZ'LQ 1 (F AJI:J2F ®Ip> lZthmax

b2 K 1
‘221712 1 Z]l J2=1 Zl h (FZI leJI ]2Fj2 2 ® I ) l'L27 hmax + O(A )

where the order of the error term follows again from (ZZ —ht1

l;lth2> v =o0(A,') and

h 11,71 J2,i2 .
‘Zil,iz—l Z]l,jg 1 21 h (P A]l ]21_‘ ® I l’L%hmax

< ]1 1 HZ“ 1 Z1 h < 117]1 ® I, ) E]g 1 HAJlJzH HZZQ 1 (Fﬁ]ﬁ( ®Ip) li27hmax
A
(St o) ()
. 2\ 1/2
X (Z?lzh* ng 1212 1< 317J2F22n’]:(®]p) liz,hmax >
< e X e i | 2E ) (T2 0 1) lia

!

11,J1
Fh

o~

()

ﬁlwwM@F@$@%)
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h h
+ (Zy‘l—h* =1 ‘




2

where oo TR =0 ((hmin - h)_1>
by Lemma (4.7) and X0y S0 145l |5y (T2 € 1) ligae| | = 0 (hmin — 1)) because
HZ” 1 <Ffmf ® 1 ) Ligy homax || 18 uniformly bounded and ZJI L 2]2 A Gl = o <(hmin —Q)fl> by

Lemma (4.8). It now follows that Y =3 E|[¢;), — Ct,hmaxH = 0(Ap/ (hmin — h)) + o(1) such that

mln

‘le 1 ln <Fi1’j1 ® I )H < ¢ is uniformly bounded, Z;'ll:h* b )

|wrsn| = op(1) uniformly in h € Hy,.

To show (4.5) note that wj, — Why,., = I(hy) (F;j ® Zv> I(hn) — U(hmax)’ (ngax ® ) {(hmax) S0
that the same arguments used to show E HCt,h = Ct humax
that |ws| < (Fjl’jZ ®Ev) l,

convergence arguments that wp — Zh o 1[;1 (F{;’h ® ZU> lj, < co. The statement of part i) of the

2,0 apply. For part i) of the theorem, note

a1 < oo uniformly in A such that it follows from absolute
theorem then follows from applying the continuous mapping theorem to v/nwo,(hmax)/wh,,,.- W
Proof of Theorem (2.4):. Let ¢, = (logn/n)I/Q. For all € > 0, P< #(hn) — m(hy)|| > cne) <
P(maxpep, |#(h) —(h)| > cne) + o(1). Since h € H, implies that h < o(y/n/logn) it follows
from An, Chen and Hannan (1982, p. 936) and Hannan and Kavalieris (1986, Theorem 2.1) that

maxpem, Z?:l 17— Tjnll < Z?g;x |70 — 7jnll = Op((log n/n)1/2). To see this note that as in the

proof of Theorem 2.1 in Hannan and Kavalieris (1986, p.39), we have

th hmx hl’nx r
e W =il [ < s R B e L A

for k = 1,..., hunax where S [|m; — Hfgak -1, || = 0p(VIogn/n) ... Il by Hannan
and Kavalieris (1986). Again, by Hannan and Deistler (1988, Theorem 7.4.3) it follows that

hmax -
S sl || £ = T8 | = Op(Viog /),

Since Hfgng = Op(1) uniformly by the same result it follows that tha" 1750 — minll = Op(y/logn/n).
Moreover, Z?Zl [7jn =7l = O 52,41 I75l|) by Hannan and Deistler (1988, Theorem 6.6.12). Since

h > hmin and A, satisfies nl/? Z?o:hmin"!‘l |7j]] — O the result follows. m
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