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Abstract

This article examines how different auction designs perform when entry is endogenous and

selective, by which we mean that bidders with higher values are more likely to enter. In

a model where potential bidders are symmetric, we show that three alternative designs can

significantly outperform the ‘standard auction with simultaneous and free entry’ when entry is

selective. When bidders are asymmetric, we show that level of bid preference that maximizes

a seller’s revenues is significantly affected by the degree of selection. We also describe recent

empirical and econometric work that shows that the degree of selection can be identified and

estimated using standard types of auction data.

JEL CODES: D44, L10, L13
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1 Introduction

This article examines the performance of different auction designs in a setting where bidders have

independent private values but entry is endogenous and possibly selective. We will say that entry is

selective when potential bidders with higher values are more likely to enter, as should happen when

potential bidders have some information about their values prior to taking the entry decision. While
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it seems intuitive that entry should typically be selective, this has been ruled out by assumption

in much of the theoretical and empirical auction literatures. In this article we will illustrate that

allowing for selection can significantly affect the conclusions that a researcher would draw about the

value of auction designs that differ from the standard auction with free entry, and that the exact

degree of selection can also affect which design performs best. We also describe recent work that

shows that the degree of selection is identified and can be estimated using types of data that are

usually available in auction settings.

To develop our results, we consider an auction for a single unit of a good and assume that there

is a well-defined set of risk-neutral potential bidders with independent private values. Throughout

the article we will use the term ‘player’ to refer to a potential bidder, using ‘bidder’ to refer to a

player that actually enters the auction and is able to submit a bid. The winning bidder is the one

that is allocated the good at the end of the auction. We assume that it is costly for a player to

enter the auction which she must do to submit a bid. We assume that a player learns her value of

the object when she incurs the entry cost, so it is natural to interpret the entry cost as including

the cost of doing research or ‘due diligence’ on the object being sold.1

As long as the entry cost is not too low or too high, entry will be endogenous in the sense that

a player’s entry decision will depend on what it expects other players to do, as well as what it

believes about its own value. We model a player’s belief about its value by assuming that, prior to

taking the entry decision, it receives, for free, a signal that is positively correlated with its value.

In equilibrium, players with signals above some threshold will enter, and the degree of correlation

will, therefore, control the extent to which entry is selective. This provides us with a framework

where we can examine how the degree of selection, determined by the informativeness of the signals,

affects the absolute and relative performance of different mechanisms, measured either in terms of

the seller’s revenues or total surplus. The common assumption of no selection would involve players

receiving no signals or, equivalently, signals that are completely uninformative.

We use a particular parameterization of our model to compare the performance, both in terms of

revenues and efficiency, of different auction designs. Our baseline design is a ‘standard auction with

simultaneous and free (i.e., unrestricted) entry’ (SASFE), which is the usual way that real-world

auctions with endogenous entry are modeled. As has been documented in the literature, one feature

1We will assume that a player has to incur the entry cost even if she discovers that her value is less than the
seller’s reserve price and so does not actually submit a bid. Therefore, at least when there is a positive reserve price,
it is more appropriate to interpret the entry cost as the cost of gathering information, rather than some bureaucratic
cost of submitting a bid.

2



of this design that can be both inefficient and harmful for the seller is that entry decisions are not

coordinated across players so that the realized number of bidders will be random. With symmetric

players, we compare the SASFE with three designs that deal with this problem in different ways.

In the ‘entry rights auction’ (ERA) of Ye (2007), the seller fixes the number of entrants in advance

and conducts an initial auction for these entry ‘slots’ where players can bid based on their signals.

We also consider two designs where players take entry decisions sequentially, which also allows

for coordination, but also allows for the number of entrants to depend on the information that

the players have and the seller does not. In one of these designs (a ‘sequential entry auction’),

players decide to enter sequentially but the entrants bid simultaneously. In the other design, the

‘sequential bidding auction’ of Bulow and Klemperer (2009) (BK hereafter), players make entry

decisions sequentially and entrants can submit bids when they enter in order to signal information

about their values to players that are taking entry decisions later in the sequence.

When there is no selection, as is typically assumed in the literature, the SASFE generates higher

expected revenues than either of the sequential designs and its revenues are quite close to those of the

ERA. However, once selection is introduced into the model, both sequential designs, and especially

the sequential bidding auction, generate substantially higher revenues than the SASFE and the

revenue advantage of the ERA over the SASFE also increases. The identity of the mechanism that

performs best depends on the exact degree of selection that is assumed. The alternative designs

generate higher total surplus than the SASFE whatever is assumed about selection, but the size

of their advantage over the SASFE also tends to increase when entry is more selective. In our

comparisons, we draw on results developed in Roberts and Sweeting (2013), who compare the

SASFE and the sequential bidding auction, and Bhattacharya, Roberts, and Sweeting (2014), who

compare a SASFE and an ERA in a procurement setting. The new results in the present article

come from using a single set of parameters, so that the sequential bidding auction and the ERA

can also be compared; adding the sequential entry auction to the consideration set; considering how

absolute and relative performance changes when we move from no selection to partial selection (the

earlier papers only consider different degrees of selective entry); and, examining in more detail why

the alternatives mechanisms are more efficient and generate higher revenue.

We also examine how the degree of selection in the entry process can affect the performance of bid

preference programs, that are widely used by government agencies when selling assets or procuring

services, in a model where bidders are asymmetric.2 These programs are partly motivated by

2Roberts and Sweeting (2013) allow for players to be asymmetric in the context of a second-price auction, while
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wanting to increase the probability that bidders of a particular type will win, but also, following

the logic of optimal auctions (Myerson (1981)), by a desire to raise auction revenues by increasing

the competition that strong bidders face. We show that while very large bid preferences maximize

revenues when there is little selection, much smaller preferences are optimal when the degree of

selection is high. These results are also new, and an additional contribution is that we use our

analysis to illustrate how changing the degree of selection changes the level of entry costs required

to rationalize a given amount of entry by weak bidders.

Our paper contributes to the enormous theoretical literature on auction design, summarized

in the surveys of Klemperer (2004), Krishna (2002) and Milgrom (2004). When the seller has a

single unit, and there is a fixed number of risk-neutral and symmetric bidders with independent

private values, it is well-known that the optimal mechanism is a standard auction with a reserve

price or entry fee.3 Much of the theoretical auction literature has been concerned with exploring

which mechanisms perform best when these assumptions are relaxed. We will focus on relaxing

the assumption that the number of bidders is exogenous, and explore how particular assumptions

about they way the entry process works affect the absolute and relative performance of different

mechanisms. Milgrom (2004) uses endogenous entry as his leading illustration of why auctions need

to be analyzed in their correct context, arguing that even auctions that are carefully designed can

fail when too few bidders decide to participate (p. 209).4

We follow the existing literature in modeling the way that standard auctions work as a two-stage

game, where, in the first stage, players simultaneously decide whether to enter, incurring a common

entry cost, and, in the second stage, the entrants simultaneously submit bids. This is what we will

label an SASFE. Entry decisions into an SASFE will be non-trivially endogenous when the entry

cost is ‘moderate’ (Milgrom, p. 217) in the sense that it is low enough that, in equilibrium, some

players may want to enter, while being high enough that some may not.

The cleanest set of theoretical results come from models in which players have no private infor-

mation about their values until they have entered, so that entry is not selective. Assuming that

Bhattacharya, Roberts, and Sweeting (2014) consider a low-bid auction with symmetric players. In the current
article, we show that it is feasible to solve first-price auctions with asymmetric bidders and selective and endogenous
entry. This framework is appropriate because bid preference programs are usually applied in the context of first-price
or low-bid auctions.

3Bulow and Klemperer (1996) show that under these assumptions, adding an additional bidder in a standard
auction will increase the seller’s revenue by more than using the optimal design with a fixed number of bidders
(which involves setting a reserve price). As our results illustrate, this conclusion does not necessarily hold when
entry is endogenous and one considers the effects of adding a potential bidder.

4Milgrom’s second illustration concerns asymmetries between bidders, which we also consider.
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players are symmetric, that the common entry cost is moderate and that the entry game is followed

by a standard first price or second price auction (revenue equivalence holds in this context), Levin

and Smith (1994) show that (i) the symmetric equilibrium involves players mixing over whether to

enter, and making zero expected profits; (ii) the seller’s optimal reserve price is equal to its value of

keeping hold of the object, with revenue-maximization requiring no reserve price and no entry fees

(see also McAfee and McMillan (1987)); (iii) an increase in the number of potential entrants will

reduce expected revenues; and, (iv) when the reserve price is equal to the seller’s value, equilibrium

entry strategies are optimal in the sense that a social planner who also had to choose a symmetric

entry rule would choose the same entry probability that the players themselves choose in equilib-

rium. In what follows, we will refer to the assumption that entry is not selective as “NS”.5 Of

course, property (iv) does not imply that the mechanism is necessarily optimal when compared to

mechanisms where the seller changes the entry process in some way, such as fixing the number of

players that can enter or organizing players to move sequentially.

Assuming NS, BK compare outcomes in a SASFE with those in an alternative procedure where

players take entry decisions and bid sequentially, which they argue is a stylized version of how

corporations are often sold. They show that the alternative procedure raises total surplus but will

almost always generate lower revenues for the seller, because of the ability of early movers to deter

entry. We will show that their sequential bidding procedure can actually increase revenues quite

significantly as soon as any degree of selection is introduced into the model.

A more limited literature has considered endogenous entry with selection. Samuelson (1985)

and Menezes and Monteiro (2000) assume that players know their values when deciding whether to

enter. This is the most extreme form of selection that we will consider, and we will call this the fully

selective, “FS ”assumption. A feature of this model is that bidders with high values tend to make

positive profits in equilibrium. In the SASFE under FS, revenues may increase or decrease when

additional players are added, and the seller-optimal reserve may be greater than the seller’s value of

holding onto the object (Menezes and Monteiro (2000)). Characterization of optimal policies tends

to be specific to the value distributions considered, which is one reason why the NS assumption

has been the focus of most analysis. Hubbard and Paarsch (2009) use a computational approach

to consider the effects of bid preferences to some subset of symmetric players in first-price auctions

5The “not selective” assumption is sometimes called the “LS” assumption after Levin and Smith. Similarly,
the “fully selective” assumption that we introduce as the opposite polar case below is often referred to as the “S”
assumption following Samuelson (1985).
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under the FS assumption.6

Ye (2007), Bhattacharya, Roberts, and Sweeting (2014), Roberts and Sweeting (2013), Marmer,

Shneyerov, and Xu (2013) and Gentry and Li (2014) consider models where players face a common

entry cost but have noisy signals about their values before they enter, as we assume in this article.7

Moreno and Wooders (2011), Cremer, Spiegel, and Zheng (2009) and Lu and Ye (2013) consider a

variant of the NS model where players have heterogeneous entry costs. We consider below whether

this model has similar implications to one where entry is partially selective.

Most empirical work has also tended to make the NS assumption, partly because this assumption

implies that the distribution of players’ values will be the same as the distribution of bidders’ values

which is what can be inferred from the data. Athey, Coey, and Levin (2013) and Krasnokutskaya

and Seim (2011) both consider the effects of bid preferences when entry is endogenous but bidders

do not know their values when deciding whether to enter. In Section 6 we show that smaller bid

preferences may be optimal for the seller when entry is selective. In Section 7, we describe recent

results showing that selective entry models are identified, as well as noting recent empirical work,

including Roberts and Sweeting (2013), Roberts and Sweeting (2015) (timber) and Bhattacharya,

Roberts, and Sweeting (2014) (highway procurement), that show that these models, including the

degree of selection, can also be estimated in practice.

As models with endogenous and selective entry are not analytically tractable, our comparisons

are computational. For ease of exposition, we focus on a single set of parameters for most of the

analysis. While our results hold for a wide variety of parameters and value distributions that we

have considered in our research, the reader should be clear that we are only claiming that selective

entry can matter for the relative performance of different mechanisms, not that it must always do

so. We do not compare the various mechanisms that we consider with optimal mechanisms, partly

because when entry is partially selective, the generally optimal mechanism is unknown although, in

very recent work, Lu and Ye (2014) have characterized the optimal design of a two-stage auction.8

6We extend their computational framework below to consider the effect of bid preferences when players are
asymmetric and entry is imperfectly selective.

7With symmetric players, property (iv) from the NS model continues to hold.
8Cremer, Spiegel, and Zheng (2009) characterize the form of the optimal mechanism under the NS assumption

with possibly heterogeneous entry costs. They show that it could be implemented by a sequence of auctions with
appropriate reserve prices, and possible entry subsidies and entry fees. Lu and Ye (2013) design the optimal two-stage
auction for this case. Lu and Ye (2014) show the optimal form of a two-stage auction where players compete to enter
an auction for the object and entry may be selective. The entry rights auction that we consider here differs from
their optimal form in that the number of entrants to the second-stage is fixed in advance rather than being a function
of first-stage bids, and that our second-stage does not involve those firms that are selected being handicapped based
on their first stage bids.
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The article is structured as follows. Section 2 introduces the basic model, assuming that

players are symmetric, and describes equilibrium strategies and the effects of selection when a

standard auction with free entry is used. Section 3 describes the alternative mechanisms considered

with symmetric bidders and their associated equilibrium strategies. Sections 4 and 5 contain the

comparisons of expected total surplus (efficiency) and revenues. Section 6 considers bid preferences

in a setting where players are asymmetric. Section 7 briefly describes recent work that shows that

the degree of selection is non-parametrically identified and can be estimated using real world data.

Section 8 concludes.

2 Model

In this section we outline the basic model that we will use to compare different auction designs

and illustrate some of the properties of the equilibrium outcomes in the SASFE. For now, we will

assume that players are symmetric, leaving all discussion of the asymmetric case to Section 6.

2.1 Informational Assumptions

We assume that there are N players interested in a single unit of an asset. These players have

independent private values, which are i.i.d. draws from a distribution F V (v) (pdf fV (v)), which is

continuous on an interval [0, V ]. N and F V (v) are commonly known by all players and the auction

designer. To be able to submit a bid for the asset, a player must incur an entry cost K. A player

that incurs this entry cost (i.e., a bidder) is assumed to find out her value for sure, so a natural

interpretation is that K contains a ‘due diligence’ cost associated with evaluating the asset although

it could also include other costs of participation, such as securing the bonds that are often required

in procurement auctions. In what follows we will assume that K is fixed, and is not a parameter

chosen by the auction designer. Prior to incurring the entry cost, each player receives a private

information, noisy signal of her value. Specifically we will consider the case where si = vizi, zi = eεi ,

εi ∼ N(0, σ2
ε) and the εs are i.i.d. across bidders, although the functional form is not important.9 A

player is therefore able to condition her entry decision on her own signal. We assume that the seller

9More generally, and following the exposition in Gentry and Li (2014), one can think of each player receiving a
signal that has a uniform marginal density on [0,1], where the conditional distribution of vi is stochastically ordered
in si. The assumption of independence across bidders is more important, as a player can only infer something about
another player’s value from that player’s entry decision, rather than something about her own value.
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has no value to retaining the object, so that its objective is revenue-maximization.10 The FS model

corresponds to the case where σ2
ε = 0, so the signal is perfectly informative of the player’s value.

As σ2
ε → ∞, we approximate the informational assumptions of the NS model, where there are no

signals, although, as we shall show, this does not necessarily mean that strategies and outcomes

under NS are always similar to those in a model with very uninformative signals.

2.2 Standard Auction with Simultaneous and Free Entry (SASFE)

To illustrate these assumptions, it is useful to describe equilibrium strategies in our baseline mech-

anism, which is the standard model used in the literature to describe most real-world auctions

(inter alia Levin and Smith (1994), Athey, Levin, and Seira (2011), Athey, Coey, and Levin (2013),

Krasnokutskaya and Seim (2011), Li and Zheng (2009) and Bhattacharya, Roberts, and Sweeting

(2014)). In particular, there is a two-stage game where, in the first stage, players simultaneously

and non-cooperatively decide whether to enter, and in the second stage, the entrants compete in

a simultaneous second-price or first-price auction. As revenue equivalence holds when bidders are

symmetric, we will, for tractability, formulate the second stage procedure as a second-price auc-

tion.11 We allow for the possibility that the seller sets a reserve price r that is known to all players

at the beginning of the game. Recall that a standard auction with a reserve price is the seller’s

optimal mechanism when entry is fixed.

In the second stage, all entrants are assumed to bid their values, so that the good will be

allocated to the bidder with the highest value at a price equal to the second highest bidder value.

In the first stage, a player will enter if her private signal exceeds a threshold determined by a zero

profit condition. Focusing, as usual, on the symmetric equilibrium, the equilibrium threshold S ′∗

will solve

∫ V

r

[∫ v

r

(v − x)h(x|S ′∗)dx
]
g(v|S ′∗)dv −K = 0

10This assumption could potentially affect the results by favoring mechanisms that increase the probability that
the object is sold. However, the probability that the object is not sold in an SASFE is quite small, and ignoring
these cases does not change the comparison between the different auction mechanisms.

11In this setting, revenue equivalence holds whether or not bidders are informed of the number of other bidders
that entered into a first-price auction. See Section 6.2 of Milgrom (2004) for an extended discussion.
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where

g(v|si) =

fV (v) 1
vσε
φ

(
ln( si

v )
σε

)
∫ V

0

fVτ (x) 1
xσε
φ

(
ln( si

x )
σε

)
dx

,

is the pdf of values conditional on signal si, φ (·) denotes the standard normal pdf and h(x|S ′∗) is

the conditional pdf of the highest value of other entering bidders (or r if no other firm enters with

a value above the reserve price) when they also use entry threshold S ′∗. It is straightforward to

show that there will be a unique symmetric equilibrium, and we will assume that this equilibrium

is played, although asymmetric equilibria may exist.

The variance of the signal noise has a significant effect on auction efficiency and the distribution

of payoffs between buyers and sellers, and this has important implications for auction design. To

illustrate this, we introduce the parameters that we will use throughout our analysis of sales to

symmetric players. We assume that ln(Vi) ∼ N(µV , σ
2
V ), with V truncated to [0, 200], µV = 4.5,

σV = 0.2, and that N = 5 and K = 5 (which is moderate - i.e., in equilibrium, some players may

want to enter while others may not - for all assumptions on the degree of selection). Unless otherwise

stated, we assume that the reserve price r = 0. The mean value of a player is 91.8, with standard

deviation 18.5.12 The truncation point, V = 200, is sufficiently high that the probability that a

value from the untruncated log-normal would lie above this value is small, and our calculations are

essentially unaffected if we consider even higher values for this parameter.

A useful measure of the precision of the signal is α ≡ σ2
ε

σ2
ε+σ

2
V

, which must lie on [0,1). 13 Figure

1 shows the density of a player’s posterior belief about her value when she receives a signal equal to

the 75th percentile of the marginal distribution of signals for four different values of α. For α = 0.9

or 0.99, the conditional distributions are similar to the marginal distribution of values (also shown),

which would, of course, be a player’s belief about its value in the NS model. In spite of this, we will

show that auction performance can change quite significantly when one moves from the NS model

to a selective entry model with a fairly high value of α, such as 0.9. It is in this sense that we will

claim that “small deviations” from the NS assumption can matter, although one might also view

12These parameter choices are somewhat arbitrary, but it seems plausible that the distribution of values will
generally be single-peaked and that there should be reasonable heterogeneity in values for assets that sellers decide
to sell by auction.

13If the value distribution were not truncated above, the posterior distribution for a player’s value having received
a signal si would be a log-normal distribution with location parameter αµ+(1−α) ln(si) and squared scale parameter
ασ2

V , so one can think of 1−α as, approximately, the weight that the player should place on her signal when updating
her beliefs.
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our finding that outcomes can differ substantially as implying that the differences between a NS

model, where players have no private information when they decide whether to enter and one where

they have very noisy signals, are not really as small as Figure 1 might suggest.14 Lower values of

α are associated with more precise signals, so that for a given entry threshold, a potential bidder

with a signal above that threshold is more likely to have a high value. We will, therefore, say that

a lower α is associated with more selective entry.

Table 1 shows how a set of expected outcomes, specifically, seller revenues, the value of the

winning bidder, the number of entrants, total surplus (measured as the value of the winning bidder

less total entry costs) and bidder profits, vary as a function of α. The bottom row shows the results

when players receive no signals and, in equilibrium, mix over whether to enter or not, as in the NS

model.

In the SASFE, outcomes under NS are quite similar to those when α = 0.99, but they change

quite quickly as α falls, so that roughly half of the decrease in revenues and the increase in bidder

profits which happens when one moves from the NS case to the FS case occurs when one moves from

NS to α = 0.9. This finding will be common to many of our comparisons, even though players’

posteriors under NS are not so different to those when α = 0.9, as illustrated in Figure 1.

Several other patterns are also interesting. First, when entry is more selective, there is less

entry and, therefore, lower spending on entry costs.15 However, because potential entrants are

more informed about their values, the expected value of the winning bidder actually tends to

increase even though there is less entry and the distribution of the highest value in the population

of players is unchanged. Putting these two features together means that expected surplus increases

quickly as selection increases.

Second, selection has a quite dramatic effect on the distribution of surplus. Under the NS model,

the fact that players mix over entry in equilibrium implies that entrants’ expected profits are equal

14This might matter because, for example, an applied researcher might use the fact that due diligence work takes
place as a reason to prefer the NS model over the FS model. However, due diligence would still be required even if,
as seems very plausible in almost all settings in practice, players have some information about their private values
before they begin the due diligence process. Our results imply that conclusions derived under NS may not hold if
some selection was allowed.

15In general, we would expect less entry with selection, when K is held fixed, for two reasons. First, holding
the probability that other players enter fixed, those entrants will tend to have higher values when entry is more
selective decreasing the expected payoff that a player with a given value has from entering. Second, a player’s
surplus in an second-price auction is a convex function of her own value. Without selection, the expected surplus is
calculated using the unconditional distribution of these values. With selection, it is calculated using a distribution
that is conditional on the signal received, and, because this distribution should be more concentrated than the
unconditional distribution, the expected payoff from entering will, all else equal, tend to be lower.
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to zero. Therefore, in expectation, the seller captures all of the surplus. On the other hand, with

selection only the marginal entrant has expected profits of zero, while inframarginal entrants, with

more optimistic posterior beliefs about their values, expect positive profits. Figure 2 illustrates the

difference between the distribution of values for the marginal (i.e., the pdf of values conditional on

receiving the signal s = S ′∗) and average inframarginal entrant (the pdf of values conditional on

receiving a signal s ≥ S ′∗) for two different values of α. When selection is weak (α = 0.9) these

distributions are much more similar than when entry is selective. Bidder profits increase so quickly

with selection that even though expected surplus increases, the expected revenues of the seller fall.

This is an appropriate place to comment briefly on the inefficiencies that exist in the entry

process of the SASFE model, and to clarify some of the discussion of the inefficiencies that exists in

the literature. As explained by Milgrom (2004), in the context of the NS model, and Gentry and

Li (2012), in the context of a selective entry model, entry strategies are efficient in the sense that a

social planner that was constrained to choose, ex-ante, an identical entry probability or threshold

rule for all players would choose the same strategies that the players themselves would choose in

the symmetric equilibrium.16 However, this does not mean that entry decisions are efficient in a

more general sense. For example, when all potential entrants make simultaneous decisions using

the same thresholds, the realized number of entrants is random, and when surplus is a concave

function of the number of entrants (as can be easily shown under NS), surplus can be increased by

fixing the number of entrants.

One way to fix the number of entrants, which makes particular sense when players have some

private information about their values, is to hold an auction for a limited number of slots to

compete in an auction for the object. This is the “entry rights auction” that we consider below.

An alternative way to try to address some of the inefficiency that arises from randomness without

fixing the number of entrants is to make players take their entry decisions sequentially rather

than simultaneously. We consider two sequential procedures below: in one of them players enter

sequentially but bid simultaneously; and, in the other one, there is also an element of sequential

bidding. This opens up the possibility that subsequent entry decisions may be conditioned, to some

extent, on the values, as well as the entry decisions, of earlier-movers. This may be more efficient,

but increases the possibility that earlier-movers will be able to deter later entry, hurting the seller.

An alternative model of the standard auction, which has been considered in Moreno and Wood-

16In a second price auction for a single unit a Mankiw and Whinston (1986) style ‘excess entry’ result does not
hold because an entrant only takes market share from other firms when it is socially efficient to do so.
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ers (2011) and which has been used empirically by Krasnokutskaya and Seim (2011) and Li and

Zheng (2009), is to assume that entry is simultaneous and non-selective, but that players have

heterogeneous, privately observed entry costs. The equilibrium entry strategies in this case are also

threshold rules, in entry costs instead of signals, and an obvious similarity to the selective entry

model is that players with low entry costs will tend to make positive profits in equilibrium. An

important difference is that while a lower entry cost makes entry more attractive, it does not affect

the payoffs of other players conditional on entry occurring, whereas when a player has a high signal

in a selective entry model this does affect other players’ expected payoffs from entering because it

is the bidder with the highest value that will be allocated the object. However, this leaves open the

question of whether the models have different implications for auction design.

In order to shed some light on this question, Table 2 shows the same outcomes as Table 1, as a

function of σK , when entry costs are assumed to be distributed normally with mean 5 (the value of

K assumed in our examples) and standard deviation σK , and we assume NS, so that players receive

no signals prior to taking their entry decisions. The first row corresponds to the model in the final

row of Table 1.

Increasing the heterogeneity in entry costs raises total surplus and bidder profits, while reducing

entry and seller revenues. In terms of direction, these are the same changes that come from

increasing the degree of selection. However, the causes of the changes in total surplus are somewhat

different between the two models. In the selective entry model, the value of the winner tends to

rise and the amount of entry tends to fall with more selection, and both of these forces raise total

surplus. In contrast, with heterogeneous K, the value of the winner and the expected amount of

entry must move in the same direction, and both fall when there is more heterogeneity. The increase

in total surplus is driven by the fact that some entrants actually have lower entry costs, whereas, in

the selective entry model neither the distribution of valuations nor the level of entry costs change

when selection is introduced.17 Maybe the most striking difference, however, is that when we allow

for limited heterogeneity in entry costs, which seems plausible in reality18, the expected outcome

measures only change by small amounts (for example, going from σK = 0 to σK = 0.3 lowers

17For example, when σK = 2, efficiency would be lower than in the common entry cost case if all of entrants had
to incur the mean entry cost.

18Note that in models that allow heterogeneous entry costs, it is assumed that this heterogeneity is not correlated
with players’ valuations, so the heterogeneity must be interpreted as being due to differences in the technology of
evaluating the object or in the bureaucratic costs of submitting bids, rather than being due to the type of expertise
that might be associated with having a high value. It seems unlikely that differences in costs of research technologies
that players would actually choose to use would be large.
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a seller’s revenue by less than 1%), whereas seemingly small deviations from the informational

assumptions of NS (e.g., moving from NS to α = 0.9) have already been shown to change outcomes

more dramatically. To generate revenues and surplus similar to the FS model, one needs to push

σK as high as 5, by which point, given our parametric assumptions, 16% of players have negative

entry costs, in which case their entry increases surplus even when they do not win the object.19

3 Alternative Mechanisms

With symmetric bidders, we focus our discussion of mechanisms other than the SASFE on three

relatively simple alternatives, two of which have been considered in the existing literature. Of

course, these alternatives do not exhaust the spectrum of possible alternatives, but, to the extent

that we find that alternatives outperform the SASFE, our conclusion would only be strengthened

if we found other mechanisms that could do even better.

3.1 Entry Rights Auction (Ye (2007), Bhattacharya, Roberts, and Sweet-

ing (2014))

Ye (2007) characterizes equilibrium strategies in a game where the seller first announces the number

of bidders it will allow to compete in an auction for the object and then auctions off these rights to

all players in a first-stage auction, before conducting the auction itself.20 This ‘entry rights auction’

(ERA) procedure addresses the problem that the number of entrants into an SASFE is random, by

having the seller control the number of entrants, while guaranteeing that it is the players with the

highest signals that enter. It also allows the seller to extract some of surplus that the restricted

set of entrants will get from the second-stage auction. However, it does not allow the number of

entrants to be a function of the private information that players have, which can be a disadvantage

relative to other mechanisms when entry is partially selective.

19An open, but interesting, question concerns how parameters will be biased if a researcher estimates a model
that allows for heterogeneity in entry costs, when the true model has no heterogeneity but does have selection. The
existing empirical literature on market entry, including Krasnokutskaya and Seim (2011) in an auction context, has
typically estimated entry costs to be quite heterogeneous, and one might conjecture that large estimated variances
may actually reflect the presence of selection.

20Ye also compares this type of auction, where first-stage bids are binding and result in payments, with ‘indicative
bidding’ schemes where bidders are only asked for indications of what they will bid in the first-stage. He shows
that indicative bidding schemes generically do not have equilibria that result in efficient entry. Quint and Hendricks
(2013) show that indicative schemes may have weakly monotonic first-stage equilibrium bidding strategies when the
bidding space is discrete and either entry costs are large or the number of bidders is large.
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Following Ye, we assume that an ERA works in the following way. First, the seller commits to

select the n highest first-stage bidders to compete in an auction for the object and to give each of the

selected bidders a subsidy equal to K. Then, all potential bidders, having seen their signals, submit

non-negative bids in a first-stage auction that uses an all-pay format. The n selected bidders then

receive their subsidy, incur their entry cost K, find out their values, and compete in a second-stage

auction for the object, which we will assume has a second-price format. There are no reserves in

either auction.

Some of the details of the mechanism deserve further comment. First, following Ye’s Proposition

5, the all-pay format and the subsidy, while relatively rarely observed in practice, are used to

guarantee that first-stage bids are strictly increasing functions of signals21, so that the selected

second-stage bidders will be those that are most likely to have the highest values. Second, any

subsidy that guarantees this type of efficiency will generate the same (net) revenue for the seller

(Proposition 6). Third, while more standard first-stage formats in which only the selected bidders

pay might not have strictly increasing first-stage bid functions, for parameters where these functions

are monotonic these formats should generate the same revenue and efficiency outcomes as the all-

pay format (this also follows from Proposition 6).22 For this reason, focusing on the all-pay format

as a modeling device is reasonable.

In our view, the most important caveat associated with the mechanism is that it is assumed

that participation in the first-stage auction is costless, whereas participation in the second-stage

auction requires K to be incurred. This may be unreasonable from the perspective that there may

be some bureaucratic costs associated with submitting any type of bid, even if no due diligence is

done, but it might also be difficult to generate interest in the auction if potential buyers are unable

to conduct some examination of the asset before they submit binding first-stage bids.23 In practice,

two factors may tend to lessen the force of this critique in some real-world settings. First, if a

seller has to make frequent use of auctions it will have an incentive to develop a reputation for not

holding auctions for the right to try to buy worthless objects. Second, when n ≥ 2 the revenues

21For example, as Ye notes, the FS model presents a particular problem for other auction formats. In those
formats a pure strategy first-stage bid would be determined only by the value that a player has to being the marginal
entrant into the second stage, but when n ≥ 2, the marginal entrant will certainly lose in the second stage under the
FS assumption, so that first-stage bids will be zero for all signals.

22Monotonicity in first-stage uniform or discriminatory formats requires that a bidder’s expected payoff from
being selected conditional on being the marginal selected entrant is increasing in her signal. For many parameters,
including those used in our examples, this fails, but often only for quite high signals that occur with relatively low
probability. Therefore, it is at least plausible that these standard formats might work quite well in practice, but
this is obviously an open question.

23Note that this criticism could also apply to some types of entry fee.
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from the first-stage bids are usually much smaller than the amounts that the winner will pay in the

second-stage, especially when entry is very selective.24 Therefore, it is plausible that firms may be

willing to submit first-stage bids on the basis of much more limited due diligence that they would

need to do if selected for the second-stage auction.

In equilibrium, the selected bidders will submit bids equal to their values in the second-stage,

which resembles a standard independent private values second-price auction with a fixed number

of bidders. To solve for the first-stage equilibrium bid function, γ∗(·), note that the expected

second-stage profit of a selected entrant with value v, when the (n+ 1)st highest signal is s, is

Π(v; s) =

∫ v

0

(v − x)hV |S>s(x)dx > 0

where the inequality follows from the fact that the entry cost is fully subsidized for the selected

bidders and hV |S>s is the pdf of the highest value of other bidders given s. Then γ∗(s) should solve

γ∗(s) ≡ arg max
g

∫ γ∗−1(g)

0

∫ V

0

Π(v; s)dFV |S=s(v)dFS(n:N−1)(s)− g,

where FV |S=s(·) is the conditional distribution of the value given a signal of s and FS(n:N−1)(·) is the

distribution of the nth highest signal of the remaining N − 1 bidders, with pdf fS(n:N−1)(·). Solving

this maximization problem and imposing that, in equilibrium, g = γ∗(s) gives the differential

equation

γ∗′(s) =

∫ V

0

Π(v; s)fS(n:N−1)(s)dFV |S=s(v),

with boundary condition γ∗(0) = 0. As Π(v; s) > 0, the first-stage bid function is monotonically

increasing in s.

The value of n, the number of bidders selected for the second stage, can play an important role

in the ERA, and is chosen by the seller. If n = N , which is never optimal for the level of entry costs

that we consider, first-stage bids will be zero and the seller effectively subsidizes the entry costs of

all potential bidders in the second-stage. If n = 1, then the procurer selects a winner based only

on signals.25 In the calculations in the next section we assume that n ≥ 2, and find that n = 2 is

24In our example, expected total first stage revenues are highest under NS (16.98) but they are less than 5 for
values of α < 0.3.

25In the case of the FS model, n = 1 would be socially efficient because only the highest value entrant would
incur the entry cost, and, if the seller could set an optimal reserve price in the first stage, it would also be revenue-
maximizing. However, this assumes that the asset can effectively be allocated via an auction with a fixed number of
bidders with no entry costs and considering this case would clearly go against the spirit of our analysis. Of course, if
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optimal for the seller, in terms of revenues, unless α is very close to 1.

While this model is appropriate for selective entry, in the NS case, where bidders have no signals,

there is no pure strategy equilibrium in the all-pay auction. Instead, for this case only, we will

assume that the seller uses a uniform price first-stage auction, where only the selected bidders pay

and the price is equal to the (n + 1)st highest bid. In this case, each player will bid its value to

being selected for the second stage in the symmetric pure strategy equilibrium.26 As all of these

bids will be the same, entrants will, in effect, be chosen randomly.

3.2 Sequential Auctions

We consider two sequential procedures. In one of them, the sequential entry auction, players choose

to enter sequentially, in a random order chosen by the seller, but entrants submit simultaneous bids

once all entry decisions have been made. In the other, players may place bids as soon as they enter,

and we will call this version the sequential bidding auction.

3.2.1 Sequential Entry Auction

In this procedure, the seller approaches the players in a random order and asks them whether they

wish to enter. Players later in the sequence observe earlier choices and we assume that players are

committed to the choices that they make, so that a player that chooses to enter will incur the entry

cost K, and find out its value, and one that chooses not to enter cannot subsequently change this

decision. Once all players have taken entry decisions, firms submit bids in a second-price auction.27

Under NS, the entry game has a simple equilibrium where players will enter until an additional

entrant would expect negative profits from entry given the entry that has already taken place. For

our parameters, for example, exactly three players enter in equilibrium. In a model with signals,

equilibrium entry rules will be thresholds, and a player’s threshold will depend on the decisions of

earlier entrants, the thresholds that those players used and the thresholds that later players will

be using. For example, if the first player has an entry threshold of 100, then a later player who

we did consider it, it would make the SASFE, where several potential buyers may incur the entry cost, appear even
less optimal.

26As noted previously, a player should bid her value to being the marginal entrant. But, under NS, the marginal
entrant is just as likely to win as any inframarginal entrant.

27One might argue that if players have some sense of the entry decisions that other players are making, sequential
entry might be an appropriate way to model how standard auctions actually work, although this is not the usual
modeling approach. An exception is BK who use sequential entry as their baseline model of entry into the standard
auction, although they note that their conclusions do not change if entry is simultaneous.
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observes that the first player entered can infer that the first player’s signal was at least 100, and

this later player’s entry decision will also be affected by the thresholds that it believes players that

get to move even later will use if it enters. Therefore, rather than solving for a single equilibrium

threshold it is necessary to simultaneously solve for an entire vector of thresholds, based on different

zero profit conditions, as a function of all possible histories of the game.28 One issue that arises in

these auctions is that, because later movers must form beliefs about the values of earlier players, it

is possible that the entry game may have multiple equilibria even though entry is sequential. The

results reported below for N = 5 are based on equilibria that were found from multiple starting

points.29

3.2.2 Sequential Bidding Auction (Bulow and Klemperer (2009), Roberts and Sweet-

ing (2013))

In an important paper, BK seek to understand the relative performance of a standard free-entry

auction and a sequential procedure where bidders are allowed to both enter and place bids in

a sequential order. They motivate the latter as being a stylized model of the way that many

corporations are sold. For example, the board of the target corporation may negotiate an outline

deal with one potential buyer, before other potential buyers are given an opportunity to submit

competing bids. BK compare the mechanisms partly to understand whether the use of sequential

procedures is in the interests of target or acquiring shareholders.30 Under the assumptions of the NS

model, they show that the standard auction will almost always generate higher expected revenues

for the seller, even though the sequential procedure, which allows later players to condition their

entry decisions on how earlier-movers have both entered and bid, will tend to be more efficient. This

28For example, with two players there are three equilibrium entry thresholds (one for the first player, and two for
the second player); seven thresholds for three players; fifteen thresholds for four players; thirty-one for five players;
and so on. The computational burden therefore increases geometrically in the number of players.

29For N = 6 we did find multiple equilibria when entry is quite selective. These equilibria differed in some of their
revenue and efficiency properties. For example, many of the equilibria involve some later bidders in the sequence
entering almost certainly with other players almost certainly staying out, so that outcomes look more like those that
would occur if a random group of bidders were selected to participate in the auction independent of their signals. In
these equilibria, expected surplus tends to be lower (in some examples by as much as 3%), with smaller decreases
in expected revenues. We do not report sequential entry auction results for N = 6, although it would be interesting
to explore the number of equilibria and the implications of the various equilibria for auction design, and whether a
seller might be able to help select particularly favorable equilibria using a more exotic design, in a more systematic
way. As pointed out by a referee, one might view the existence of inefficient equilibria as one practical argument
against using the sequential entry auction.

30The board of the target has a legal duty to act in the interests of its shareholders. Denton (2008) questions the
legality of “go-shop” procedures, which have a sequential element, as a way of selling corporations, based on BK’s
results.
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reflects the fact that, in equilibrium, an early entrant with a relatively low value may be able to

deter future entry in a very particular type of way. We will show that, with any degree of selective

entry, entry-deterring strategies change in an important way that can raise revenues significantly.

BK’s sequential auction procedure works as follows.31 The seller approaches players in a random

order. The first player decides whether to enter, incurring K if she does so, and, having found out

her value, she can place a jump bid. If she does not do so, the standing price is either zero or a

reserve set by the seller. The next player, who observes what happened in the first round, then

decides whether to enter (incurring K), and, if he does so and the first player also entered, the two

incumbents compete in a knockout button auction. The loser drops out and cannot subsequently

re-enter the bidding. If the second bidder wins the knockout then, if he wants, he can place a new

jump bid above the standing price at the end of the knockout. If the first player did not enter,

then if the second bidder enters, there is no knockout but the second bidder can place a jump bid.

The procedure is repeated until all potential bidders have had an opportunity to enter, at which

point the object is allocated to the incumbent bidder at the standing bid.

Once we allow players to have signals before they enter, the only difference in how the game is

played is that now a potential bidder’s signal can also affect her entry decision. This difference,

however, has a significant effect on equilibrium strategies. With no selection, BK show that there

is excess deterrence from the perspective of the seller, which arises from the fact that jump bidding

strategies involve a “semi-pooling equilibrium”. To illustrate, suppose that the (N − 1)th bidder

enters, and the previous incumbent exits the knockout at a price of bs. BK show that the new

incumbent’s jump bidding strategy will be:

• place no jump bid if the new incumbent’s value is less than V ′; or,

• place a jump bid equal to b′ > bs if the new incumbent’s value is greater than or equal to V ′,

where V ′ is determined by the condition that, if the final potential bidder knows that that the

incumbent’s value is at least V ′, then it will choose not to enter32, while b′ is determined by the

condition that an incumbent with value exactly V ′ should be indifferent between not placing any

jump bid, in which case the next potential entrant will enter, and placing the jump bid b′ and

31We note that BK allow for the possibility that the number of potential bidders is stochastic, so that it is not
known for sure at the beginning of the game. Our fixed N assumption is a special case of their framework.

32Given that the (N − 1)th bidder did not receive a signal when deciding whether to enter, the pdf of the N th

bidder’s belief about the new incumbent’s value given that this value must be above bs, is simply fV (v)
1−FV (bs)

for all

v ≥ bs .
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deterring entry. Subsequent potential entrants enter if and only if a jump bid of less than b′ is

placed.

Using the parameters assumed above, the bold line in the left-hand section of Figure 3 shows

the incumbent’s jump bidding strategy when bs = 75. In this case, V ′ = 83.77 and b′ = 81.43,

and the maximum revenues that the seller can realize are 83.77.33 Note that if the next mover

knew that the incumbent had a value of V ′ + ε, where ε is small, entry would be profitable, but

it chooses not to do so because it is unable to distinguish an incumbent with this value from ones

with possibly much higher values.

In contrast, when entry is selective, the unique equilibrium jump-bidding strategies, under the

D1 refinement (Cho and Kreps (1987), Ramey (1996)), are fully separating for incumbent values

up to V −K.34 Strategies change because, in our example, for any such incumbent value, the final

player may enter if it receives a signal that is high enough. This gives an incumbent with a high

value an incentive to distinguish itself from incumbents with lower values (because, by doing so,

it will be able deter more entry), and, under the refinement, this eliminates pooling equilibria (for

values less than V − K). Roberts and Sweeting (2013) show how the equilibrium jump bidding

strategies in each round can be characterized by round-specific differential equations with lower

boundary conditions where a new incumbent with a bid equal to the standing bid does not raise its

bid.

The remaining lines in the left-hand section of Figure 3 show the equilibrium bid schedule for

several different values of α, including 0.95, 0.99 and 0.9975. The right-hand section of the figure

shows the corresponding probabilities of entry as a function of the incumbent’s value. When signals

are very uninformative (α greater than 0.95), we see that only incumbents with values significantly

above V ′ (the value that deters entry in the NS case) deter entry with high probability. With full

separation, the entry decision of the final player will be socially optimal in the sense that entry will

take place if and only if the expected increase in the value of the winner that occurs with entry is

greater than the entry cost.35

33These revenues would be realized when the incumbent has a value slightly less than 83.77, no jump bid is placed,
entry occurs and the subsequent knockout ends at the incumbent’s value. If the incumbent’s value is more than
83.77, then the revenue will be 81.43.

34Incumbents with values above V −K continue to pool, but, because we are assuming V is high, it is very unlikely
that an incumbent will have a value this high (the probability is less than 10−4 for our parameters).

35Of course, there are some inefficiencies associated with the procedure as a whole. In particular, those players
who get to move first are more likely to win the object. However, when entry is at least moderately selective the
difference in winning probabilities is small, and early-movers do not necessarily have higher profits, so that players’
incentives to expend resources to try to get selected to move first may be limited. For instance, consider our example
parameters when α = 0.6. The first player wins with probability 0.2102 and the last player with probability 0.1857.
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Given these bid functions, the seller’s revenues will increase discontinuously when any degree of

selection is introduced into the model because there is more entry and because the jump bids that

high value incumbents place, which do tend to deter entry, are significantly above b′. As the degree

of selection increases, incumbents with low values will deter some entry, which will not happen

under NS, but because only potential entrants with quite low values are likely to be deterred, this

does not tend to have a large effect on the seller’s revenues. In our computations below we show

how, during the course of the game with five rounds, this change in strategies can significantly

increase the seller’s revenues relative to the NS case, and also relative to the SASFE for a given

degree of selection.

Roberts and Sweeting (2013) examine what happens under a wider range of parameters. When

K is small, the difference in the values of the incumbents that deter entry in the sequential bidding

auction under NS and with small degrees of selection, such as α = 0.99, tends to fall slightly, while

the difference in the level of deterring bid submitted by an incumbent with a very high value also

becomes smaller (and, for very small K, can actually be higher in the NS case). This is illustrated

in Figure 4, which repeats the left-hand panel in Figure 3, but for K = 3, K = 1 and K = 0.5.

As a result of both of these changes, the change in expected revenues and surplus of the sequential

bidding auction when selection is introduced (relative to NS) in the sequential bidding auction is

much smaller, even though these is still a discontinuity in strategies.36

4 Efficiency Comparisons

Having introduced the various mechanisms, we now compare their performance. The standard

measures of performance are efficiency (i.e., total surplus, defined as the value of winner less total

entry costs) and seller revenues. We begin by considering total surplus, and then turn to the

question of how surplus is split between the seller and the potential buyers. Our analysis uses the

set of parameters introduced previously. When considering efficiency, we assume that there is no

reserve price in any mechanism, deferring consideration of reserve prices to the next section. We

The last player’s expected payoff is actually higher than that of the first-mover (3.7362, compared to 2.2511), because
the last player only enters when it is very likely to win at a relatively low price.

36As BK showed, the SASFE outperforms the sequential bidding auction under NS. The two changes discussed in
the text lead to Roberts and Sweeting finding that the SASFE yields higher expected revenues that the sequential
bidding auction when K is small and α is high (see Figure 2 in Roberts and Sweeting (2013), where the performance
of the SASFE is improved by assuming that an optimal reserve price is used in that mechanism but not the sequential
bidding auction). However, in these cases it is also true that the revenue advantage of the SASFE is small (typically
less than 1%). In all cases, the sequential bidding auction dominates the SASFE in terms of efficiency.
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also assume that the seller sets a fixed n in the ERA in advance of the first stage to maximize

expected revenues, although, with our parameters, it would make the same choices if it was aiming

to maximize total surplus.

Figure 5 reports the total surplus (5(a)) for the standard auction and the three alternatives,

and a decomposition into the expected value of the winner (5(b)) and expected total entry costs

(5(c)). We compute outcomes for the NS and FS models, as well as values of α between 0.01 and

0.99. Note that the values of α considered are not evenly spaced, with more values close to the

polar cases, so that we can see how slight deviations from the polar assumptions affect outcomes.

It is immediately clear that small deviations from the NS assumption can affect outcomes more

than small deviations from the FS assumption. For the ERA and sequential bidding auction, the

NS cases are marked by discrete points as a reminder of the discontinuity of either the mechanism

(ERA) or equilibrium strategies (sequential bidding auction) when one moves from a model with

any degree of selective entry to NS.

Across all of the mechanisms, surplus increases when entry is more selective. The direction of

this effect is expected as, when signals are more informative, it is more likely that it will be players

with high values that have high signals, and so will enter or be chosen to enter. Under NS, both

the ERA and the sequential entry auction randomly select three players to enter. Excepting this

case, the ranking of the mechanisms does not depend on the degree of selection, with the sequential

bidding auction generating the highest expected surplus, followed by the ERA, the sequential entry

auction and, finally, the SASFE.37 However, it is also clear that the range of expected surpluses

becomes much larger when one moves from the NS to the selective entry model (reflecting the fact

that deterrence in the sequential bidding auction becomes more efficient), and tends to increase as

entry becomes more selective.

Figure 5(b) and (c) help to identify where the differences in surplus come from. As the degree

of selection increases, surplus rises both because the value of the winner increases and the amount

of entry falls, although, with the assumed entry cost, changes in entry tend to have a larger effect

on surplus. For a given degree of selection, the SASFE and the two sequential auctions all lead to

quite similar expected values of the winner, and for values of α ≥ 0.7, the value of the winner is

actually highest in the SASFE even though the probability that the object is not sold to any player

37In the case of the ERA this conclusion is not necessarily general, because of the restriction that n must be an
integer greater than or equal to two. For example, when entry costs are high enough, expected entry into the SASFE
may be less than 2, and the inefficiency associated with requiring two players to incur the entry cost may become
more significant when entry is more selective.
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(so that the value of the winner is zero) is highest in this mechanism because of the uncoordinated

nature of entry. The ERA attains the maximum possible value of the winner, i.e., it equals the

expected highest value in the population of players, under the FS assumption because in this case

the player with the highest value will definitely be selected to enter, because she has the highest

signal, and will be allocated the object. On the other hand, when α lies between 0.8 and 0.95, the

expected value of the winner is lower under the ERA because only two players are chosen to enter,

and the ones selected may well not be the ones with the highest values. Note, however, that the

problem is not (just) that there is less entry. As shown in panel (c), the expected amount of entry in

the ERA is similar to that in the sequential bidding auction for these values of α. Instead the source

of the relatively poor performance of the ERA in these cases is that it does not allow for there to

be additional entry when the entrants turn out to have low values, whereas, when incumbents have

low values, more players will tend to enter the sequential bidding auction.

The panels also reveal that the two sequential auctions produce very similar expected values

of the winner, but that the sequential bidding auction achieves this with significantly less entry.38

The key driver of the difference is that in the sequential entry auction it is very likely that the

players who will get to move first will enter, even if they have low signals because they know that

their entry decision will likely deter later players from entering, whereas in the sequential bidding

auction, early players know that, in the fully separating equilibrium, they will only be able to deter

entry if their values are high enough. To illustrate, suppose that α = 0.05, so that players are

quite well-informed about their values when they take their entry decisions. In the sequential entry

auction, the first player to make an entry decision enters with probability 0.9652. In the sequential

bidding auction, where its value will be revealed, it only enters with probability 0.3076. However,

the probability that the first player wins in the sequential entry auction when it enters is only

0.2592, compared with 0.6619 in the sequential bidding case39, reflecting the fact that early-mover

entry is less efficient when only entry decisions are sequential.

In many settings, the seller may be able to increase the number of potential entrants by designing

the object for sale appropriately or engaging in marketing activities. We therefore also look at how

38For example, on average, 2.16 players enter the sequential entry auction under the FS assumption, compared
with 1.31 players for the sequential bidding auction. When α = 0.99, the numbers are 2.87 and 2.44 respectively.

39Therefore, overall the probability that the first player wins in the sequential entry auction is 0.2502, compared
with 0.2036 in the sequential bidding mechanism. For the remaining players in the order the probabilities of winning
are [0.2303, 0.1981, 0.1715, 0.1498] in the sequential entry auction and [0.2036, 0.2012, 0.2003, 0.1973, 0.1976] in the
sequential bidding auction. The similarity between these winning probabilities explains why the expected values of
the winners are approximately the same. Note that under NS the first player enters with probability one in both of
the sequential mechanisms.
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the expected total surplus changes when an additional player is added. The fact that there is an

additional player will automatically tend to increase the expected highest value in the population of

players (for our parameters, by 2.34), but the increase in expected surplus will depend on how likely

this player is to enter and the change in total entry costs. As noted in footnote 29, we encountered

some multiple equilibria in the sequential entry game when N = 6, so we ignore this mechanism in

our comparisons (the equilibria in the other mechanisms are unique). The results are shown in the

left-hand columns of Table 3.

As the degree of selection increases, the surplus gain from adding a player is larger for each of

the mechanisms, reflecting the pattern that a player with a high value is more likely to enter, or

be selected to enter, when there is more selection, and the fact that the increase in the expected

number of entrants is smaller. In both of the sequential auctions and the SASFE, the average

amount of entry also rises, whereas in the ERA the optimal n remains fixed. However, the change

in entry has different effects in the SASFE and the sequential auctions. In the SASFE, because

entry decisions are simultaneous and not coordinated, the equilibrium probability that no players

enter (so that there is no surplus) rises even though the expected number of entrants increases.

As a result, total surplus can actually fall when there are more players, and this happens in the

SASFE when there is very little or no selection. On the other hand, surplus tends to increase in the

sequential auctions, where some entry is effectively certain, for all values of α and, when selection is

weak, the incremental surplus in the sequential auction is actually greater than in the ERA, which

is a further reflection of the fact that fixing the number of entrants and selecting entrants based on

their signals, as the ERA does, is particularly inefficient when signals are fairly uninformative.

5 Revenue Comparisons

As already illustrated in the case of the SASFE (Table 1), selection affects the distribution of surplus

between the seller and the potential buyers. For our mechanism comparison, Figure 6 shows the

seller’s expected revenue (panel (a)) and the expected total bidder payoffs (panel (b)). In each

mechanism, selection reduces expected revenues (excepting the move from NS to α < 1 for the

sequential bidding auction) and increases bidder payoffs, reflecting the fact that informative private

signals create information rents.

Under the polar NS assumption, the ERA generates the highest expected revenue, with a small

advantage over the SASFE and the sequential entry auction. Consistent with BK’s theoretical
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result, the sequential bidding auction generates substantially lower revenue. Given our parameters,

however, the ranking changes as soon as we introduce any degree of selection. The ERA and the

sequential bidding auction generate higher revenues than the other mechanisms, and the advantage

of the best alternative to the SASFE becomes significantly larger as the degree of selection increases.

Of course, these rankings may depend on our selection of parameters, but we have found them to

hold quite broadly when K is large enough so that it is likely that one or more bidders will not

enter the SASFE when there is no selection (see footnote 36 for a discussion of why the ranking of

the SASFE and the sequential bidding auction can change when K is small).

The relative performance of the sequential bidding auction and the ERA depends on the exact

value of α, with the sequential bidding auction doing better for α = 0.9, 0.95 or 0.99, and the ERA

doing relatively better with more selection. In the ERA, the relatively slow decline in expected

revenues as α falls reflects two changes that tend to offset each other. Revenues in the second

stage auction equal the second highest value of the selected entrants. Holding n fixed, this tends

to increase as α falls because players’ signals, which are used to select the entrants, become more

informative. On the other hand, revenues from the first-stage auction tend to decrease as players

with low signals know that their payoffs from entering the auction, even if they are selected, are

likely to be low. As a specific example, when α = 0.9, expected first-stage revenues in the ERA

are 15.74 (or 17.1% of total revenues), falling to almost zero under the FS assumption. Revenues

in the sequential bidding auction fall when there is more selection as later entrants will become

less inclined to enter unless their signal indicates that their value should be significantly above the

value of the current incumbent. This reduction in entry, while socially efficient, tends to reduce the

seller’s revenues. The fact that which of these mechanisms performs best is sensitive to the degree

of selection, and the fact that the advantage of the sequential bidding auction over the SASFE is

also a non-monotonic function of α around 0.7, serve to illustrate the value of being able to identify

the exact degree of selection in the entry process when choosing an auction design.

The sequential bidding auction always generate higher bidder payoffs, but the differences to the

other considered mechanisms are greatest in the polar NS and FS cases, and the advantage is quite

small when there is selective entry and α ≥ 0.5. Even though an incumbent may be able to deter

entry in these cases, it can be quite costly to do so, and, when signals are imprecise, players may

enter the auction and subsequently find out that their values are not high enough to allow them

to win the object. For a given value of α, the other mechanisms always generate quite similar

payoffs for bidders. From a design perspective, the fact that a mechanism, such as the sequential
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bidding auction, is able to generate higher revenues for potential bidders, as well as the seller, may

be important because, in the long-run, this type of design is likely to encourage more players to

make the investments that will allow them to participate in auctions, benefiting the seller in terms

of increased competition.

The right-hand side of Table 3 reports the change in expected revenue when another player

is added. Bulow and Klemperer (1996) show that when the number of bidders is fixed, the seller

always benefits more from adding an additional bidder than by using the optimal auction design.

Under the NS assumption, because the potential buyers make no information rents in the SASFE or

the ERA, the seller experiences the full efficiency increase or loss from adding a potential entrant,

and the seller’s expected revenues actually fall in an SASFE when an additional potential bidder is

added. When entry is selective, the seller’s revenues increase by more than the increase in total

surplus, reflecting the fact that increased competition tends to reduce bidder payoffs. Interestingly,

however, the increase in revenues when additional bidders are added is greater for the ERA and,

especially, the sequential bidding auction. This suggests that the gains from using mechanisms

other than the SASFE will become larger when more buyers are potentially interested in the object.

An obvious question is whether the revenue performance of these mechanisms can be significantly

improved by introducing additional features, such as reserve prices. Figure 7 shows expected

revenues from the SASFE, with no reserve and a seller-optimal reserve (a seller-optimal entry fee

leads to the essentially identical revenues as an optimal reserve), and the sequential bidding auction,

with no reserve and a seller-optimal reserve that is common across rounds.40

Under NS, the optimal reserve price for the SASFE is the value that the seller has of retaining

the object, which is zero by assumption, so adding an optimal reserve has no effect on expected

revenues. An optimal reserve can increase expected revenues in the sequential bidding auction

under NS, although not by enough to reverse the SASFE’s revenue advantage in this case.41 When

entry is selective, a non-zero reserve can be optimal in the SASFE, but they do not increase revenues

40In the sequential bidding auction, we model the reserve price as being an initial standing bid chosen by the seller.
It should be possible to do even better by allowing the seller to change this reserve price across rounds until entry
occurs, but for simplicity we do not try to calculate the gains from using this type of policy. Including a positive
reserve price in the all-pay first-round of an ERA could lead to some players refusing to participate, while it is not
necessarily attractive to think that the seller would be willing to subsidize second-round entry costs if the bidder
subsequently refused to meet a second-round reserve price. Computing the optimal reserve in a sequential entry
auction would involve an excessive amount of computation.

41Specifically, it is optimal for the seller to set a reserve price above V ′ (for our parameters a reserve of 92.63 is
optimal). For this reserve price, entry will occur until a buyer indicates that they are willing to meet this reserve,
in which case entry stops, and the object is sold at the reserve. Therefore, the mechanism essentially becomes one
where the seller sequentially offers the good to each potential buyer at a fixed price.
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by more than 0.4% for any value of α. In contrast, a strategic reserve in the sequential bidding

auction can raise that mechanism’s already larger revenues by as much as 4.7%, extending the

revenue advantage of the sequential bidding auction over the SASFE to a really quite significant

margin. Another way of framing these results is that, when entry is selective, the gain in revenues

of switching from an SASFE to either an ERA or a sequential bidding auction can be many times

greater than the value of setting an optimal reserve.

6 Asymmetric Bidders, Bid Preferences and Selection

In this section we examine how selective entry impacts how bid preference programs affect revenues

and efficiency in a setting where players are asymmetric. Bid preferences are widely used, partly to

meet distributional targets, such as allocating a certain proportion of contracts to small businesses

or companies owned by minorities42, but they may also increase seller revenues when one group of

players tends to have lower values. In this section, we use a model where players are asymmetric

and examine how selection affects the level of bid preference that a seller that wants to maximize

its revenues should choose.

In the existing literature, bid preference programs have been analyzed primarily under NS.

For example, Athey, Coey, and Levin (2013) (ACL) use an estimated NS model to show that bid

preferences may be preferable to other distributional schemes, such as set-asides, in the context of

US Forest Service timber auctions, and they estimate that preferences of more than 20% would

maximize the revenues of the agency. Krasnokutskaya and Seim (2011) analyze bid preferences

in state highway procurement auctions using an NS model with heterogeneous entry costs. Our

analysis will be closer to that of ACL in that, like them, we will keep the entry decisions of stronger

bidders fixed when we introduce a bid preference.43 Hubbard and Paarsch (2009) analyze the effects

of bid preferences under the FS model assumption that players know their values, although they

assume that players are symmetric when preferences are applied. The approach that we use to solve

our auction model with asymmetries, bid preferences and selective entry extends their approach to

42For example, the FCC grants bid credits to small businesses in some spectrum auctions (Congressional Budget
Office (2005)), while many states give credits to small or minority owned businesses in procurement auctions.

43In their setting, Krasnokutskaya and Seim predict that granting weaker players bid preferences can increase
procurement costs because the effect on the entry decisions of stronger bidders can be large. However, allowing for
selection could also change this conclusion because the strong bidders that would cease to enter would tend to have
higher costs than those that remain. If there are multiple equlibria in the entry game, as is quite possible when the
entry decisions of both types are endogenous, the effectiveness of bid preferences may also depend on the equilibrium
that is played.
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a more general setting.

We illustrate the effect of bid preferences by extending the model considered above to allow

for two types of bidders. In our example, there are exactly Ns = 2 ‘strong’ (s) bidders, with

ln(V s
i ) ∼ N(4.5, 0.2), and Nw = 4 ‘weak’ (w) players, with ln(V w

i ) ∼ N(4.4, 0.2), with both

distributions truncated to [40, 190].44 With these parameters, the average value of a strong bidder

is 91.83, the average value of a weak player is 83.06 and the probability that one of the weak players

has the highest value is 0.49.

We assume that the strong bidders and the entering weak bidders compete in a first-price sealed

bid auction for the object, where they submit bids uncertain about how many (other) weak bidders

may have entered the auction. The bid preference affects the allocation of the good, but does

not affect the payments that are made. For example, if the proportional bid preference is ρ (e.g.,

0.1 or 10%), the auctioneer allocates the object treating the bids of weak bidders as if they were

multiplied by (1 + ρ), while using the actual bids of strong bidders. On the other hand, if a weak

bidder wins the good based on these inflated bids, it only pays its actual bid.45

We choose to assume that the strong bidders enter for sure, and that only the entry decisions

of weak bidders, who receive signals before deciding whether to incur an entry cost, K = 5, are

endogenous. We do so partly to compare our results to ACL, but also to side-step the issue that

there may be multiple type-symmetric equilibria in the entry game where the entry of both types

is endogenous.46

As in the SASFE considered above, weak bidders will enter if their signals are above a threshold

S ′∗w , and then in the auction, bidders of both types will submit bids according to type-specific bid

functions. We assume that bidders place bids uncertain about the number of weak players that

have entered. The Bayesian Nash equilibrium consists of this threshold and type-symmetric bid

functions for each type. Define Hw(v) and Hs(v) as the probabilities that a player of a particular

44For numerical reasons it is convenient to have a lower truncation point that is above zero. The probability that
a value drawn from an untruncated distribution would be less than 40 or greater than 190 is very small for both
types.

45Note that ACL actually consider a bid subsidy scheme where actual bids are used to determine the allocation
of the good, but favored bidders only pay some proportion, 1

1+ρ , of their bids. While bids will be different, the
allocation and payments should be identical to our model when we consider a bid preference of ρ.

46Roberts and Sweeting (2013) consider a setting with two types and make the equilibrium selection assumption
that the strong type has the lower entry threshold, on the basis that there is always exactly one equilibrium of this
type and the implication that stronger types will certainly be more likely to enter is attractive. However, when
the weak players receive bid preferences, the analysis would become more complicated, and the uniqueness property
might change as the size of the bid preference increases.
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type (w or s) either does not enter or enters and has a value less than v.47 Hw(v) will therefore

depend on the threshold. The probability that a weak bidder will win with a bid bw is

[
Hs
(
β∗−1s (bw(1 + ρ))

)]Ns
[
Hw

(
β∗−1w (bw)

)]Nw−1

where β∗w(v) and β∗s (v) are the equilibrium bid functions of each type of bidder and the bw(1 + ρ)

term reflects the fact that a strong bidder can only win if he bids at least bw(1+ρ). The equilibrium

weak bidder bid function β∗w(·) will then be determined by the solution to the optimization problem

β∗w(v) ≡ arg max
b

(v − b)
[
Hs
(
β∗−1s (b(1 + ρ))

)]Ns
[
Hw

(
β∗−1w (b)

)]Nw−1
.

The first order condition associated with this optimization problem gives a differential equation

1− (Nw − 1) β∗w
−1′(b)

(
β∗w
−1(b)− b

) [H ′w (β∗w−1(b))
Hw

(
β∗w
−1(b)

)]

−Nsβ
∗
s
−1(b)

(
β∗s
−1(b)− b

)
(1 + ρ)

[
H ′s
(
β∗s
−1(b(1 + ρ))

)
Hs

(
β∗s
−1(b(1 + ρ))

)] = 0

and there is a lower boundary condition where

β∗w(r) = r. (1)

In our calculations we assume a type-independent reserve price of 50, although, because we assume

that two strong bidders enter, this reserve almost never binds. There is also an endogenously

determined upper boundary condition where β∗w(V ) = b. Similar equations define the equilibrium

bid function for strong bidders, except that the upper boundary condition will be that β∗s (V ) =

(1 + ρ)b.

S ′∗w is determined by the zero profit condition

∫ b

r

(
β∗w
−1(b)− b

)
fwv
(
β∗w
−1(b)|S ′∗w

) [
Hs
(
β∗−1s (b(1 + ρ))

)]Ns
[
Hw

(
β∗−1w (b)

)]Nw−1
db = K, (2)

where fwv (·|s) is the conditional density of a weak bidder’s value, computed using Bayes’ Rule, given

she receives a signal s.

47Of course, we are assuming that the strong type enters for sure.
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To illustrate the effect of selection on the optimal level of bid preference, we consider the following

problem: suppose that a researcher has data from a set of identical auctions where there is no

preference scheme, and he wants to know how a particular level of bid preference would change

outcomes. We are interested in how his answer may depend on the assumed value of α. To

do this exercise, we change the value of K so that, when we change α, we keep the expected

number of weak bidders with no preference fixed.48 This effectively involves setting S ′∗w , solving the

equilibrium bidding game, and then identifying the level of K that makes the zero-profit condition

(equation 2) hold. By doing so, we can also illustrate how changing α affects the level of K that

a researcher would likely estimate.49 However, this approach does create some differences to the

results presented in previous sections. In particular, in the model with symmetric bidders and fixed

K, seller revenues decreased with selection, as fewer players entered. Now that we are holding entry

fixed, seller revenues tend to increase with selection as the entrants tend to have higher values.

To solve for the bid functions, we use the Mathematical Programming with Equilibrium Con-

straints (MPEC) approach (Su and Judd (2012), Hubbard and Paarsch (2009)), where we use the

AMPL programming language and the SNOPT solver. We express the inverse bid functions of

each type as a linear combination of the first P Chebyshev polynomials (we use P = 25), scaled

to the interval [r, b]. When we are solving the model with no bid preference, S ′∗w is set to get the

right amount of entry by weak players, and the choice variables in our programming problem are,

therefore, 2P Chebyshev coefficients, K and the value of the upper boundary condition for weak

entrants (b). When we solve the model with a bid preference, we take K as fixed, but also solve for

the equilibrium entry threshold, S ′∗w .

Table 4 shows how the level of K, K̂, required to rationalize why 1.5 weak bidders enter on

average changes with α. In this part of the analysis we consider values of α from 0.01 to 0.99,

without solving for the polar cases. Consistent with the logic outlined in footnote 15, weak players

are more willing to enter when signals are less informative, so that as α increases, entry costs must

also increase to explain why some of these players choose to remain out. The change in K̂ is large:

48One could also, of course, examine how outcomes change, as a function of the level of bid preference, keeping
K fixed and allowing the amount of weak player entry to change with the degree of selection. In our example,
when we hold K fixed, the amount of weak bidder entry with no bid preference can change quite dramatically with
α, and this change has a large effect on outcomes. We view our formulation as a more natural way to illustrate
how a researcher’s conclusions about the optimal level of bid preference would be affected by his assumptions about
selection in a setting where weak bidders already frequently participate in auctions.

49Of course, if the researcher was actually estimating the model, he would also be estimating the distribution of
values, and these would also be affected by the assumed α. For our illustration, we assume that the researcher
knows the true value distributions.
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moving from α = 0.01 to α = 0.99, increases the required K by a factor of 5, from 0.6% of a weak

player’s mean value to over 3.2%. This pattern may also explain why researchers typically estimate

entry costs that seem implausibly high when they assume NS.50

Given these values of K, we analyze how bid preferences impact auction outcomes, as a function

of α. To do so, we consider a finite set of different levels of bid preferences, ρ = {0, 0.025, 0.05, 0.075,

0.1, 0.125, 0.15, 0.175, 0.2}. We then solve the model, including the equilibrium bid functions of each

type, for each (α, K̂(α), ρ) combination. We then simulate 100,000 outcomes for each case in order

to calculate expected outcomes.

Figure 8 shows four expected outcome measures. Consistent with the logic of optimal auctions,

which is developed in the context of models with exogenous entry, the seller’s revenues (8(a)) can

be increased using bid preferences. In addition to making existing weak entrants more likely to

win the auction, which should cause strong bidders to shade their bids less, a bid preference will

also encourage more weak players to enter. This entry effect will encourage both weak and strong

bidders to bid more aggressively. Figure 8(b) shows how bid preferences affect weak bidder entry

for different degrees of selection, with larger effects as α increases.

The most striking finding is that the level of bid preference that is predicted to maximize the

seller’s expected revenues is much smaller when entry is assumed to be very selective. This suggests

that any finding that large bid preferences are optimal when NS is assumed may be very sensitive

to that assumption. For the lowest α that we consider (0.01), the revenue-maximizing preference is

ρ = 0.025; for values between 0.05 and 0.5 the revenue-maximizing preference is ρ = 0.05; whereas,

for α = 0.9, for example, ρ = 0.125 is optimal. The fact that large bid preferences are optimal

when the degree of selection is small reflects the fact that, in this case, a preference has a large effect

on bidder entry (7(b)), and that the additional entrants that are drawn in will tend to have value

distributions that are similar to those that would enter without a preference, so that they will tend

to be equal competitors to the inframarginal entrants. In contrast, when entry is selective, the new

entrants will tend to have relatively low values, and the effect on incumbent bidding will be more

limited. As an illustration, Figure 9 shows how the equilibrium bid functions of both types change

50For example, ACL estimate mean entry costs for a sample of US Forest Service timber auctions of $7.54/mbf,
compared to the Roberts and Sweeting (2013) estimate of $2.05/mbf when they allow for selection (although these
estimates are based on different samples of data) and a forester’s estimate of entry costs of around $3/mbf. Bajari,
Hong, and Ryan (2010) and Krasnokutskaya and Seim (2011) estimate that average entry costs into highway procure-
ment auctions are 4.5% and 3% respectively of the engineer’s estimate of the cost of completing the contract. These
are also significantly higher than those of Bhattacharya, Roberts, and Sweeting (2014) (1.5%), also in a highway
procurement context, and most industry estimates (Park and Chapin (1992) and Halpin (2005)) that lie in the range
0.25-2%.
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when a bid preference of ρ = 0.1 is introduced for α = 0.1 (9(a)) and α = 0.9 (8(b)). Considering

a strong bidder with a value of 120, the increase in the bid that follows from the bid preference is

one percentage point larger when α = 0.9 than when α = 0.1 (5.2% vs. 4.1%). The decrease in

the weak bidder’s bid is approximately one-half-of-one percentage point smaller (2.1% vs. 2.6%).

These differences naturally make the use of a larger bid preference, even though it may allocate the

good to a bidder with a lower nominal bid, more attractive when there is less selection.

Figure 8(c) shows that the effect that preferences have on total surplus is fairly independent of

the assumed degree of selection. Even though preferences will make strong bidders shade their bids

less and weak bidders shade their bids more, all of the preferences that we consider tend to increase

the probability that the good is allocated to a weak entrant that does not have the highest value

(8(d)), while simultaneously tending to increase entry costs. The former effect is larger when there

is assumed to be more selection, which offsets the fact that the social cost of increased entry is lower

when there is more selection because, to hold the level of weak bidder entry fixed, K is smaller.

As noted above, one motivation for using bid preferences is to achieve a distributional objective

that weak players should win more often. While bid preferences do have this effect, with or without

selection, it is also noticeable that when more selection is assumed, the probability that a weaker

player wins also rises.51 As a point of comparison, the probability that a weak player has the highest

value is 0.49, which is only slightly greater than the probability that a weak player wins when α

takes on the lowest value that we consider and there is no bid preference. This reflects that the

fact that, even though the expected amount of weaker bidder entry is (weakly) lower with selection

given the way that we are changing K52, selection leads to the weaker players that are most able to

win entering. This suggests that a seller with distributional objectives might try to achieve them

by increasing selection (for example, by providing potential buyers with better information about

the good being sold), rather than, or in addition to, introducing bid preferences.

7 Measuring Selection

The previous results suggest that the degree of selection can significantly affect both the direction

and the size of gains from changing an auction design. These results, however, would be of limited

value if we cannot identify how selective the entry process is in different real-world contexts. For-

51The one exception to this is for values of α above 0.95 when large bid preferences are in place.
52When there is no preference, the amount of weak bidder entry is the same regardless of the degree of selection.

When preferences are introduced, the amount of weak bidder entry increases by less when more selection is assumed.
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tunately, there has been significant progress in the last few years when it comes to the identification

and estimation of auction models with endogenous and selective entry. We highlight some of the

most significant contributions in this section.

The primitives of our model that a researcher would like to estimate in order to do interesting

counterfactuals, such as evaluating different auction designs, are the joint distribution of players’

values and signals, and the level of entry costs. Assuming that players are symmetric, the data is

assumed to contain the number of players, the number of entrants, and some information on the bids

of entrants. The fundamental identification problems are that we never observe signals directly and

that, with selection, the distribution of entrants’ values, which should map into their bids, will be

different from the distribution of values in the population. However, at least some of these problems

occur in other economic settings where there is selection. The intuition from these settings is that

we can potentially identify the population effects and the degree of selection when there is some

exogenous source of variation in which, or how many, agents choose to enter. The same logic holds

in the current setting, although there is an additional layer of complexity introduced by the fact

that entry rules and bidding behavior should be determined by the equilibrium of a multi-agent

game rather than by a single agent optimization problem.53

The focus of work on non-parametric identification and testing has been on models of first-

price or second-price button auctions (where it may be possible to observe the bids of multiple

entrants) and potential entrants are symmetric. Symmetry implies that variation in the amount

of entry then comes from variation in auction-level variables, such as the number of potential

entrants, the reserve price or the level of entry costs. Marmer, Shneyerov, and Xu (2013) show

that one can non-parametrically distinguish the NS, FS, and partially selective entry models using

exogenous variation in the number of potential bidders and estimates of the quantiles of the value

distributions of entrants conditional on the number of potential entrants (which can be calculated

from inverting bid functions, which will be specific to the number of potential entrants, using the

methodology proposed by Guerre, Perrigne, and Vuong (2000)).54 The basic intuition is that under

NS these quantiles should be invariant to the number of potential entrants, whereas with selection

53For example, when some exogenous variable affects the equilibrium amount of entry, it may also affect equilibrium
bidding strategies in first-price auction contexts.

54Li and Zheng (2009) compare the model fit of an NS model with a common entry cost, an NS model with
heterogeneous entry costs and an FS model with a common entry cost in a procurement setting, whereas Li and
Zheng (2011) compare the fit of the first and last models in the context of high-bid timber auctions. They find that
the FS model provides a better fit in the timber setting, whereas they find that the common entry cost NS model
fits best in the procurement setting.
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the quantiles should tend to increase with the number of potential entrants as the equilibrium signal

threshold for entry should rise. Under FS, where bidders will only enter if their values are above

the threshold, the shift in the lower quantiles of the distribution of values should be particularly

sharp.

One can also derive other tests of the polar models from some of the results described above (see

Coey, Larsen, and Sweeney (2014) for further examples). For example, under the NS assumption,

expected revenues should fall as the number of potential entrants increases. While models with

selection do not necessarily have a positive relationship, a rejection of a negative relationship, based

on exogenous variation in the number of potential entrants, could lead one to reject the NS model,

as could an observation that there is some but incomplete entry by bidders of multiple types when

potential bidders are asymmetric.55

Gentry and Li (2014) consider, more explicitly, the problem of whether the joint distribution

of values and signals is identified. They prove point identification when there is continuous and

exogenous variation in the equilibrium entry threshold, for example due to an observable source

of variation in the entry costs or exogenous variation in the reserve price. On the other hand,

when there is only discrete variation, for example due to variation in the number of players, the

joint distribution may only be bounded, but, of course, with enough variation these bounds may be

quite tight.56 They show that these results can be extended to settings where there is unobserved

auction heterogeneity, which may also affect the observed number of potential entrants, as long as

some exogenous variation in factors affecting entry remains. Of course, once the joint distribution

of values and signals is identified, entry costs are identified from the fact that a player that receives

the threshold signal should be indifferent to entering.

Roberts and Sweeting (2015), Roberts and Sweeting (2013) and Bhattacharya, Roberts, and

Sweeting (2014) currently provide the main empirical applications where models of selective entry

are estimated. In all three cases a fully parametric approach is taken, partly because of the need to

55In a type-symmetric equilibrium with multiple bidder types under NS, players of a given type must either all
mix over entry, enter with certainty, or not enter for sure. However, with a common K, it will generically not be
possible to have two types, with different value distributions, that are both willing to mix. Therefore observing
some but incomplete entry by more than one type can be used to reject the NS model, although this conclusion is
dependent on the assumption that only type-symmetric equilibria are played.

56In the absence of unobserved heterogeneity, one intuition for why the model is identified is that when there are
few potential entrants or entry costs are very low, all potential bidders should choose to enter with high probability.
In this case, we have - in essence - exogenous entry and standard results for the identification of value distributions
will hold (Athey and Haile (2006)). As potential competition rises or a shifter of entry costs increases, one can then
identify the average level of entry costs and the degree of selection from how the amount of observed entry and the
value distribution of entrants change.
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control for covariates, but also to address the fact that exogenous sources of variation in the entry

thresholds are typically limited in practice. Roberts and Sweeting (2015) and Roberts and Sweeting

(2013) estimate a model of second-price auctions using data from US Forest Service timber auctions

in the Pacific Northwest. Like ACL and Athey, Levin, and Seira (2011), they allow for asymme-

tries between sawmills and logging companies, and for unobserved auction heterogeneity. From a

modeling perspective, asymmetries between bidder types provide both a potential opportunity and

a problem for identifying the parameters. The opportunity comes from the fact that variation in

the number (or characteristics) of players of one type should lead to variation in the entry strategies

of other types of players, providing a new source of identification. Indeed, as Gentry and Li (2014)

note, when there is continuous variation in player types, as might be created for example by the

distance of a potential bidder’s depot to a construction site, as is often observed in highway paving

auctions, or from a sawmill to the location of the tract in a timber auction (as in Li and Zhang

(forthcoming)), this can lead to point identification of the model. On the other hand, there may

be multiple equilibria even when one restricts oneself to strategies that are symmetric within-type,

requiring an equilibrium selection assumption (usually that only one equilibrium is played in the

data given a set of observed auction and potential bidder characteristics) or an estimation approach

to deal with the incompleteness of the model (Tamer (2003)) that multiplicity can generate. In an

environment with two types that differ only in the location parameters of their value distributions,

one can show that there will always be exactly one equilibrium where the stronger type has a lower

entry threshold implying that they are more likely to enter. Assuming that this is the equilibrium

that is played, Roberts and Sweeting (2015) and Roberts and Sweeting (2013) estimate a random

coefficients model of the structural parameters. They find that the mean value of α for the auctions

in their sample is 0.6, indicating moderately selective entry and potentially significant gains from

using non-standard designs.57

Bhattacharya, Roberts, and Sweeting (2014) estimate a parametric model of selective entry into

low bid procurement auctions with symmetric bidders. They also estimate that entry is moderately

selective (mean value of α is 0.5) and they use the approach of Gentzkow and Shapiro (2013) to

illustrate which moments of the data parametrically identify the parameters. The results are broadly

consistent with the intuition from Marmer, Shneyerov, and Xu (2013) and Gentry and Li (2014) in

that changes in the number of realized entrants as the number of potential entrants varies play an

57It is worth noting that, at the estimated parameters, there is only a single equilibrium because the mills tend to
have values that are sufficiently high that only an equilibrium where they are more likely to enter can be supported.
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important role in determining the degree of selection. All of these papers take a full information

approach to estimation in the sense that it is necessary to be able to solve the selective entry and

bidding games as part of the estimation process. The results in Gentry and Li (2014) suggest

that it may be feasible to use a two-stage approach to estimating selection models with real-world

data. It would also be interesting to investigate how the Haile and Tamer (2003) inequality-based

approach to estimating open-outcry auction models, which assumes a fixed number of bidders, could

be applied to settings with endogenous and selective entry.

8 Conclusion

This article has argued that it is important to account for the selectivity, as well as the endogeneity,

of entry when trying to evaluate different auction designs in real-world settings. In the particular

example considered an increase in the degree of selection tends to increase both the efficiency and

revenue gains from deviating from the ‘standard auction with simultaneous and free entry’ format,

and it also tends to reduce the value, to the seller, of large bid preferences in settings where bidders

are naturally asymmetric. Recent advances in the empirical literature make it feasible to estimate

parametric models of selective entry, and to argue that the degree of selection is non-parametrically

identified.

In our discussion we have largely treated the degree of selection as a fixed parameter, rather

than some feature of the auction that the designer gets to choose. In practice, in many settings

the seller makes choices about what information will be provided to potentially interested parties,

and it may be able to hire third parties who could provide independent assessments of the object

being auctioned, with the aim that bidders can make more informed choices. When entry costs

are fixed, increasing the degree of selection tends to increase efficiency but reduce the seller’s

revenues by reducing entry/competition and increasing information rents. However, if providing

better information also reduces entry costs, so that the amount of entry is maintained, as in Section

6, then the change may increase both efficiency and revenues. Understanding how auction design,

including features that are often ignored in the literature, such as the information distributed to

potential bidders, affects both entry costs and selection seems to us to be an important direction

for future research. It would also be interesting to extend our framework to allow for the possibility

that there is a common value element in players’ valuations. In this case, it may be even more

desirable for the seller to regulate entry, in order to reduce the effects of the winner’s curse, but it
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is an open question as to what type of mechanisms might achieve this type of control in the most

efficient way.

The discussion also has some relevance for how to think about entry in non-auction settings.

A key feature of the selective entry model is that marginal and inframarginal entrants are not

necessarily alike, whereas it is quite common in entry settings to assume either that entrants only

find out any unobserved characteristics post-entry or that the unobserved characteristics that they

do observe simply reflect differences in fixed or sunk entry costs.58 This will matter in any setting

where the analysis of a policy change, such as liberalizing regulation, divesting plants to a new

entrant or allowing a merger, may depend on how strong a competitor a firm that is not currently

in the market is likely to be. In Roberts and Sweeting (2012) we consider the effects of selection

in the context of airline mergers (making an assumption that corresponds to the FS model laid out

above), a setting where it is often argued that the ability of carriers that do not currently serve a

route between particular pairs of cities or airports to enter could constrain any route-level market

power created by carrier mergers. Of course, this approach could be pushed further to allow for

partially selective entry in the way considered here.

One can also raise a broader methodological point about how we should think about entry. One

reason why both the theoretical and the empirical auction literatures have been so successful is that

the structure of the game that the bidders are playing can be observed and exactly specified within

the model. On the other hand, in few settings can we really claim to know the way that the entry

game is played, even in a setting like an auction where the ‘market’ that can be entered is clearly

defined. When we lack direct information on how a game is played, it is tempting to model it in a

way that is as convenient as possible in terms of deriving results, even if the resulting formulation

has features that seem unlikely to be true – such as no selection. We hope that the results in this

article provide an illustration of how this type of simplifying assumption could lead a researcher to

quite misleading conclusions.

58It is common to allow for potential entrants to have additively separable shocks to their payoffs from entering
that are not observed by the econometrician. However, these shocks do not affect the payoffs of other players, so
they should be understood as shocks to fixed or entry costs, rather than as reflections of the ‘competitiveness’ of the
firm that would determine the effect that the entrant has on incumbent profits. In contrast, in our auction model,
selection can directly affect whether a new entrant is likely to be the firm that is allocated the object. See Eizenberg
(2014) for a recent example of an article assuming that product qualities are only drawn once entry decisions have
been taken.
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Table 1: Expected Outcomes in a Standard Auction with Simultaneous and Free Entry

Value of Number of Total Seller Bidder
α Winner Entrants Surplus Revenues Profits
0 (FS) 112.29 2.57 99.44 85.57 13.88
0.01 112.29 2.57 99.44 85.57 13.87
0.1 112.25 2.60 99.27 85.62 13.65
0.2 112.22 2.63 99.06 85.77 13.30
0.3 112.14 2.67 98.78 85.96 12.81
0.4 111.98 2.72 98.38 86.16 12.22
0.5 111.78 2.77 97.92 86.45 11.47
0.6 111.55 2.83 97.37 86.78 10.59
0.7 111.25 2.91 96.70 87.22 9.47
0.8 110.86 3.00 95.82 87.77 8.05
0.9 110.32 3.14 94.60 88.58 6.01
0.95 109.96 3.25 93.69 89.24 4.44
0.99 109.58 3.42 92.45 90.30 2.14
NS 109.43 3.60 91.42 91.42 0

Notes: When there is no entry, the value of the winner, revenues

and surplus are zero. Bidder profits are the sum of player

profits. Expected outcomes based on 500,000 simulations.

Table 2: Expected Outcomes in an NS Model with Heterogeneous K

Value of Number of Total Seller Bidder
σK Winner Entrants Surplus Revenues Profits
0, common K (NS) 109.43 3.60 91.42 91.42 0
0.01 109.42 3.60 91.45 91.38 0.07
0.05 109.38 3.59 91.51 91.30 0.22
0.1 109.34 3.58 91.60 91.20 0.40
0.2 109.24 3.56 91.78 91.00 0.77
0.3 109.16 3.55 91.94 90.81 1.13
1 108.99 3.52 92.28 90.45 1.83
2 108.06 3.35 94.94 88.36 6.58
5 106.91 3.16 100.49 85.68 14.81

Notes: Mean K is 5. σK is the standard deviation.

Expected outcomes based on 500,000 simulations.
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Table 3: Changes in Outcomes when the Number of Players is Increased from Five to Six

Expected Total Surplus Expected Revenues
Sequential Sequential

α SASFE ERA Bidding SASFE ERA Bidding
0 (FS) 1.58 2.34 2.29 2.14 2.92 4.26
0.01 1.56 2.33 2.25 2.07 2.92 4.05
0.05 1.55 2.32 2.20 2.06 2.91 3.97
0.1 1.51 2.28 2.14 2.05 2.88 3.86
0.2 1.47 2.20 2.05 2.03 2.83 3.66
0.3 1.41 2.08 1.94 1.98 2.73 3.45
0.4 1.32 1.95 1.85 1.86 2.62 3.14
0.5 1.21 1.80 1.73 1.77 2.45 2.87
0.6 1.09 1.63 1.58 1.67 2.24 2.55
0.7 0.87 1.43 1.42 1.47 1.99 2.26
0.8 0.70 1.17 1.23 1.22 1.66 1.93
0.9 0.37 0.80 0.95 0.78 1.21 1.55
0.95 0.17 0.57 0.79 0.56 0.84 1.33
0.99 -0.19 0.32 0.49 0.03 0.38 1.08
NS -0.48 0 0.06 -0.48 0 0.15

Notes: Expected outcomes based on 500,000 simulations.

Table 4: Value of K that Leads to an Average of 1.5 Weak Players Entering, with No Bid Preference,
as a Function of α

Degree of Selection (α) Required Entry Cost (K̂)
0.01 0.523
0.05 0.575
0.1 0.655
0.2 0.847
0.3 1.066
0.4 1.297
0.5 1.536
0.6 1.776
0.7 2.017
0.8 2.255
0.9 2.484
0.95 2.591
0.99 2.669
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FIGURE 1: MARGINAL DISTRIBUTION OF VALUES AND THE POSTERIOR DISTRIBUTION 
OF VALUES CONDITIONAL ON RECEIVING THE 75TH PERCENTILE SIGNAL
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FIGURE 2: DISTRIBUTION OF VALUES FOR THE MARGINAL AND THE
AVERAGE INFRAMARGINAL ENTRANT FOR DIFFERENT DEGREES OF SELECTION
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Note: diagram shows bid functions and entry probabilities in the penultimate round of a sequential bidding auction
where the standing bid at the end of the previous knockout is 75 (so the incumbent's value must be at least 75).

FIGURE 3: JUMP BID FUNCTIONS AND ENTRY PROBABILITIES AS A FUNCTION OF 
THE DEGREE OF SELECTION IN A SEQUENTIAL BIDDING AUCTION MODEL
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Note: diagram shows bid functions and entry probabilities in the penultimate round of a sequential bidding auction
where the standing bid at the end of the previous knockout is 75 (so the incumbent's value must be at least 75).

FIGURE 4: BID FUNCTIONS FOR THREE LEVELS OF K
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FIGURE 5(a) EXPECTED TOTAL SURPLUS
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FIGURE 5(b) EXPECTED VALUE OF THE WINNER
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FIGURE 5(c) EXPECTED ENTRY COSTS
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FIGURE 6(a) EXPECTED REVENUES
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FIGURE 6(b) EXPECTED SUM OF BIDDER PAYOFFS
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FIGURE 7 EXPECTED REVENUES FROM A SASFE AND A SEQUENTIAL BIDDING AUCTION WITH 
SELLER-OPTIMAL RESERVE PRICES
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Note: in these figures K varies with α so that the expected entry of weak bidders when there is no preference is constant.

FIGURE 8 EFFECT OF BID PREFERENCES IN A MODEL WITH ASYMMETRIC BIDDERS



Note: in these figures K varies with α so that the expected entry of weak bidders when there is no preference is constant.

FIGURE 8 cont. EFFECT OF BID PREFERENCES IN A MODEL WITH ASYMMETRIC BIDDERS



FIGURE 9 BID FUNCTIONS WITH AND WITHOUT A 10% BID PREFERENCE


