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Bargaining with Incomplete Information 
Lawrence M. Ausubel, Peter Cramton, and Raymond J. Deneckere 

1 Introduction 
A central question in economics is understanding the difficulties parties have in reaching mutually 

beneficial agreements. Why do labor negotiations sometimes involve a strike by the union? Why do 

litigants engage in lengthy legal battles? And why does a worker with a grievance find it necessary to 

resort to a costly arbitration procedure? In all these cases, the parties would be better off if they could 

settle at the same terms without a protracted dispute. What, then, is preventing them from settling 

immediately? Recent theoretical work in economics has sought to answer this question. 

Although the theory is still far from complete, researchers have taken promising steps in modeling 

bargaining disputes by focusing on the process of bargaining.1 In the theory, costly disputes are explained 

by incomplete information about some aspect critical to reaching agreement, such as a party’s reservation 

price.2 Informational differences provide an appealing explanation for bargaining inefficiencies. If 

information relevant to the negotiation is privately held, the parties must learn about each other before 

they can identify suitable settlement terms. This learning is difficult because of incentives to misrepresent 

private information. Bargainers may have to engage in costly disputes to signal credibly the strength of 

their bargaining positions. 

In this chapter, we provide an overview of the theoretical and empirical literature on bargaining 

under incomplete information. Since the literature on the topic is vast, it was inevitable that we had to 

limit the scope of our discussion. Consequently, a number of interesting and important contributions were 

left out. In particular, we would have liked to have had space to discuss the work on repeated bargaining 

(e.g., Hart and Tirole, 1988; Kennan, 1997; Vincent, 1998), and the extensive literature on durable goods 

monopoly (studying such topics as the impact of depreciation and increasing marginal cost of production, 

the effect of secondhand markets and transactions cost, and selling versus leasing contracts). 

2 Mechanism Design 
We begin with an analysis of the fundamental incentives inherent in bargaining under private 

information. For this, we abstract from the process of bargaining. Rather than model bargaining as a 

sequence of offers and counteroffers, we employ mechanism design and analyze bargaining mechanisms 

                                                      
1 See Binmore, Osborne and Rubinstein (1992), Kennan and Wilson (1993), and Osborne and Rubinstein (1990) for 
surveys. 
2 Other motivations for disputes have been presented, such as uncertain commitments (Crawford, 1982) and multiple 
equilibria in the bargaining game (Fernandez and Glazer, 1991; Haller and Holden, 1990). 
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as mappings from the parties’ private information to bargaining outcomes. This allows us to identify 

properties shared by all Bayesian equilibria of any bargaining game.  

One basic question is whether private information prevents the bargainers from reaping all possible 

gains from trade. Myerson and Satterthwaite (1983) find that ex post efficiency is attainable if and only if 

it is common knowledge that gains from trade exist; that is, uncertainty about whether gains are possible 

necessarily prevents full efficiency. Our development of this result follows several papers in the 

implementation literature (Mookherjee and Reichelstein, 1992; Makowski and Mezzetti, 1994; Krishna 

and Perry, 1997; and, especially, Williams, 1999). 

Consider an allocation problem with n agents. Agent i has a valuation vi(a,ti) for the allocation a∈A 

when its type is ti∈Ti. An agent’s type is private information. There is a status quo allocation, a! , defining 

each agent’s reservation utility. We normalize each vi such that the reservation utility ( , ) 0i iv a t =! . Utility 

for i is linear in its value and money: ui(a,ti,xi) = vi(a,ti) + xi, where xi is the money transfer that i receives. 

A mechanism 〈a,x〉 determines an allocation a(r) and a set of money transfers x(r) based on the vector r of 

reported types. We wish to determine if it is possible to attain efficiency (for all t) by a mechanism that 

satisfies the agents’ incentive and participation constraints. Let Ui(ri|ti), Vi(ri|ti), and Xi(ri) denote i’s 

interim utility, valuation, and transfer when i reports ri and the other agents honestly report t−i: 
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Then Ui(ri|ti) = Vi(ri|ti) + Xi(ri). Let Ui(ti) ≡ Ui(ti|ti). The mechanism is incentive compatible if honest 

reporting is a best response: Ui(ti|ti) ≥ Ui(ri|ti) for all ti,ri∈Ti. Assume that ti has a positive density fi on an 

interval support [ , ],i it t and that Vi(ri|ti) is continuously differentiable. Then from the Envelope Theorem, 

incentive compatibility implies for almost every ti∈Ti 
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which by the Fundamental Theorem of Calculus implies 

(IC) U t U t V r
t

di i i i
i i i i

i
it

t

i

i( ) ( ) ( | ) .= + ∂ =
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The important implication of (IC) is that once the allocation a(t) is specified, an agent’s interim utility in 

any incentive compatible mechanism that implements a(t) is uniquely determined up to a constant. 
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Now consider the efficient allocation a*(t) ∈ argmax ∑i vi(a,ti), which maximizes the gains from 

trade. We know that the Groves mechanism implements the efficient allocation a*(⋅) in dominant 

strategies. The Groves mechanism has transfers 

 *( ) ( ( ), ) ( ).i j j i i
j i

x t v a t t k t−
≠

= −∑  

The second term, ki(t−i), is an arbitrary constant that does not distort the agent’s incentives. Since the 

agent is concerned with its interim payoff, we can without loss of generality replace ki(t−i) with a single 

constant Ki for each agent that does not depend on the others’ types. The first term provides the proper 

incentives. Ignoring the non-distorting constant, each agent gets the entire gains from trade. Hence, 

regardless of the reports of the others, honest reporting maximizes each agent’s utility, since this yields 

the maximal gains from trade given the reports of the others. Honest reporting is a dominant strategy. 

We will now develop necessary and sufficient conditions for the ex post efficient outcome to be 

Bayesian-implementable. Observe that a Groves mechanism automatically satisfies (IC), since it is 

incentive compatible. Moreover, if we vary the constants Ki, the Groves mechanisms span the set of all 

interim utilities that satisfy (IC) and achieve full efficiency. Thus, for any incentive-compatible and 

efficient mechanism, there exists a Groves mechanism that yields the same interim payoffs in dominant 

strategies; in checking whether efficiency can be achieved, we can simply focus on Groves mechanisms. 

However, in order for efficiency to be attained in any unsubsidized mechanism where participation is 

voluntary, the additional requirements of (interim) individual rationality and (ex ante) budget balancing3 

must be met: 

(IR) ( ) 0 , for all and for all .i i i iU t i t T≥ ∈  

(BB) [ ]( ) 0 .t i
i

E x t ≤∑  

That is, no type of any agent is made worse off by participating, and the sum of the expected transfers is 

nonnegative. Given the preceding paragraph, efficiency is attainable if and only if there exists a Groves 

mechanism satisfying (IR) and (BB). In the “basic” Groves mechanism with Ki = 0, each of the n agents 

needs to be awarded the entire gains from trade, yet the gains from trade are created only once by the 

mechanism. Hence, the “basic” Groves mechanism generates an expected deficit, [ ]( ) ,t ii
E x t∑  equal to 

                                                      
3 In general, ex ante budget balancing is justified if there is a risk-neutral mediator (or other financier) who can 
absorb the risk of ex post budget imbalances. In the absence of such a player, one may need to impose the stronger 
condition of ex post budget balancing, 0 .( )ii

x t ≤∑ However, in the current context, ex ante budget balancing is 
equivalent to ex post budget balancing. This is because all players are risk neutral and, hence, can jointly costlessly 
absorb the risk associated with ex-post budget imbalances (see also Cramton, Gibbons and Klemperer, 1987). 
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(n−1) times the expected gains from trade. In other words, the “basic” Groves mechanism satisfies (IR) 4 

but violates (BB), whenever the expected gains from trade are positive. More general Groves mechanisms 

can try to finance the deficit by taxing the agents, but (IR) limits the magnitude of those taxes.  Indeed, let 

( )K
i iU t  denote the interim utility of agent i in the Groves mechanism with taxes 1( , ... , )nK K K= . Since 

0K
i i iU U K= + , the tax to agent i can be no greater than i iK U= , where { }0inf ( ) |i i i i iU U t t T≡ ∈  is 

the interim utility of the worst-off type in the “basic” Groves mechanism. We therefore have: 
 

THEOREM 1 (Williams, 1999): Under incentive compatibility (IC), individual rationality (IR) and 

budget balancing (BB), efficiency is attainable if and only if: 

(E) ( ) [ ( ( ), )] .*n E v a t t Ut i i i i i− ∑ ≤ ∑1  

 

We now apply Theorem 1 to prove the Myerson and Sattertherwaite result. In this case, there are two 
agents, a seller S and a buyer B bargaining over the exchange of a good. Each knows its own valuation for 
the good, but not that of the other. The seller’s valuation s is drawn from a distribution with positive 
density on [s, s ]; the buyer’s valuation b is drawn independently from a distribution with positive density 
on [b,b ]. If s ≤ b, it is common knowledge that gains from trade exist, and it is trivial to see that 
efficiency is attained by a single-price mechanism: trade for sure at a price p∈[ s , b]. This is incentive 
compatible, since the outcome does not depend on the report, and it is individually rational, since each 
party receives a nonnegative payoff in every realization. We thus concentrate on the non-trivial case 
where s > b. The “basic” Groves mechanism has the following description: if b > s, trade occurs, the 
buyer pays s and the seller receives b, so that both get a payoff equaling b − s, the gains from trade; if b ≤ 
s, then trade does not occur and both get a payoff of 0. The interim payoff to an agent is the expected 
gains from trade given the agent’s value. Since the expected gains from trade are decreasing in the seller’s 
value and increasing in the buyer’s value, the worst-off types are seller s  and buyer b. Hence,  

 
U E b s
U E b s

S b b s

B s b s

= −
= −

>

>
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[( ) ].

{ }

{ }

1
1

 

The deficit from the basic Groves mechanism is the expected gains from trade, which can be broken into 

four terms: 

 

E b s E b s s b b s s b b s
E b s b s b s
E b s s b s b
E b s s b b s s b b s

b s b s[( ) ] [( ) | ; ]Pr( ; )
[ | ]Pr( )
[ | ]Pr( )
[ | ; ]Pr( ; ).

{ } { }− = − > < > <
+ − > >
+ − < <
− − < > < >

> >1 1

 

                                                      
4 (IR) is satisfied, since *( ( ), ) ( , ) 0i i i ii i

v a t t v a t≥ =∑ ∑ ! . 
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Since s > b, the first term is positive. Hence, (E) will be violated if the sum of the last three terms is at 

least as big as US + UB. But 

 
E b s b s b s U E s s b s b s
E b s s b s b U E b b s b s b

S

B

[ | ]Pr( ) [ | ]Pr( )
[ | ]Pr( ) [ | ]Pr( ),

− > > − = − > >
− < < − = − < <

 

so (E) is violated if 

 E s s b s b s E b b s b s b E b s s b b s s b b s[ | ]Pr( ) [ | ]Pr( ) [ | ; ]Pr( ; ) .− > > + − < < − − < > < > ≥ 0  

But this can be rewritten as 

 

E s s s b b s s b b s
E b b s b b s s b b s
E b s s b b s s b b s
E s s s b b s s b b s
E b b s b b s s b b s

[ | ; ]Pr( ; )
[ | ; ]Pr( ; )
[ | ; ]Pr( ; )
[ | ; ]Pr( ; )
[ | ; ]Pr( ; ) .

− < > < >
+ − < > < >
− − < > < >
+ − ≥ > ≥ >
+ − < ≤ < ≤ ≥ 0

 

This follows, since the first three terms sum to E s b s b b s s b b s[ | ; ]Pr( ; ) ,− < > < > ≥ 0  and the last two 

terms are both nonnegative. We thus have: 

 

 COROLLARY 1 (Myerson and Satterthwaite, 1983): If there is a positive probability of gains from 

trade (i.e., if b > s), but if it is not common knowledge that gains from trade exist (i.e., if s > b), then no 

incentive compatible, individually rational, budget balanced mechanism can be ex post efficient. 

 

Whenever there is some uncertainty about whether trade is desirable, ex post efficient trade is 

impossible.  For this reason, private information is a compelling explanation for the frequent occurrence 

of bargaining breakdowns or costly delay.  Inefficiencies are a necessary consequence of the strong 

incentives for misrepresentation between bargainers with private information. 

Myerson and Satterthwaite’s result depends crucially on the uncertainty being about players’ 

valuations.  For example, if players were uncertain about their respective fixed costs of delaying 

agreement, or about each others’ discount factors, efficiency can be achieved by having players trade at a 

price between their (known) valuations.5 The Myerson-Satterthwaite result also depends on independent 

types and risk neutrality. For example, Gresik (1991a) and McAfee and Reny (1992) show that when 

                                                      
5 For this reason, we will only study the outcome of dynamic trading processes when uncertainty is about players’ 
valuations. Important contributions to extensive form bargaining when uncertainty is about players’ fixed cost of 
bargaining include Perry (1986), Rubinstein (1985b), and Bikchandani (1992), and when uncertainty is about 
discount factors include Rubinstein (1985a) and Cho (1990b). 
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types are correlated efficient trade may be possible. Finally, it matters that the supports of the 

distributions of valuations are intervals (Matsuo, 1989). 

Since ex post efficiency cannot be obtained, it is natural to ask how much of the gains from trade can 

be realized. Returning to the framework above of a single seller and single buyer with independent private 

values, then an allocation rule is simply the probability of trade as a function of the valuations: p(s,b). We 

wish to find the allocation rule p that maximizes the expected gains from trade, subject to incentive 

compatibility and individual rationality. Suppose s is drawn from the distribution F with density f and b is 

drawn from the distribution G with density g. Myerson and Satterthwaite (1983) show that the optimal 

allocation rule p solves 

  

max [( ) ( , )]

( )
( )

( )
( )

( , )

[ ( , )] [ ( , )]
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S B

b s
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QP
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1 0  

The monotonicity constraints are necessary for incentive compatibility. The interim probability of 

trade is (weakly) decreasing in the seller’s valuation and (weakly) increasing in the buyer’s valuation. The 

first constraint is individual rationality (the worst-off types get a non-negative payoff) for a mechanism 

that satisfies (IC). Ignoring the monotonicity constraints, the Lagrangian is 

  

max [( ( , ) ( , )) ( , )],

( , ) ( )
( )

( , ) ( )
( )

.

( , )p
E d b c s p s b

c s s F s
f s

d b b G b
g b

⋅ ⋅
−

= + = − −

α α

α α α α

 where

1  

Hence, by pointwise optimization the maximizing allocation rule is 

 p s b
d b c b
d b c b

α α α
α α

( , )
( , ) ( , )
( , ) ( , ),

=
>
≤

RST
1
0

if  
if  

  

where α∈(0,1] is chosen so that US + UB = 0. A sufficient condition for the required monotonicity of the 

interim probability of trade is that c(s,1) and d(b,1) are increasing. This is the regular case.6 

As an example, suppose both traders’ valuations are drawn uniformly from [0,1]. Then α = 1/3 and 

the optimal allocation rule is to trade if and only if the gains from trade b − s is greater than 1/4. By surely 

trading when the gains from trade are largest, the mechanism reaps 84% of the possible gains from trade; 

there is a 16% loss due to the private information. The simultaneous-offer bargaining game studied by 

Chatterjee and Samuelson (1983) implements this optimal outcome. Both seller and buyer simultaneously 

                                                      
6 Gresik (1991b) shows that we can replace interim individual rationality with the stronger ex post individual 
rationality without changing the set of ex ante efficient trading rules. 
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make offers. If the seller’s offer is less than the buyer’s, then they trade at a price half-way between the 

two offers. Otherwise, they do not trade. In the ex ante efficient equilibrium, the traders use the following 

linear strategies: the seller offers 2s/3 + 1/4 and the buyer offers 2b/3 + 1/12. In choosing offers, both 

recognize the fundamental tradeoff between the probability of trade and the terms of trade. Whenever the 

probability of trade is positive, the parties have an incentive to misrepresent: the seller overstates her 

value and the buyer understates. The size of the misrepresentation increases with the probability of trade. 

Our derivation above assumed that the seller’s private information does not affect the buyer’s 

valuation for the object, and conversely that the buyer’s private information does not affect how much the 

seller values the object. However, as emphasized by Akerlof (1970), there are many interesting trading 

situations in which traders’ valuations are interdependent. A seller of a used car may have information 

about reliability relevant to a potential buyer, and the buyer of an oil tract may have survey information 

relevant to its seller. While dominant strategy mechanisms no longer exist when valuations are 

interdependent, several authors have recently constructed generalized Groves mechanisms for which 

efficient trade is a Bayesian equilibrium (Ausubel, 2002; Dasgupta and Maskin, 2000; Jehiel and 

Moldovanu, 2001; and Perry and Reny, 1998). These mechanisms could be used to derive an inefficiency 

result analogous to Myerson and Satterthwaite’s (see Gresik, 1991c). Here we will consider the simpler 

environment studied by Akerlof, in which the seller’s value s is private information, and the buyer’s value 

is an increasing function of s satisfying g(s) > s. Note that the private values model is a special case in 

which g(s) is constant at the level b. For this environment, Samuelson (1984) and Myerson (1985) 

established the following result: 

 

THEOREM 2: A bargaining mechanism {p,x} is incentive compatible and individually rational if and 

only if p(⋅) is weakly decreasing, 

( )
( ) ( ) ( ) 0, and

( )

s

s

F s
K g s s f s p s ds

f s
≡ − − ≥ 

  ∫  

( ) ( ) ( ) for some 0 .,
s

s
x s k sp s p z dz k K= + + ≤ ≤∫  

 

Note that, since g(s) > s, ex post efficiency requires that p(s) ≡ 1. Integrating the first inequality in 

Theorem 2 by parts, we see that this can be a trading outcome only if [ ( )] ,E g s s≥  i.e. the buyer’s 

expected value exceeds the highest seller valuation. This condition is automatically satisfied in the private 

values case, but is restrictive in the interdependent case. In this sense, interdependencies in valuations 
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make trading inefficiencies more likely. For example, if g(s) = βs and s is uniform on [0,1], ex post 

efficiency requires β ≥ 2. 

Akerlof went one step further, and observed that adverse selection in the above model may be so 

severe that no market-clearing price involving a positive level of trade can exist. This happens whenever 

E[g(v) − s | v ≤ s] < 0 for all s > s , for then any price that all seller types below s would accept yields the 

buyer negative expected surplus. Akerlof only considered single-price mechanisms, and it is of course 

conceivable that under his condition some more general trading mechanism could prove superior to 

competitive equilibrium. However, it is possible to use Theorem 2 to show that this cannot happen: under 

Akerlof’s condition, the only incentive-compatible mechanism is the zero-trade mechanism.  We can 

again illustrate this with the linear example described above; since E[βv − s | v ≤ s] = (β/2 − 1) s2, 

Akerlof’s condition reduces to β < 2. It follows that g(s) − s − F(s) / f(s) = (β − 2) s < 0, so the incentive 

compatibility condition K ≥ 0 can be satisfied only if p(s) = 0. 

An important generalization of the bilateral independent values model is to multiple sellers and 

buyers. How does the bargaining inefficiency change as we add traders? Rustichini, Satterthwaite, and 

Williams (1994) consider a model with m sellers and m buyers and price is set to equate revealed demand 

and supply. In any equilibrium, the amount by which a trader misreports is O(1/m) and the inefficiency is 

O(1/m2).7 Hence, the inefficiency caused by private information quickly falls toward zero as competition 

increases. This provides a justification for assuming full information in competitive markets. 

The mechanism design approach does not just apply to static trading procedures. Indeed, if the 

traders discounts by the same interest rate r, then all the results above generalize to dynamic trading 

mechanisms, where the probability of trade p(s,b) is replaced with the time of trade t(s,b), where p(s,b) = 
( , )r t s be− . Hence, ex post efficiency is unobtainable as a Bayesian equilibrium in any static or dynamic 

bargaining game when it is uncertain whether trade is desirable. 

An important feature of the ex ante efficient trading rule is that it is static. Trade either occurs 

immediately or not at all. Such static trading rules have been criticized, because they violate sequential 

rationality (Cramton, 1985). Their implementation requires a commitment to walk away from know gains 

from trade. For example, in the Chatterjee-Samuelson mechanism, with probability 7/32, the offers reveal 

that the gain from trade is positive, but less than 1/4, so the parties are required not to trade, even though 

both know that mutually beneficial trade is possible. In addition, with probability 7/16, at least one trader 

knows that both are sure to get 0 in the mechanism. This provides an incentive to propose another trading 

                                                      
7 See also Gresik and Satterthwaite (1989), Satterthwaite and Williams (1989), Williams (1990, 1991), and Wilson 
(1985). 
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rule, even before offers are announced. An initial round of “cheap talk” may upset the equilibrium (Farrell 

and Gibbons 1989). 

Cramton, Gibbons, and Klemperer (CGK) (1987) generalize the Myerson and Satterthwaite (MS) 

problem to the case of n traders who share in the ownership of a single asset. Specifically, each trader i ∈ 

{1,...,n} owns a share ri ≥ 0 of the asset, where r1 + … + rn = 1. As in MS, player i’s valuation for the 

entire good is vi, and the utility from owning a share ri is rivi, measured in monetary terms. The vi’s are 

independent and identically distributed according to F with positive density f on [v, v ]. A partnership 

(r,F) is fully described by the vector of ownership rights r = {r1,...,rn} and the traders’ beliefs F about 

valuations. 

MS consider the case n = 2 and r = {1,0}. They show that there does not exist a Bayesian 

equilibrium of the trading game that is individually rational and ex post efficient. In contrast, CGK show 

that if the ownership shares are not too unequally distributed, then it is possible to satisfy both individual 

rationality and ex post efficiency. 

In addition to exploring the MS impossibility result, this paper considers the dissolution of 

partnerships, broadly construed. In a situation of joint ownership, who should buy out whom and at what 

price? Applications include divorce and estate fair-division problems (McAfee, 1992), and also public 

choice. For example, when several towns jointly need a hazardous-waste dump, which town should 

provide the site and how should it be compensated by the others? 

In this context, ex post efficiency means giving the entire good to the partner with the highest 

valuation. A partnership (r,F) can be dissolved efficiently if there exists a Bayesian equilibrium of a 

Bayesian trading game that is individually rational and ex post efficient. 

 

THEOREM 3. The partnership (r,F) can be dissolved efficiently if and only if 

(D)  [ ( )] ( ) ( ) ( ) ,*

*

1 0
1

− −L
NM

O
QP ≥z z∑

=
F u udG u F u udG u

v

v

v

v

i

n

i

i  

where vi* solves F(vi)n−1 = ri and G(u) = F(u)n−1. 

Equation (D) is equivalent to (E) applied to this setting. As an example, if n = 2 and values are 

uniformly distributed on [0,1], then the partnership is dissolvable if and only if no shareholder’s share is 

larger than .789. In general, the set of dissolvable partnerships is a convex, symmetric subset of the unit 

simplex centered at equal shares. 

 

COROLLARY 2. For any distribution F, the one-owner partnership r = {1,0,...,0} cannot be dissolved 

efficiently. 
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This corollary generalizes the MS impossibility result to the case of many buyers. The one-owner 

partnership can be interpreted as an auction. Ex post efficiency is unattainable because the seller’s 

reservation value v1 is private information. The seller finds it in her best interest to set a reserve above her 

value v1. The corollary also speaks to the time-honored tradition of solving complex allocation problems 

by resorting to lotteries: even if the winner is allowed to resell the object, such a scheme is inefficient 

because the one-owner partnership that results from the lottery cannot be dissolved efficiently. 

CGK demonstrate that the incentives for misrepresentation depend on the ownership structure. The 

extreme 0-1 ownership shares in bilateral bargaining maximize the incentive for misrepresentation: sellers 

have a clear incentive to overstate value and buyers have a clear incentive to understate. Partial ownership 

introduces countervailing incentives, since the parties no longer are certain whether they are buying or 

selling. In the case of bilateral bargaining, the worst-off types are the highest seller type and the lowest 

buyer type. These trader types are unable to misrepresent (a seller cannot claim to have a value greater 

than s and a buyer cannot claim to have a value less than b); hence, these types need not receive any 

information rents. With partial ownership ri, the worst-off type is vi*, which solves F(vi)n−1 = ri. Notice 

that ri = F(vi*)n−1 is the probability that type vi* has the highest value and thus buys 1 − ri of the good in 

the ex post efficient mechanism. Likewise, with probability 1 − ri, type vi* sells ri. Hence, for the worst-

off type, the expected purchases, ri(1 − ri), equal the expected sales, (1 − ri)ri. In this sense, the worst-off 

type is the most confused about whether she is buying or selling; the incentives to overstate just balance 

the incentives to understate, and no bribes are required to get the trader to report the truth. 

A basic insight of this analysis is that when parties have private information, bargaining efficiency 

depends on the assignment of property rights (see also Samuelson, 1985; and Ayres and Tally, 1994). 

Hence, full information is an essential ingredient in the Coase (1960) Theorem that bargaining efficiency 

is not affected by the assignment of property rights. 

Mechanism design is a powerful theory for studying incentive problems in bargaining. We are able 

to characterize the set of outcomes that are attainable, recognizing each trader’s voluntary participation 

and incentive to misrepresent private information. In addition, we are able to determine optimal trading 

mechanisms—mechanisms that are efficient in an ex ante (or interim) sense. Despite these virtues, 

mechanism design has two weaknesses. First, the mechanisms depend in complex ways on the traders’ 

beliefs and utility functions, which are assumed to be common knowledge. Second, it allows too much 

commitment. In practice, bargainers use simple trading rules—such as a sequence of offers and 

counteroffers—that do not depend on beliefs or utility functions. And bargainers may be unable to walk 

away from known gains from trade. For this reason we next turn to the analysis of particular dynamic 

bargaining games.  



3 Sequential Bargaining with One-Sided Incomplete Information: The “Gap” Case

In the previous section, we described bargaining as being static and mediated. Instead, we will

now assume that bargaining occurs through a dynamic process of bilateral negotiation. A bargaining

protocol explicitly specifies the rules that govern the negotiation process, and the bargaining outcome

is described as an equilibrium of this extensive-form game.

We follow Rubinstein (1982) in requiring that only one offer can be on the bargaining table at

any one time,8 and that once an offer is rejected it becomes void (i.e., does not constrain any player’s

future acceptance or offer behavior). More precisely, we assume that there are an infinite number of

time periods, denoted by n = 0,1,2,... . In each period in which bargaining has not yet concluded, one

of the players (whose identity is a function only of the time period n) can make an offer to his

bargaining partner consisting of a price p ∈ at which trade is to occur. Upon observing this offer,

the partner can either accept, in which case the object is exchanged at the specified price and the

bargaining ends, or reject, in which case the play moves on to the next period. Note that any terminal

node of the game is uniquely identified by a pair (p,n). We assume that players are impatient,

discounting surplus at the common discount factor δ ∈ [0,1). Hence the payoffs assigned to terminal

node (p,n) are δn(b−p) and δn(p−s), for the buyer and seller, respectively.

Three bargaining protocols of this type will be of specific interest: the seller-offer game, in which

only the seller is allowed to make offers; the alternating-offer game, in which the buyer and seller

alternate in making proposals; and the buyer-offer game, in which the buyer makes all the offers.

The private information is modeled as follows. Before the bargaining begins (i.e., prior to period

0), nature selects a signal q ∈ [0,1], and informs one of the two parties of its realization. The

distribution of the signal is common knowledge and, without loss of generality, will be assumed to be

uniform. The signal in turn determines the buyer and seller valuations through the monotone functions

v( ) and c( ):

b = v(q) s = c(q).

We will say that the model has private values, if the uninformed party’s valuation function is constant,

and that the model has interdependent values, otherwise. We will adopt the convention that if the

buyer is the informed party then the function v(q) is decreasing, so that it represents an (inverse)

8 It is well known that even in the one-shot complete-information case simultaneous offers permit any outcome.
See also Sákovics (1993) for an illuminating discussion on the importance of precluding simultaneous offers.
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demand function, and if the seller is the informed party then the function c(q) is increasing, so that it

represents an (inverse) supply function. The signal q is thus just an index indicating the rank order of

the types of the informed party. Throughout, it will be assumed that the functions v( ) and c( ) are

common knowledge.

Note that, in every period n, the information set of the offering player can be identified with a

history of n rejected offers, and the information set of the receiving player can be identified with the

same history concatenated with the current offer. For the offering player, a pure behavioral strategy in

period n specifies the current offer as a function of this history of rejected offers. For the player

receiving an offer, a pure behavioral strategy in period n specifies a decision in the set {A,R} as a

function of the n-history of rejected offers and the current offer (where A denotes acceptance and R

denotes rejection of the current offer). A sequential equilibrium consists of a pair of behavioral

strategies and a system of beliefs. Specifically, a sequential equilibrium associates with every node at

which it is the uninformed party’s turn to move a belief over the signal (rank order) of the informed

party. As indicated above, the initial belief is that q is uniform on [0,1]. Sequential equilibrium

requires that the beliefs are “consistent”, i.e., are updated from the belief in the previous period and

the equilibrium strategies using Bayes’ law (whenever it is applicable). Sequential equilibrium also

requires that each player’s strategy be optimal after any history, given the current beliefs.

Offer/counteroffer bargaining games typically have a plethora of equilibria, for two distinct

reasons. First, somewhat analogous to the folk-theorem literature in repeated games, the presence of

an infinite number of bargaining rounds permits history-dependent strategies that can often support a

wide variety of equilibrium behavior (Ausubel and Deneckere, 1989a,b). Secondly, even if bargaining

were allowed to last only a finite number of periods, there will typically still exist a multiplicity of

sequential equilibria. This multiplicity arises because sequential equilibrium imposes no restrictions on

players’ beliefs following out-of-equilibrium moves (Bayes’ law is then simply not applicable). As a

consequence, an out-of-equilibrium offer by the informed party can lead to adverse inferences

regarding its eagerness to conclude the transaction, resulting in poor terms of trade. In alternating-

offer bargaining games, the threat of such adverse inferences can therefore often sustain a wide variety

of bargaining outcomes (Fudenberg and Tirole, 1983; Rubinstein, 1985a,b).

In order to narrow down the range of predicted bargaining outcomes, researchers have confined

attention to more restrictive equilibrium notions. One refinement that has received considerable

attention is the concept of stationary equilibrium (Gul, Sonnenschein and Wilson, 1986). Recall that a

belief is a probability distribution F(q) over the set of possible signals (the unit interval). We will say
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that a belief G(q) is a truncation (from the left) of the belief F(q) if it is the conditional probability

distribution derived from F(q), given that the signal exceeds some threshold level q′ > 0. Thus G(q)

= 0 for q < q′ and G(q) = [F(q) − F(q′)]/[1 − F(q′)] for q ≥ q′. A stationary equilibrium is a

sequential equilibrium satisfying three additional conditions:

(1) Along the equilibrium path, the beliefs following rejection of the informed party’s offer are a

truncation of the beliefs entering that period;

(2) For every history such that the current beliefs are a truncation of the priors, the informed

party’s current acceptance behavior is a function only of the current offer; and

(3) For every history such that the current belief is the same truncation of the prior, the informed

party’s current offer behavior is identical.

The notion of stationarity is rather subtle, and to understand its meaning it is useful to first restrict

attention to the game in which the uninformed party makes all the offers, so that only requirement (2)

carries any force. Observe that, in any offer/counteroffer game, rejections by the informed party

always lead to a truncation of the current beliefs:9

LEMMA 1 (Fudenberg, Levine and Tirole, 1985): Let n be a period in which it is the uninformed

party’s turn to make an offer, and denote the history of rejected prices entering period n by hn. Then

to every sequential equilibrium there corresponds a nonincreasing (nondecreasing) function P(hn,q) and

equivalent sequential equilibrium such that if the informed party is the buyer (seller), it accepts the

current offer p if and only if p ≤ P(hn,q) (respectively, p ≥ P(hn,q)).

PROOF: Suppose buyer type q is willing to reject the current offer p. Any buyer type q′ > q can

always mimic the strategy of type q, and thereby secure the same expected probability of trade and

expected payment from rejecting p. The single crossing property then implies that if v(q′) < v(q), type

q′ will strictly prefer rejection to acceptance. Meanwhile, if q is indifferent between accepting and

rejecting, a purification argument shows that there is an equivalent sequential equilibrium and a cutoff

signal level q″ with v(q″) = v(q), such that all q′ < q″ accept p and all q′ > q″ reject p.

9 Sequential equilibria of the game in which the uninformed party makes all the offers therefore have a screening
structure, with higher valuation buyer types trading earlier and at higher prices than lower valuation types. Delaying
agreement by rejecting the current offer credibly signals to the seller that the buyer has a lower valuation, thereby
making her willing to lower price over time.
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For the game where the uninformed party makes all the offers, Lemma 1 implies that the

informed party uses a possibly history-dependent reservation price strategy, P(hn,q). Requirement (2)

in the definition of stationarity requires that the acceptance functions P(hn,q) are constant over all

histories hn. It is this history independence that gives stationarity its cutting power. Stationarity is a

stronger restriction than Markov-perfection (Maskin and Tirole, 1994), since the latter would only

require that P be constant on histories inducing the same current beliefs. As emphasized by Gul and

Sonnenschein (1988) stationarity also embodies a form of monotonicity: when the uninformed party is

more optimistic (in the sense that the beliefs are truncated at lower level), the informed party must not

be tougher in its acceptance behavior.

For game structures that permit the informed party to make offers, stationarity carries two

additional restrictions. The informed party’s offer behavior must be Markovian (requirement #3); and

in equilibrium the beliefs following a period in which the informed party made an offer must be a

truncation of the prior (requirement #1). Thus, stationarity imposes a screening structure on the

equilibrium. This assumption is very strong, since it requires the uninformed party to accept with

probability zero or one following any equilibrium offer that is not made by all types, and thereby

severely restricts the informed party’s ability to signal its type. At the same time, however,

stationarity may be insufficiently restrictive because it does not address the multiplicity of equilibria

arising from “threatening with beliefs.” Furthermore, refinements of sequential equilibrium designed

to reduce this multiplicity are potentially at odds with the requirements of stationarity. This raises the

question of whether stationary equilibria (with or without additional refinements) are always

guaranteed to exist. Fortunately, as we shall see, the answer to this question is broadly positive.

In the remainder of this section, we study the trading situation in which it is common knowledge

that the gains from trade are bounded away from zero, i.e., there exists ∆ > 0 such that v(q) − c(q) ≥ ∆

for all q ∈ [0,1]. Section 4 studies the case where there is no such ∆, so that the gains from trade can

be arbitrarily small.

3.1 Private Values

To facilitate the discussion of private values model, we will henceforth assume that the informed

party is the buyer (the symmetric situation in which it is the seller that is informed is treated in the

subsection on interdependent values). In this case, the seller’s cost is independent of the signal level

and can without loss of generality be normalized to zero (by measuring buyer valuations net of cost).

The model is therefore completely described by the discount factor δ and the nonincreasing buyer
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valuation function v(q). In order to permit the existence of an equilibrium, v(q) will be assumed to be

left continuous (to see this is necessary, consider the seller-offer game in which δ = 0).

3.1.1 The Seller-Offer Game

Following Fudenberg, Levine and Tirole (1985) and Gul, Sonnenschein and Wilson (1986), we

are interested in stationary equilibria in which the buyer’s acceptance behavior depends upon previous

history only to the extent it is reflected in the current price. The purification argument in the proof of

Lemma 1 shows that there is no loss of generality in assuming that the buyer does not randomize in

his acceptance behavior, an assumption which we will maintain henceforth. The buyer’s acceptance

behavior is thus completely characterized by a nonincreasing (left-continuous) acceptance function

P(q). Consequently, following any history the seller’s belief will always be a truncation of the prior,

i.e., be uniform on an interval of the form [Q,1]. The lower endpoint of this interval, Q, is thus a

state variable.

The acceptance function acts as a static demand curve for the seller, who faces a tradeoff between

screening more finely and delaying agreement. This tradeoff is captured by the dynamic programming

equation:

(1) .W(Q) max Q′ ≥ Q P(Q′) (Q′ Q)

(1 Q)
δ (1 Q′)

(1 Q)
W(Q′)

To understand (1), observe that if the seller brings the state to Q′ (by charging the price P(Q′)), then

the buyer will accept with conditional probability (Q′−Q)/(1−Q). Rejection happens with

complementary probability, moves the state to Q′, and results in the seller receiving the value W(Q′)

with a one-period delay. Letting V(Q) = (1−Q) W(Q) denote the seller’s ex-ante expected value from

trading with buyer types in the interval (Q,1], equation (1) can be simplified to:

(2) .V(Q) max Q′ ≥ Q P(Q′) (Q′ Q) δ V(Q′)

Let T(Q) denote the argmax correspondence in (2). By the generalized Theorem of the Maximum

(Ausubel and Deneckere, 1993b), T is nonempty and compact-valued, and the value function V is

continuous. A straightforward revealed preference argument also shows that T is a nondecreasing

correspondence, and hence single-valued at all but at most a countable set of Q.

Define t(Q) = min T(Q), and note that t(Q) is continuous at any point where T(q) is single-valued.
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Now consider any point Q where v( ), P( ) and t( ) are continuous; consumer optimization then

requires that:

(3) P(Q) = (1−δ) v(Q) + δ P(t(Q)) .

Equation (3) says that when the seller charges the price p = P(Q), the buyer of type q = Q must be

indifferent between accepting the offer p, and waiting one period to accept the next offer (which must

be P(t(Q)). A straightforward argument establishes that the consumer indifference equation (3) must in

fact hold for all Q > 0.10 This fact has an important consequence: in any stationary equilibrium, the

seller will never randomize except (possibly) in the initial period.11 Indeed, in period zero the seller

is free to randomize amongst any element of T(0). However, given any such choice Q, equation (3)

requires the seller to select t(Q) in the next period (even if T(Q) is not single-valued). This is

necessary to make the buyer’s acceptance decision optimal.

The triplet {P( ),V( ),t( )} completely describes a stationary equilibrium. After any history in

which the seller selects a price p = P(Q) for some Q, all consumer types q ≤ Q accept and all others

reject; the next period the seller lowers the price to P(t(Q)). If the seller were ever to select a price p

such that sup{P(Q′) : Q′ > Q} < p < P(Q) for some Q, then the highest consumer type to accept is

again Q. However, if the gap in the range of P is due to a discontinuity in the function t(Q), then to

make consumer Q’s acceptance rational, the seller must in the next period randomize between the

offers in P(T(Q)) so as to make Q indifferent. Note, however, that an optimizing seller will never

charge a price in this range, as she could induce exactly the same the same set of buyer types to

accept by charging the higher price P(Q). Randomization is therefore only called for if the seller

made a mistake in the previous period.

Any stationary equilibrium path has the following structure. In the initial period, the seller selects

(possibly randomly) a price P(Q0), for some Q0 ∈ T(0). Note that randomization is possible only if T(0)

is multiple valued, i.e., its profit function has multiple maximizers. This should be a rare occurrence,

because as a monotone correspondence, T(Q) can have at most countably many points at which it is not

10 Consider any of the (at most countably many) excluded states Q, and let {Qn} be a sequence of nonexcluded points
converging from below to Q. Since (3) holds for each n, upon taking limits as n → ∞, we see that (3) holds for all
Q > 0.

11 Gul, Sonnenschein and Wilson (1986, Theorem 1) constructively demonstrate the absence of randomization along
the equilibrium path, under the assumption that there is a gap and condition (L) of theorem 4 (below) holds. The
argument given here (drawn from Ausubel and Deneckere, 1989a, Proposition 4.3) shows that it is stationarity that
is the driving force behind this result.
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single valued (see the genericity statement in Theorem 4, below). The remainder of the future is then

entirely deterministic, with the seller successively lowering the prices to P(t(Q0)), P(t2(Q0)), P(t3(Q0)), ... ,

and corresponding buyer acceptances in (Q0,t(Q0)], (t(Q0),t
2(Q0)], (t2(Q0), t3(Q0)], ... .

An important question is whether the coupled pair of functional equations (2) and (3) has a

solution. At the same time, the bootstrap structure of these equations suggests that there may be a

severe multiplicity of stationary triplets. The pioneering work in the areas of existence and uniqueness

of stationary equilibria is due to Fudenberg, Levine and Tirole (1985) and Gul, Sonnenschein and

Wilson (1986). Below, we collect a number of disparate results in the literature into a single theorem:

THEOREM 4: For any left-continuous valuation function v( ), there exists a stationary equilibrium

of the seller-offer game. Every stationary equilibrium is supported by a stationary triplet {P,t,V}

satisfying (2) and (3). Furthermore, if there is a gap, and if the demand curve satisfies a Lipschitz

condition at q = 1:

(L) There exists L < ∞ such that v(q) − v(1) ≤ L(1−q), for all q ∈ [0,1],

then the stationary triplet is unique, every sequential equilibrium outcome coincides with a stationary

equilibrium outcome, and for generic values of the state there is a unique stationary (and hence

sequential) equilibrium outcome. Under these conditions, there also exists a finite integer such thatN̂

the buyer accepts the seller’s offer by period , regardless of the discount factor δ.N̂

PROOF: Fudenberg, Levine and Tirole (1985, Propositions 1 and 2) prove existence and generic

uniqueness of the outcome path in the case of a gap, under the assumption that the demand curve is

differentiable with derivative bounded above and below. Gul, Sonnenschein and Wilson (1986,

Theorem 1) prove existence and uniqueness of a stationary triplet when there is a gap and condition

(L) holds, and also demonstrate generic uniqueness of the outcome path. A general existence proof

appears in Ausubel and Deneckere (1989a, Theorem 4.2). Deneckere (1992) proves that under

condition (L) the number of bargaining rounds is uniformly bounded for fixed v( ).

To make matters more concrete, and also to illustrate some of the ideas behind Theorem 4, let us

work out a simple example in which the buyer’s valuation can take on two possible values, b > _b > 0:

(4) v(q) = b 0 ≤ q ≤ q^ ,

_b q^ < q ≤ 1 .
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Note that this example is in the case of a “gap” and satisfies condition (L), so by Theorem 4 there

exists a unique stationary triplet.

First, let us consider the case where q^ b < _b, i.e., the monopoly price on the static demand curve

(4) equals _b. Observe that since the seller will never offer a price more favorable than she would if

she were facing the strongest buyer type for sure, the buyer will always accept any price below _b with

probability one. Thus, in any sequential equilibrium, the seller’s payoff must be no lower than her

static monopoly profits, _b. Meanwhile, Stokey (1979) showed that the optimal selling policy of a

dynamic monopolist with perfect commitment power consists of charging the static monopoly price,

and never lowering price thereafter (see also the closely related “no-haggling” result of Riley and

Zeckhauser, 1983). Since a monopolist lacking commitment power can only do worse, the seller’s

equilibrium profits must also be no higher than her static equilibrium profits. We conclude that there

is a unique sequential equilibrium outcome, with the seller charging the price _b, and all buyer types

accepting. Note that this equilibrium is supported by the unique stationary triplet V(Q) = (1−Q)_b,

t(Q) = 1, and using (3), P(q) = (1−δ)b + δ _b for q ∈ [0,q^ ] and P(q) = _b for q ∈ (q^ ,1].

When q^ b > _b, bargaining necessarily takes place over multiple periods, but the above argument

still contains the key to uniqueness of the stationary triplet. Indeed, let us define q1 as the lowest

value of the state such that _b is a monopoly price on the residual demand curve starting at q1, i.e.,

b (q^ −q1) = _b (1−q1). A parallel argument to the one given above then establishes that once the state

reaches beyond q1, the seller will necessarily end the bargaining immediately, by offering the price _b.

The role of condition (L) in Theorem 4 is to more generally guarantee the existence of a critical level

q1 < 1 such that whenever the state exceeds q1 the dispersion of valuations of the remaining buyer

types is such that it no longer pays the seller to price discriminate amongst them.

With the endplay tied down, backward induction on the state then completes the uniqueness

argument. To see how this works, observe that there exists a q2 < q1, such that whenever the state is

in (q2,q1] the seller will select to bring the state in the interval (q1,1]. Indeed, whenever q2 is

sufficiently near q1, any potential gain from increased price discrimination over the interval (q2,q1] is

outweighed by the loss due to delayed receipt of the profits V(q1). In our two-type model, when the

state is in (q2,q1] the monopolist will therefore offer p1 = (1−δ)b + δ _b, which all buyer types in [0,q^ ]

accept. In this fashion, we can keep on recursively extending the stationary triplet to the entire

interval [0,1]. Buyer types in the interval (qi, qi−1] will be indifferent between accepting pi and waiting

one period to receive pi−1, and the state qi is such that the monopolist is indifferent between offering pi
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(with all buyer types in (qi,qi−1] accepting) and offering pi−1 (with all buyer types in (qi,qi−2] accepting.

More precisely, we can compute the following explicit solution.

Let q−1 = 1, q0 = q^ , and inductively define the sequence q1 > q2 > ... > qN from:

(5) mn = αδ−(n−1)mn−1 (n ≥ 2) ,

and the initial condition m1 = (α−1) m0, using mn = qn−1 − qn, α = b/(b − _b), and

N = min {n : qn ≤ 0}. Also, let pn be such that a buyer with valuation b is indifferent between

accepting pn today and waiting n periods to receive the offer _b:

(6) pn = (1−δn) b + δn _b .

THEOREM 5: Let v(q) be given by (4), and let qN ≤ 0 < qN−1 <...< q0 = q^ be defined by (5). Then

with every (purified) sequential equilibrium of the seller-offer game is associated the unique stationary

triplet:

P(Q) = pn Q ∈ (qn,qn−1] ,

t(Q) = qn−2 Q ∈ (qn,qn−1] if n > 1, and Q ∈ (q1,1] if n=1 ,

V(Q) = pn−1 (qn−2−Q)+δ V(qn−2) Q ∈ (qn,qn−1] if n > 1, and Q ∈ (q1,1] if n=1 .

PROOF: See Deneckere (1992).

According to Theorem 5, when qN < 0 bargaining lasts for N periods. The seller starts out by

offering the price pN−1 = P(qN−2), which is accepted by all buyer types in the interval [0,qN−2]. Play

then continues with the seller offering pN−2, which all buyer types in (qN−2,qN−3] accept, and so on, until

the state q0 is reached at which point the seller makes the final offer p0. When qN = 0, the seller can

freely randomize between charging pN and pN−1. However, given the outcome of the randomization,

the remainder of the equilibrium path is uniquely determined: if the seller initially selects pN play lasts

for (N+1) periods, and if she selects pN−1 play lasts for N periods. Note, however, that the condition

qN = 0 is highly nongeneric, in two senses. First, if the initial state is slightly different from qN the

outcome is unique. Secondly, since the condition qN = 0 is equivalent to m0 + ... + mN = 1, it follows

from (5) that for generic (α,δ) the outcome path is unique.
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The closed form (5) also allows us to investigate the behavior of the solution as bargaining

frictions become smaller, i.e., players become more patient (see also Hart, 1989, Proposition 2).

Intuitively, for fixed acceptance function P, the seller will discriminate more and more finely as she

becomes more patient, approaching perfect price discrimination on the acceptance function P as δ

converges to one. Counteracting this is that for fixed seller behavior, as the buyer becomes more

patient, the acceptance function will become flatter and flatter, in the limit approaching the constant _b

= v(1) as δ converges to 1. If we fix δS and let δB converge to one, the seller loses all bargaining

power. On the other hand, if we fix δB and let δS increase, the seller will gain bargaining strength

(Sobel and Takahashi, 1983). With equal discount factors, the two forces more or less balance each

other out. To see this, note from (5) that mn is decreasing, and hence that the number of bargaining

rounds N is increasing in δ. However, as the limiting solution to (5) is given by mn = αn m0, we see

that regardless of the discount factor, the number of bargaining rounds is bounded above by:

= min { n : αn m0 ≥ 1 } .N̂

While the number of equilibrium bargaining rounds therefore increases with δ, the existence of a

uniform upper bound to the number of bargaining rounds implies that the cost of delay (as measured

by the forgone surplus) vanishes as δ approaches one.

A slightly weaker, but qualitatively similar, proposition has become known in the literature as the

“Coase Conjecture,” after Nobel laureate Ronald Coase, who argued that a durable goods monopolist

selling an infinitely-durable good to a demand curve of atomistic buyers would lose its monopoly

power if it could make frequent price offers (Coase, 1972). The connection with the durable goods

literature obtains because to every actual buyer type in the durable goods model, there corresponds an

equivalent potential buyer type in the bargaining model. To formally state the Coase Conjecture, let

us denote the length of the period between successive seller offers by z, and let r be the discount rate

common to the bargaining parties, so that δ = e−rz. We then have:

THEOREM 6 (Coase Conjecture): Suppose we are in the case of a gap. Then for every ε > 0 and

valuation function v( ), there exists z > 0 such that, for every time interval z ∈ (0,z) between offers

and for every sequential equilibrium, the initial offer in the seller-offer bargaining game is no more

than _b + ε and the buyer accepts the seller’s offer with probability one by time ε.

PROOF: Gul, Sonnenschein and Wilson (1986, Theorem 3).
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Note that Theorem 6 immediately follows from Theorem 4, by selecting z ≤ , and by notingε/N̂

that since the highest valuation buyer always has the option to wait until period to accept the priceN̂

_b, the seller’s initial price can be no more than , which converges to _b as z(1 δ N̂ )v(0) δ N̂ b

converges to zero. For empirical or experimental work, Theorem 6 has the unfortunate implication

that real bargaining delays can only be explained by either exogenous limitations on the frequency

with which bargaining partners can make offers, or by significant differences in the relative degree of

impatience between the bargaining parties.

3.1.2 Alternating Offers

When the uninformed party makes all the offers, the informed party has very limited means of

communication. At any point in time, buyer types can only separate into two groups, those who

accept the current offer and thereby terminate the game, and those who reject the current offer in order

to trade at more favorable terms in the future. Since higher valuation buyer types stand to lose more

from delaying trade, the equilibrium necessarily has a screening structure. In the alternating-offer

game, screening will still occur in any seller-offer period, for exactly the same reason. During buyer-

offer periods, however, the informed party has a much richer language with which to communicate, so

a much richer class of outcomes becomes possible. There is now a potential for the buyer to signal

his type, with higher valuation buyer types trading off higher prices for a higher probability of

acceptance. But as in the literature on labor market signaling, many other types of outcomes can be

sustained in sequential equilibrium, with different buyer types pooling or partially pooling on common

equilibrium offers.

Researchers have long considered many of these equilibria to be implausible, because they are

sustained by the threat of adverse inferences following out-of-equilibrium offers. Unfortunately, the

literature on refinements has concentrated mostly on pure signaling games (Cho and Kreps, 1987), so

there exist few selection criteria applicable to the more complicated extensive-form games we are

considering here. In narrowing down the range of equilibrium predictions, researchers have therefore

resorted to criteria which try to preserve the spirit of refinements developed for signaling games, but

the necessarily ad-hoc nature of those criteria has led to a variety of equilibrium predictions
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(Rubinstein, 1985a; Cho, 1990b; Bikchandani, 1992).12

To select plausible equilibria, Ausubel and Deneckere (1998) propose a refinement of perfect

equilibrium, termed assuredly perfect equilibrium (APE). Assuredly perfect equilibrium requires

stronger player types (e.g., lower valuation buyer types) to be infinitely more likely to tremble than

weaker player types, as the tremble probabilities converge to zero. The purpose of making the strong

player types much more likely to tremble is to rule out adverse inferences: following an unexpected

move by the uninformed party, beliefs must be concentrated on the strong type, unless this action

yields the weak type its equilibrium utility.13 Thus beliefs are not permitted to shift to the weak type

unless there is a reason why (in the equilibrium) the weak type may wish to select the deviant action.

APE has the advantage of being relatively easy to apply, and is guaranteed to always exist in finite

games.

Importantly, for the two-type alternating-offer bargaining model given by (4), Ausubel and

Deneckere (1998) show that for generic priors there exists a unique APE.14 We will describe this

equilibrium outcome here only for the game in which the seller moves first (this facilitates comparison

with the seller-offer game). For this purpose, let us define ñ = max{n ∈ Z+ : 1 − δ2n−2 − δ2n−1α−1 < 0}.

The meaning of ñ is that in equilibrium, regardless of the fraction of low valuation buyer types, the

game always concludes in at most 2ñ+2 periods. This should be contrasted with the seller-offer game,

where the number of bargaining rounds grows without bound as the seller becomes more and more

optimistic.

The intuition behind this difference is that as the number of remaining bargaining rounds becomes

larger, the seller extracts more and more surplus from the weak buyer type.15 At the same time,

12 One notable exception is Grossman and Perry (1986a), who develop a general selection criterion, termed perfect
sequential equilibrium, and apply it to the alternating-offer bargaining game (1986b). However, perfect sequential
equilibria do not generally exist, and in fact fail to do so in the alternating-offer bargaining game when the discount
factor is sufficiently high. This is unfortunate, as the case where bargaining frictions become small is of special
importance in light of the literature on the Coase Conjecture. General existence is also a problem in Cho (1990b)
and Bikchandani (1992).

13 If an action yields the weak type less than its equilibrium utility, then in approximating games, the weak type must
be using that action with minimum probability. As the ratio of the weak to the strong type’s tremble probability
converges to zero, limiting beliefs will have to be concentrated on the strong type.

14 More precisely, they show that finite horizon versions of the alternating-offer bargaining game in which the buyer
makes the last offer has a unique APE for generic values of the prior. Below, we describe the limit of this
equilibrium as the horizon length is approaches infinity.

15 Formally, this is reflected in the fact that both sequences of prices (6) and (8) are increasing in n, and converge
to b as n converges to infinity.
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there is an upper bound on how much the seller can extract, namely what he would obtain in the

complete-information game against the weak buyer type. In the seller-offer game, this is all of the

surplus, explaining why with this offer structure the number of effective bargaining rounds can

increase without bound as the seller becomes more and more optimistic. In contrast, in the complete-

information alternating-offer game the seller receives only a fraction 1/(1+δ) of the surplus (when it is

his turn to move). Consequently, in the alternating-offer game the number of effective bargaining

rounds must be bounded above, no matter how optimistic the seller.16 For the sake of brevity, we

will consider here only the case where ñ > 1 (note that this necessarily holds when δ is sufficiently

high).

Qualitatively, the equilibrium has the following structure. Whenever it is the buyer’s turn to

make a proposal, all buyer types pool by making nonserious offers, until the seller becomes convinced

he is facing the low valuation buyer. At this point, both buyer types pool by making the low

valuation buyer’s complete-information Rubinstein offer, r0 = δ _b/(1+δ), which the seller accepts. The

sequence of prices offered by the seller along the equilibrium path must keep the high valuation buyer

indifferent, so we must have:

(7) pn = (1−δ2n−1)b + δ2n−1 r0, n = 1,...,ñ ,

unless the seller is extremely optimistic, in which case the game starts out with p = b/(1+δ), the

seller’s offer in the complete-information game against the weak buyer type.

Analogous to the seller-offer game, the sequence of cutoff levels qn is constructed so that at qn

(n = 1,...,ñ) the seller is indifferent between charging pn and pn−1, and at qñ+1 the seller is indifferent

between charging p and pñ . Formally, let q−1 = 1, q0 = , and inductively define the sequence ofq̂

cutoff levels q1 > q2 > ... > qñ > qñ+1 from m1 = (α−1)m0, m2 = βδ−1(1+δ)−1m1,

(8) mn = βδ−(2n−3)mn−1, for 3 ≤ n ≤ ñ ,

and mñ+1 = ω mñ, where β = b/[b−r0] and ω = (1−δ2)b/[p−pñ]. To rule out nongeneric cases, and

again analogously to the seller-offer game, let N = max {n ≤ ñ+1 : qn ≥ 0}, and suppose qN > 0:

THEOREM 7 (Ausubel and Deneckere, 1998): Consider the alternating-offer game, and suppose

that qN > 0. Then in the unique APE outcome, following histories with no prior observable buyer

16 Formally, ñ is the largest integer such that pn remains below p = b/(1+δ), the complete information seller offer
against the weak buyer type.
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deviations, the buyer uses a stationary acceptance strategy. If N ≤ ñ, this acceptance strategy is given

by:

(9) P(q) = pn q ∈ (qn,qn−1], 0 ≤ n ≤ N ,

P(q) = min {pn,p} q ∈ [0,qN] .

In equilibrium, the seller successively makes the offers pN,pN−1,...,p1, with the buyer accepting

according to (9) and making nonserious counteroffers until p1 has been rejected. The buyer then

counteroffers r0, which the seller accepts with probability one.

If N = ñ+1, the buyer’s acceptance strategy is given by:

(10) P(q) = pn q ∈ (qn,qn−1], 0 ≤ n ≤ ñ ,

P(q) = p q ∈ [0,qñ] .

In equilibrium, the seller starts out by offering p, which all buyer types in [0,qñ] accept, and all other

types reject. Following a nonserious buyer offer, the seller then randomizes between the offers pñ and

pñ−1 so as to make the weak buyer type indifferent between accepting and rejecting the previous seller

offer.17 Following the offer pñ the seller continues with the offers pñ−1,pñ−2,....,p1, and following

the offer pñ−1 the seller continues with the offers pñ−2,....,p1. In each case, the buyer accepts

according to (10), and makes nonserious counteroffers until p1 has been rejected. The game then ends

with the buyer counteroffering r0, which the seller accepts with probability one.

One of the main thrusts of the literature on static signaling models has been to show that

refinements based on stability (Kohlberg and Mertens, 1986) tend to select signaling equilibria (Cho

and Sobel, 1990). For example, Cho and Kreps (1987) show that in the Spence labor market signaling

game with two types, the Intuitive Criterion selects the Pareto efficient separating equilibrium (it is

easily verified that APE would select the same outcome). In contrast, in the alternating-offer

bargaining game considered above, the buyer uses only fully-pooling offers along the equilibrium path.

The intuition for why pooling obtains is that the strong buyer type tries to separate by making a

nonserious offer and delaying trade. The only alternative for the weak buyer type is therefore to make

a separating offer, which yields the worst possible (complete-information) utility level. Meanwhile,

17 In other words, denoting the weight on pñ by φ, we have b − p = δ2 {φ (b−p
ñ
) + (1−φ) (b−p

ñ−1
)}.
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stationarity of the equilibrium acceptance strategy provides the seller with an incentive to accelerate

trade, and therefore (by the usual Coase Conjecture argument) to charge a relatively low price

following rejection of the nonserious offer. But then a revealing offer cannot be optimal, so the

equilibrium has to be pooling (see the discussion surrounding Theorem 12 for related intuition).

In fact, from Theorem 7, we can see that the strong version of the Coase Conjecture also holds in

the alternating-offer game: there exist a uniform bound M such that regardless of the discount factor δ

trade occurs in at most 2M−1 periods. Indeed, mn is decreasing in δ for all n ≤ ñ, and ñ converges to

infinity as δ converges to 1, so we can find M by recursing mn at δ = 1. Note that M must be finite,

because m2(1) = 2θm1 and mn(1) = θmn−1(1) where θ = (1+α−1) > 1.

It is interesting to compare the effect of shifting bargaining power to the informed party on

equilibrium bargaining delay. For this purpose, let us denote the solution to (5) by mn
s and the solution

to (8) by mn
a. Observe that m0

s = m0
a and m1

s = m1
a; some straightforward but tedious algebra shows that

mn
s(δ) < mn

a(δ), for n ≥ 2. We conclude that as long as the alternating-offer game starts out with a

seller offer below p,18 the alternating-offer game requires more offers, and has a lower acceptance

probability than the seller-offer game. Moreover, the alternating-offer game results in additional delay

because (with the exception of the final bargaining round) only seller-offer periods result in trade.

Hence the traditional wisdom that bargaining becomes more efficient as the informed party gains

bargaining strength proves to be incorrect.

Finally, it should be noted that when the seller is so optimistic that she starts with the highest

possible offer p, the equilibrium requires her to randomize with positive probability two periods later.

Unlike in the seller-offer game, randomization in seller offers may thus be necessary along the

equilibrium path.

3.1.3 The Buyer-Offer Game and Other Extensive Forms

In the game where the buyer makes all the offers, it is clearly a sequential equilibrium for the

buyer to always offer the seller his cost c, and for the seller to accept any price above c with

probability one. Ausubel and Deneckere (1989b, Theorem 4) show that this is in fact the only

sequential equilibrium. Intuitively, the seller can do no better than in the complete-information game

where the buyer is known to have valuation v(1), but since the buyer makes all the offers, he can

18 As discussed above, this is necessarily the case when δ is sufficiently large.
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extract all of the surplus no matter what his valuation. We conclude that the buyer-offer game always

achieves an efficient outcome, regardless of whether or not there is a gap, condition (L) holds, or the

magnitude of the discount factor.

More generally, we can study the impact of transferring bargaining power from the seller to the

buyer by considering the (k,l)-alternating-offer bargaining game, in which the seller and buyer alternate

by making k and l successive offers, respectively. The ratio k/l measures the relative frequency with

which the seller gets to make offers, and hence is a measure of his bargaining strength. Note that in

the complete-information case, this game yields the same outcome as the alternating-offer game in

which the seller’s discount factor is given by δS = δl and the buyer’s discount factor is given by δB =

δk. Thus, the ratio ρ ≡ k/l can also be interpreted as the relative degree of impatience between the

bargaining parties. Observe now that in any sequential equilibrium, the weakest buyer type must earn

at least what he would in the complete-information case, so we have U(1) ≥ v(1) δS(1−δB)/(1−δSδB),

which converges to v(1)/(1+ρ) as δ approaches 1. Since v(1) is the maximum surplus available, we

conclude that when ρ is small all sequential equilibria must yield bargaining outcomes that are nearly

efficient. This conclusion obtains regardless of whether or not there is a gap.

Admati and Perry (1987) consider an alternating-offer extensive-form game that differs from

Rubinstein’s game in that the length between successive offers is chosen endogenously by the players.

Thus, when a player rejects an offer, he commits unilaterally to neither make a counteroffer nor

receive another offer until a length of time of his choice has elapsed. During this time period, all

communications are closed off, and the commitment is irrevocable. Admati and Perry analyze the

two-type model given by (4), and apply a forward-induction-like refinement. When the prior on the

weak type is sufficiently high, this refinement uniquely selects a separating equilibrium.19 The seller

starts out by making the offer p = b/(1+δ), which the weak buyer type accepts, and the strong buyer

type rejects. The strong buyer type then delays any further negotiation until a time of length T has

elapsed, at which point it makes its complete-information counteroffer r0 = δ _b/(1+δ), which the seller

accepts. T is chosen such that the weak buyer type is indifferent between accepting the seller’s initial

offer, and mimicking the low buyer type. This equilibrium has an intuitive structure strongly

reminiscent of the Riley outcome in the Spence labor market signaling model, but this elegance comes

at a strong price: the buyer is committed not to receive any counteroffer during the time interval of

length T. Note that the seller has an incentive to make such a counteroffer, for once the buyer has

19 For intermediate values of the prior, there are multiple equilibria, and for sufficiently low values of the prior the
seller offers the strong buyer’s complete-information price.
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chosen T, his type is revealed to be strong. In fact, both parties would be better off settling

immediately at the price r0, and the buyer knows this is the case, but is committed not to reopen the

lines of communication until time T (Admati and Perry, 1987, Section 8.4). If the communication

channels were allowed to reopen any earlier, the signaling equilibrium would be destroyed. Indeed, in

the alternating-offer game analyzed in the previous section, separation never occurs.

3.2 Interdependent Values

Consider the trading situation in which a seller who is privately informed about the quality of a

used car faces a potential buyer who cares about the quality of the vehicle. As we saw in Section 2,

there then exists a trading mechanism that can achieve the efficient outcome if and only if the buyer’s

expected valuation exceeds the valuation of the owner of the highest quality car, i.e., E[v(q)] ≥ c(1).

This raises two interesting questions for extensive-form bargaining. First, assuming that the above

condition holds, will the same forces that operate in the private values model to produce efficient trade

when bargaining frictions disappear still permit the efficient outcome to be reached when values are

interdependent? Second, assuming that the above condition is violated, will the limiting trading

outcome at least be ex ante efficient, in the sense that it maximizes the expected gains from trade

subject to the IC and IR constraints?

So far, the literature has only studied the bargaining game in which the uninformed party (the

buyer) makes all the offers (Evans, 1989; Vincent, 1989). Our discussion here is based upon

Deneckere and Liang (1999). The arguments establishing existence of equilibrium for the

interdependent values with a gap closely parallel those of Gul, Sonnenschein and Wilson (1986).

Consequently an analogue of Theorem 6 holds, with c(q) taking the role of v(q), with one important

difference: it is no longer the case that the number of bargaining rounds is uniformly bounded above,

regardless of the discount factor (if this were the case, then as the discount factor converged to one,

the efficient outcome would obtain even when E[v(q)] < c(1), contradicting Theorem 2). As in the

private values case, generically there is a unique equilibrium outcome, and equilibrium outcomes are

sustained by a unique stationary triplet. In equilibrium, the buyer successively increases his offers

over time. Low-quality seller types accept low prices, while high-quality seller types suffer delay in

order to credibly prove they possess a higher-quality vehicle. The intuition for uniqueness is

analogous to the one given in Section 3.1.1: under condition (L), once the buyer’s beliefs cross a

threshold level, he finds it no longer worthwhile to price discriminate among the remaining seller
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types.20

To illustrate consider the simple two-type model:

c(q) = 0 v(q) = α , for 0 ≤ q ≤ q^ ,

c(q) = s v(q) = s + β , for q^ < q ≤ 1 ,

where α > 0 and β > 0, since we are in the case of a gap. Note that the private values case obtains

when α = s + β, so this is a generalization of the example studied in Section 3.1.1. See Evans (1989)

for a treatment of the special case in which α = 0.

Let q−1 = 1, q0 = q^ , and inductively define the sequence q1 > q2 > ... > qN from:

mn = αs−1δ−(n−1)mn−1 (n ≥ 2),

and the initial condition m1 = βs−1m0, using mn = qn−1 − qn and the terminal condition N =

min {n : qn ≤ 0}. Finally, let pn = s δn. Then with every sequential equilibrium is associated the

unique stationary triplet:

P(Q) = pn Q ∈ (qn,qn−1] ;

t(Q) = qn−2 Q ∈ (qn,qn−1] and n > 1 ,

= 1 Q ∈ (q1,1] ;

V(Q) = (α−pn−1) (qn−2−Q) + δ V(qn−2) Q ∈ (qn,qn−1] and n > 1 ,

= (α−p0)(q0−Q) + β (1−q0) Q ∈ (q1,q0] ,

= β (1−Q) Q ∈ (q0,1] .

The idea behind the above construction is as follows. Seller types in (q^ ,1] are held to their

reservation value, because the buyer has the sole power to make offers. The last price offered will

therefore be equal to s. Seller types in the interval [0,q^ ] must be indifferent between accepting the

offer pn and waiting n periods to receive the offer p0 = s, so we must have pn = s δn. The breakpoints

qn are constructed so that when the state is qn the buyer is indifferent between offering pn (and hence

trading with types in (qn,qn−1]), and offering pn−1 (and hence trading with types in (qn−1,qn−2].

20 See Samuelson (1984) for a generalization of Stokey’s “no price discrimination” result to the interdependent values
case.
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Note that, in the private-values case, the sequence {m1,m2,...} is strictly increasing and bounded

below when δ converges to 1. This is still the case here when α ≥ s. But when α < s, the sequence

is decreasing as long as n remains such that δn < α/s. As δ converges to 1, the range of integers for

which this inequality holds increases without bound, so it is possible for the number of bargaining

rounds to increase without bound as δ converges to 1. This allows us to investigate the conditions

under which the Coase Conjecture will and will not hold. For this purpose, let us explicitly denote the

dependence of mi on δ by mi(δ), and define:

a
∞

i 0

mi(1) (1 q̂)(1 β
s α

) .

We then have:

THEOREM 8 (Deneckere and Liang, 1999): Consider the two-type interdependent values model

defined above. Then the Coase Conjecture obtains if and only if a ≥ 1. When a < 1, then as δ

converges to 1, all seller types in [0,1−a) trade immediately at the price sρ2, and all types in (1−a,1]

trade at the price s after a delay of length T discounted such that e−rT = ρ2, where ρ = α/s.

The condition a ≥ 1 can be written in the more familiar form E(v(q)) ≥ c(1), so Theorem 8 says

that when bargaining frictions disappear, inefficient delay occurs if and only if this is mandated by the

basic incentive constraints presented in Theorem 2. When E(v(q)) < c(1) every trading mechanism

necessarily exhibits inefficiencies. However, the limiting bargaining mechanism described in Theorem

8 exhibits more delay than is necessary. To see this, observe that social welfare is increased by

having all types q ∈ (1−a,q^ ] trade at the price sρ2 at time zero. In the resulting mechanism the buyer

will have strictly positive surplus; this means we can increase the probability of trade on the interval

(q^ ,1] and thereby further increase welfare.

4 Sequential Bargaining with One-Sided Incomplete Information: The “No Gap” Case

The case of no gap between the seller’s valuation and the support of the buyer’s valuation differs

in broad qualitative fashion from the case of the gap which we examined in the previous section. The

bargaining does not conclude with probability one after any finite number of periods. As a

consequence of this fact, it is not possible to perform backward induction from a final period of trade,
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and it therefore does not follow that every sequential equilibrium need be stationary. If stationarity is

nevertheless assumed, then the results parallel the results which we have already seen for the gap case:

trade occurs with essentially no delay and the informed party receives essentially all the surplus.

However, if stationarity is not assumed, then instead a folk theorem obtains, and so substantial delay

in trade is possible and the uninformed party may receive a substantial share of the surplus. These

qualitative conclusions hold both for the seller-offer game and alternating-offer games.

Following the same convenient notation as in Section 3, let the buyer’s type be denoted by q,

which is uniformly distributed on [0,1], and let the valuation of buyer type q be given by the function

v(q). The seller’s valuation is normalized to equal zero. The case of “no gap” is the situation where

there does not exist ∆ > 0 such that it is common knowledge that the gains from trade are at least ∆.

More precisely, for any ∆ > 0, there exists q∆ ∈ [0,1) such that 0 < v(q∆) < ∆. Opposite the

conclusion of Theorem 4 for the gap case, we have:

LEMMA 2: In any sequential equilibrium of the infinite-horizon seller-offer game in the case of

“no gap,” and for any N < ∞, the probability of trade before period N is strictly less than one.

PROOF: By Lemma 1, at the start of any period t, the set of remaining buyer types is an interval

(Qt,1]. The seller never offers a negative price (Fudenberg, Levine and Tirole, 1985, Lemma 1).

Consequently, a price of (1 − δ)v(q) − ε will be accepted by all buyer types less than q, since a buyer

with valuation v(q) is indifferent between trading at a price of (1 − δ)v(q) in a given period and

trading at a price of zero in the next period.

Suppose, contrary to the Lemma, that there exists finite integer N such that QN = 1. Without loss

of generality, let N be the smallest such integer, so that QN−1 < 1. Since acceptance is individually

rational, the seller must have offered a price of zero in period N−1, yielding zero continuation payoff.

But this was not optimal, as the seller could instead have offered (1 − δ)v(q) − ε for some

q ∈ (qN−1,1), generating a continuation payoff of at least (q − QN−1)[(1 − δ)v(q) − ε] > 0 (for

sufficiently small ε), a contradiction. We conclude that QN < 1.

A result analogous to Lemma 2 also holds in the alternating-offer extensive-form. However, as

we have already seen in Section 3.1.3, the result for the buyer-offer game is qualitatively different:

there is a unique sequential equilibrium; it has the buyer offering a price of zero in the initial period

and the seller accepting with probability one.
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Much of the intuition for the case of “no gap” can be developed from the example where the

seller’s valuation is commonly known to equal zero and the buyer’s valuation is uniformly distributed

on the unit interval [0,1]. This example was first studied by Stokey (1981) and Sobel and Takahashi

(1983). In our previous notation:

(11) v(q) = 1 − q, for q ∈ [0,1].

In the subsections to follow, we will see that the stationary equilibria are qualitatively similar to those

for the “gap” case, but that the nonstationary equilibria may exhibit entirely different properties.

4.1 Stationary Equilibria

Assuming a stationary equilibrium and given the linear specification of Eq. (11), it is plausible to

posit that the seller’s value function (V(Q)) is quadratic in the measure of remaining customers, that

the measure of remaining customers (1 − t(Q)) which the seller chooses to induce is a constant fraction

of the measure of currently-remaining customers, and that the seller’s optimal price (P(t(Q))) is linear

in the measure of remaining customers. Let r denote the real interest rate and z denote the time

interval between periods (so that the discount factor δ is given by δ ≡ e−rz). In the notation of

Section 3:

(12) V(Q) = αz(1 − Q)2,

(13) 1 − t(Q) = βz(1 − Q),

(14) P(t(Q)) = γz(1 − Q),

where αz, βz and γz are constants between 0 and 1 which are parameterized by the time interval z

between offers. Eqs. (12)-(13)-(14) can be solved simultaneously, as follows. Since the linear-

quadratic solution is differentiable and t(Q) is defined to be the arg max of Eq. (2), we have:

(15)
∂

∂Q′
P(Q′) (Q′ Q) δV(Q′)

Q′ t(Q)
0 .

Furthermore, with t(Q) substituted into the right-hand-side of Eq. (2), the maximum must be attained:

(16) V(Q) P(t(Q)) (t(Q) Q) δV(t(Q)) .

Substituting Eqs. (12), (13) and (14) into Eqs. (3), (15) and (16) yields three simultaneous equations in
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αz, βz and γz, which have a unique solution. In particular, the solution has αz = ½ γz and:

(17) γ z 1 δ 1 δ 1 1 δ .

(Stokey, 1981, Theorem 4; and Gul, Sonnenschein and Wilson, 1986, pp. 163−64).

Qualitatively, the reader should observe that in the limit as the time interval z between offers

approaches zero (i.e., as δ → 1), γz converges to zero. From Eq. (14), observe that γz is the seller’s

price when the state is Q = 0. This means that the initial price in this equilibrium may be made

arbitrarily close to zero (i.e., the Coase Conjecture holds). Moreover, since αz = ½ γz, the seller’s

expected profits in this equilibrium may be made arbitrarily close to zero. According to (17), the

convergence is relatively slow, but for realistic parameter values, the seller loses most of her

bargaining power. For example, with a real interest rate of 10% per year and weekly offers, the

seller’s initial price is 4.2% of the highest buyer valuation; this diminishes to 1.63% with daily offers.

Further observe that, since the linear-quadratic equilibrium is expressed as a triplet

{P( ),V( ),t( )}, this sequential equilibrium is stationary. However, this model is also known to have

a continuum of other stationary equilibria; see Gul, Sonnenschein and Wilson (1986, Examples 2 and

3). Unlike the other known stationary sequential equilibria, the linear-quadratic equilibrium has the

property that it does not require randomization off the equilibrium path. In the literature, stationary

sequential equilibria possessing this arguably-desirable property are referred to as strong-Markov

equilibria; while stationary sequential equilibria not necessarily possessing this property are often

referred to as weak-Markov equilibria.

The linear-quadratic equilibrium of the linear example is emblematic of all stationary sequential

equilibria for the case of “no gap,” as the following theorem shows:

THEOREM 9 (Coase Conjecture): For every v( ) in the case of “no gap” and for every ε > 0,

there exists z > 0 such that, for every time interval z ∈ (0,z) between offers and for every stationary

sequential equilibrium, the initial price charged in the seller-offer game is less than ε.

PROOF: Gul, Sonnenschein and Wilson (1986), Theorem 3.

If extremely mild additional assumptions are placed on the valuation function of buyer types, then

a stronger version of the Coase Conjecture can be proven. The standard Coase Conjecture may be
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viewed as establishing an upper bound on the ratio between the seller’s offer and the highest buyer

valuation in the initial period; the uniform Coase Conjecture further bounds the ratio between the

seller’s offer and the highest-remaining buyer valuation in all periods of the game. For L, M and α

such that 0 < M ≤ 1 ≤ L < ∞ and 0 < α < ∞, let:

(18) = { v( ) : v(0) = 1, v(1) = 0 and M(1 − q)α ≤ v(q) ≤ L(1 − q)α for all q ∈ [0,1]}.L,M,α

The family has the property that if v ∈ , then every truncation (from above) of theL,M,α L,M,α

probability distribution of buyer valuations (renormalized so that the valuation at the truncation point

equals one) is guaranteed to also be an element of . If a uniform z (of Theorem 9) can beL/M ,M/L ,α

found which holds for all v ∈ , then the ratio between the seller’s offer and the highest-L/M ,M/L ,α

remaining buyer valuation is bounded by ε in all periods of the game. We have:

THEOREM 10 (Uniform Coase Conjecture): For every 0 < M ≤ 1 ≤ L < ∞, 0 < α < ∞, and ε > 0,

there exists z > 0 such that for every time interval z ∈ (0,z) between offers, for every v ∈ andL,M,α

for every stationary sequential equilibrium, the initial price charged in the seller-offer game is less than

ε.

PROOF: Ausubel and Deneckere (1989a), Theorem 5.4.

The same qualitative results hold in alternating-offer extensive forms for the case of no gap.

Some additional assumptions above and beyond stationarity are made in the literature, but the

stationarity assumption appears to be the driving force behind the results. Gul and Sonnenschein

(1988), in analyzing the gap case, and Ausubel and Deneckere (1992a) assume stationarity.21 They

also assume that the seller’s offer and acceptance rules are in pure strategies,22 and that there is

“no free screening” in the sense that any two buyer offers which each have zero probability of

acceptance are required to induce the same beliefs. Similar to the seller-offer game, these imply:

21 To be more precise, they assume requirement (3) and a slightly weaker version of requirement (2) in the definition
of stationarity from Section 3. Their assumptions of pure strategies and no free screening imply requirement (1).

22 In light of Section 3.1.2, the pure strategy assumption on seller acceptances may be inconsistent with refinements
of sequential equilibrium; but a similar result likely holds under weaker assumptions.
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THEOREM 11 (Uniform Coase Conjecture): For every 0 < M ≤ 1 ≤ L < ∞, 0 < α < ∞, and ε > 0,

there exists z > 0 such that for every time interval z ∈ (0,z) between offers, for every v ∈ andL,M,α

for every stationary sequential equilibrium, the initial serious (seller or buyer) offer in the alternating-

offer game is less than ε.

PROOF: Ausubel and Deneckere (1992a), Theorem 3.2.

For the no gap case, the Coase Conjecture is equivalent to the notion of “No Delay” which Gul and

Sonnenschein (1988) prove for the gap case: for sufficiently short time interval between offers, the

probability that trade will occur within ε time is at least 1 − ε. This equivalence holds in the seller-

offer as well as in the alternating-offer game.

There is an especially enlightening explanation for the fact that stationary sequential equilibria of

the alternating-offer game closely resemble those of the seller-offer game. In a sense which may be

made precise, stationary equilibria of the alternating-offer game are as if the extensive form permitted

offers only by the uninformed party: exogenously, both traders are permitted to make offers;

endogenously, equilibrium counteroffers by the informed party degenerate to null moves.

To see this, observe that the stationarity, pure-strategy and no-free-screening restrictions on

sequential equilibrium mandate that, at each time when it is the informed agent’s turn to make an

offer, the informed agent partitions the interval of remaining types into two subintervals (one possibly

degenerate): a high subinterval (who “speak” by making a serious offer) and a low subinterval (who

effectively “remain silent” by making a nonserious offer). Choosing to speak reveals a high valuation,

which is information that the uninformed agent can exploit in the ensuing negotiations. Remaining

silent signals a low valuation. Let _b denote the lowest buyer valuation in the speaking subinterval—as

well as the highest buyer valuation in the silence subinterval. Following speaking, the seller captures a

price of at least _bδ/(1+δ), à la Rubinstein (1982), which as the time between offers shrinks toward

zero, converges to ½_b. Meanwhile, also as the time between offers shrinks toward zero, the terms of

trade for the silence interval become increasingly favorable: à la the Uniform Coase Conjecture, the

ratio between the next price and _b converges to zero. Thus, silence becomes increasingly attractive

relative to speaking and, for sufficiently short time intervals, delay becomes preferable to revealing the

damaging information for all types of the informed party. In other words, you recognize that

“anything you say can and will be used against you.” Therefore, regardless of valuation, you decline

to speak, since “you have the right to remain silent.” More formally:
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THEOREM 12 (Silence Theorem): Let v belong to and let r be any positive interest rate.L,M,α

Then there exists z > 0 such that, for every time interval z ∈ (0,z) between offers and for every

stationary sequential equilibrium satisfying the pure-strategy and no-free-screening restrictions, the

informed party never makes any serious offers in the alternating-offer bargaining game, both along the

equilibrium path and after all histories in which no prior buyer deviations have occurred.

PROOF: Ausubel and Deneckere (1992a), Theorem 3.3.

Thus, stationary equilibria of the alternating-offer bargaining game with a time interval z between

offers closely resemble stationary equilibria of the seller-offer bargaining game with a time interval 2z

between offers, for sufficiently small z. Moreover, for many distributions of valuations, “sufficiently”

small does not require “especially” small: for the model with linear v( ), the silence theorem holds

whenever δ > 0.83929 (Ausubel and Deneckere, 1992a, Table I); with a real interest rate r of 10% per

year, this holds for all z < 21 months, not requiring a very quick response time between offers at all.

4.2 Nonstationary Equilibria

In the case of no gap, stationarity is merely an assumption, not an implication of sequential

equilibrium. As we saw in the last subsection, the stationary equilibria converge (as the time interval

between offers approaches zero) in outcome to the static mechanism which maximizes the informed

party’s expected surplus. The contrast between stationary and nonstationary equilibria is most sharply

highlighted by constructing nonstationary equilibria which converge in outcome to the static

mechanism which maximizes the uninformed party’s expected surplus.

Again, consider the example where the seller’s valuation is commonly known to equal zero and

the buyer’s valuation is uniformly distributed on the unit interval [0,1]. The static mechanism which

maximizes the seller’s expected surplus is given by:

(19) p(q) = 1 , if q ≤ ½ , x(q) = ½ , if q ≤ ½ ,

= 0 , if q > ½ , = 0 , if q > ½ .

In terms of a sequential bargaining game, this means that, although it is possible to intertemporally

price discriminate, the seller finds it optimal to merely select the static monopoly price of ½ and

adhere to it forever (Stokey, 1979). The intuition for this result—in terms of the durable goods

monopoly interpretation of the model—is that the sales price for a durable good equals the discounted
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sum of the period-by-period rental prices, and the optimal rental price for the seller in each period is

always the same monopoly rental price.

A seller who lacks commitment powers will be unable to follow precisely this price path (Coase,

1972). If the seller were believed to be charging prices of pn = ½, for n = 0,1,2, ... , the unique

optimal buyer response would be for all q ∈ [0,½) to purchase in period 0 and for all q ∈ (½,1] to

never purchase (corresponding exactly to the static mechanism of Eq. (19)). But, then, the seller’s

continuation payoff evaluated in any period n = 1,2,3, ... equals zero literally. Following the same

logic as in the proof of Lemma 2, there exists a deviation which yields the seller a strictly positive

payoff, establishing that the constant price path is inconsistent with sequential equilibrium.

However, while the static mechanism of Eq. (19) cannot literally be implemented in equilibria

with constant price paths, Ausubel and Deneckere (1989a) show that the seller’s optimum can

nevertheless be arbitrarily closely approximated in equilibria with slowly-descending price paths. The

key to their construction is as follows. For any η > 0, and in the game with time interval z > 0

between offers, define a main equilibrium path by:

(20) pn = p0 e−ηnz , for n = 0,1,2, ... .

Also consider the (linear-quadratic) stationary equilibrium which was specified in Eqs. (12)-(13)-(14)

and in which γz was solved for in Eq. (17). Define a reputational price strategy by the following

seller strategy:

(21) Offer pm in period m, if pn was offered in all periods n = 0,1, ... , m−1,

Offer prices according to the stationary equilibrium, otherwise,

with the corresponding buyer strategy defined to optimize against the seller strategy (21).

It is straightforward to see that, for sufficiently short time intervals between offers, the

reputational price strategy yields a (nonstationary) sequential equilibrium. This is the case for all

p0 ∈ (0,1); and for p0 = ½, the sequential equilibrium converges in outcome (as η → 0 and z → 0) to

the static mechanism (19) which maximizes the seller’s expected payoff. A heuristic argument

proceeds as follows. First, observe that the price path {pn}n=0
∞ yields a relatively large measure of sales

in period 0 and then a relatively slow trickle of sales thereafter. Hence, if the main equilibrium path is

self-enforcing for the seller in periods n = 1,2, ... , it will automatically be self-enforcing in period

n = 0. Second, let us consider the seller’s continuation payoff along the main equilibrium path,

evaluated in any period n = 1,2, ... . Let q denote the state at the start of period n. Given the linear
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distribution of types and the exponential rate of descent in price, it is easy to see that the seller’s

expected continuation payoff, π, is a stationary function of the state:

(22) π(q) = λz (1 − q)2 ,

where λz depends on η and is parameterized by z. Moreover, for every η > 0:

(23) λ ≡ lim z → 0 λz > 0 .

Meanwhile, we already saw in Eq. (12) that the seller’s payoff from optimally deviating from the main

equilibrium path is given by V(q) = αz(1 − q)2 , where αz → 0 as z → 0. Thus, for any η > 0, there

exists z > 0 such that, whenever the time interval between offers satisfies 0 < z < z, we have λz > αz,

and so the seller’s expected payoff along the main equilibrium path exceeds the expected payoff from

optimally deviating. We then conclude that the reputational price strategy yields a sequential

equilibrium.

This construction generalizes to all valuation functions v ∈ and to all bargainingL,M,α

mechanisms. It is appropriate to restrict attention here to incentive-compatible bargaining mechanisms

that are ex post individually rational, since the buyer will never accept a price above his valuation in

any sequential equilibrium and the seller will never offer a price below her valuation. Continuing the

logic developed in Theorem 2,23 we have the following complete characterization:

LEMMA 3: For any continuous valuation function v( ), the one-dimensional bargaining

mechanism {p,x} is incentive compatible and ex post individually rational if and only if

p : [0,1] → [0,1] is (weakly) decreasing and x is given by the Stieltjes integral: x(q) − ⌡
⌠
1

q

v(r) dp(r) .

PROOF: Ausubel and Deneckere (1989b), Theorem 1.

23 The analogue to Lemma 3 for the case where the seller is informed and the buyer uninformed follows directly
from Theorem 2, as follows. With private values, i.e., g(s) = b for all s, the first inequality in Theorem 2 is
automatically satisfied. Since we are in the case of no gap, seller type s cannot profitably trade with the buyer, so
ex post individual rationality requires x(s) − s p(s) = 0. Consequently, it follows from Theorem 2 that:

x(s) s p(s)
⌡
⌠
s

s

p(z) dz s p(s) ⌡
⌠
s

s

z dp(z) .
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Moreover, we can translate the outcome path of any sequential equilibrium of the bargaining game

into an incentive-compatible bargaining mechanism, as follows. For buyer type q, let n(q) denote the

period of trade for type q in the sequential equilibrium and let φ(q) denote the payment by type q.

Define: p(q) = e−r n(q)z and x(q) = φ(q) e−r n(q)z. Then {p,x} thus defined can be reinterpreted as a

direct mechanism—and the fact that it derives from a sequential equilibrium immediately implies that

{p,x} is incentive-compatible and individually-rational. We will say that {p,x} is implemented by

sequential equilibria of the bargaining game if, for every ε > 0, there exists a sequential equilibrium

inducing static mechanism {p,x} with the property that {p,x} is uniformly close to {p,x} (except

possibly in a neighborhood of q = 1):

(24) |p(q) − p(q)| < ε, ∀q ∈ [0,1−ε) and |x(q) − x(q)| < ε, ∀q ∈ [0,1].

The reasoning described above for the static mechanism which maximizes the seller’s expected

payoff extends to every incentive-compatible bargaining mechanism. In place of the exponentially-

descending price path {pn}n=0
∞ , we substitute a general specification which approximates the incentive-

compatible bargaining mechanism, for q ∈ [0,1−ε] and induces an exponential evolution of the state,

for q ∈ (1−ε,1]. In place of the linear-quadratic equilibrium following deviations, we substitute a

stationary equilibrium, which is guaranteed to exist (Theorem 4) and to satisfy the Uniform Coase

Conjecture (Theorem 10). We have:

THEOREM 13 (Folk Theorem): Let the valuation function v( ) belong to . Then everyL,M,α

incentive-compatible, ex post individually-rational bargaining mechanism {p,x} is implementable by

sequential equilibria of the seller-offer bargaining game.

PROOF: Ausubel and Deneckere (1989b), Theorem 2.

A folk-theorem-like result also holds in the alternating-offer game, since each of a continuum of

sequential equilibria from the seller-offer game can be embedded as equilibria in the alternating-offer

game. At the same time, there is an upper bound on the price at which the buyer can be expected to

trade. Suppose that the seller holds the most “optimistic” beliefs: the buyer’s type equals 0 and so the

buyer’s valuation equals v(0). Then, even in the complete-information game, if the seller offers any

price greater than (1/(1+δ))v(0), the buyer is sure to turn around and reject (Rubinstein, 1982). In the

limit as the time interval approaches zero, the seller can extract no more than one-half the surplus

from the highest-valuation buyer. Thus, we have:
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THEOREM 14: Let the valuation function v( ) belong to . Then an incentive-compatible,L,M,α

ex post individually-rational bargaining mechanism {p,x} is implementable by sequential equilibria of

the alternating-offer bargaining game if and only if: p(0)v(0) − x(0) ≥ ½ v(0).

PROOF: Ausubel and Deneckere (1989b), Theorem 3.

4.3 Discussion of the Stationarity Assumption

One useful way to understand the effect of the stationarity assumption is to see its impact on the

set of equilibria of a standard supergame. Consider, for example, the infinitely-repeated prisoners’

dilemma—or any infinite supergame in which the stage game has a unique Nash equilibrium. Since

(unlike the bargaining game) this is literally a repeated game and the play of one period has no effect

on the possibilities in the next, there is no state variable at all. Stationarity restricts attention to

equilibria in which the play in any period is history-independent; in other words, trigger-strategy

equilibria are ruled out by assumption. (Equivalently, as in the bargaining game with one-sided

incomplete information, stationarity restricts attention to equilibria of the infinite-horizon game which

are limits of equilibria of finite-horizon versions of the same game.) The unique stationary

equilibrium is the static Nash equilibrium played over and over.

This analogy strongly suggests that it is wrong to assume away the nonstationary equilibria.

While it is interesting to know the implications of stationarity, a restriction to stationarity excludes

many of the interesting effects which led economists to analyze dynamic games in the first place. Of

course, stationarity is essential to the analysis of the “gap” case, since it is implied (not assumed). But

to the extent that “no gap” is the appropriate condition on primitives, nonstationary equilibria and their

qualitative properties are an essential part of the analysis.

5 Sequential Bargaining with Two-Sided Incomplete Information

With two-sided incomplete information, incentive compatibility and individual rationality are

incompatible with ex post efficiency. As we saw in Corollary 1 of Section 2, so long as the supports

of the seller and buyer valuations overlapped, the static bargaining mechanism necessarily entails

situations where the buyer’s valuation exceeds the seller’s valuation yet trade occurs with probability

strictly less than one. Furthermore, as we saw in the fourth paragraph following Theorem 2, since any

sequential equilibrium of the dynamic bargaining game can be expressed as a static mechanism, this
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immediately implies that the search for ex post efficient sequential equilibria is fruitless. The more

interesting starting-point is to ask: Can the ex ante efficient static bargaining mechanism be replicated

in a dynamic offer/counteroffer bargaining game, or does the dynamic game necessarily entail greater

inefficiency than the static constrained optimum?

Ausubel and Deneckere (1993a) establish that, for distribution functions exhibiting monotonic

hazard rates, the ex ante efficient static bargaining mechanism can essentially be replicated in very

simple dynamic bargaining games:

THEOREM 15: If F1(s)/f1(s) and [F2(b) − 1]/f2(b) are strictly increasing functions, then:

(i) there exists λs ∈ (0,1) such that, for every λ ∈ [λs,1], the ex ante efficient mechanism which

places weight λ on the seller is implementable in the seller-offer game; and

(ii) there exists λb ∈ (0,1) such that, for every λ ∈ [0,λb], the ex ante efficient mechanism which

places weight λ on the seller is implementable in the buyer-offer game.

PROOF: Ausubel and Deneckere (1993a), Theorem 3.1.

The flavor of this result is most easily seen in the standard example where the seller and buyer

valuations are each uniformly distributed on the unit interval. For this special case of the theorem,

calculations reveal that λs = ½ = λb. This means that, for the case of equal weighting (λ = ½) focused

on by Chatterjee and Samuelson (1983) and Myerson and Satterthwaite (1983), we can come

arbitrarily close to replicating the constrained optimum both in the seller-offer game and the buyer-

offer game. Moreover, since equilibria of the seller- and buyer-offer games can be embedded in

sequential equilibria of the alternating-offer game, this means that the entire ex ante Pareto frontier is

implementable in the alternating-offer bargaining game. There need not be any additional inefficiency

arising from the dynamic nature of the game, above and beyond the inefficiency already introduced by

the two-sided incomplete information.

While the (upper) boundary of the set of all sequential equilibria is thus known, little exists in the

way of results refining the set of sequential equilibrium outcomes. Cramton (1984) posited sequential

equilibria of the infinite-horizon seller-offer bargaining game with the additional properties that: (a)

the seller fully reveals her type in the course of making offers; and (b) in the continuation game

following the seller’s revelation, players adopt the strategies from a stationary equilibrium of the game
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of one-sided incomplete information. The seller thus uses delay to credibly signal her strength: low-

valuation seller types make revealing offers early in the game, while high-valuation seller types

initially make nonserious offers until revealing later in the game. Cho (1990a) posited equilibria of

finite-horizon seller-offer bargaining games with the properties that: (a) the seller’s pricing rule is a

separating strategy after every history; (b) equilibria satisfy a continuity property resembling

trembling-hand perfection; (c) equilibria satisfy a monotonicity restriction on beliefs; and (d) equilibria

are stationary.

However, both the Cramton (1984) and Cho (1990a) constructions ultimately exhibit an

unfortunate property, when the seller and buyer distributions have the same supports and for short time

intervals between offers. By the stationarity assumption, the lowest seller type is subject to the Coase

Conjecture, earning a payoff arbitrarily close to zero. Meanwhile, higher seller types offer prices

which always exceed their respective types. The lowest seller type thus faces a very strong incentive

to mimic a higher seller type, breaking the equilibrium unless essentially all higher types encounter

extremely long delays before trading. Thus, a No Trade Theorem holds: In the limit as the time

interval between offers decreases toward zero, the ex ante expected probability of trade in these

equilibria converges to zero (Ausubel and Deneckere, 1992b, Theorem 1).

Two other articles present plausible outcomes of dynamic bargaining games with two-sided

incomplete information in which trade occurs to a substantial degree but which are inefficient

compared to the constrained static optimum.24 Cramton (1992) extends and analyzes the Admati-

Perry (1987) extensive-form game to an environment with a continuum of types and two-sided

incomplete information. The game begins with effectively a war of attrition between the seller and the

buyer: there is a seller type s(t) and a buyer type b(t) who are each supposed to reveal themselves by

making serious offers at time t. Thus, as the game unfolds without serious offers getting made, each

party becomes more pessimistic about his counterpart’s valuation. A serious offer—once made—fully

reveals the offeror’s type. The other player then either accepts the serious offer or further delays trade

24 Perry (1986) analyzes an alternating-offer game with two-sided incomplete information about valuations, but where
the cost of bargaining takes the form of a fixed cost per period rather than discounting. He establishes the existence
of a unique sequential equilibrium when the players’ fixed costs are unequal. When it is the turn of the player with
the lower bargaining cost to make an offer, this player proposes essentially its monopoly price, which the other
player accepts if it yields nonnegative utility. When it is the turn of the player with the higher bargaining cost to
make an offer, this player leaves the game without making an offer. Thus, trade—if it occurs at all—occurs in the
initial period. However, inefficiently little trade occurs compared to the constrained static optimum. Perry’s game
illustrates the principle that there is no possibility for signaling through delay when the incomplete information is
about valuations but the bargaining cost is a fixed cost each period. Signaling requires the presence of an action
which is relatively less costly for one type than another; in this game, the cost of delay is equal across all types.
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so as to credibly convey his own type and, when trade occurs following both players’ full revelation, it

occurs at the complete-information price. Ausubel and Deneckere (1992b) consider the seller-offer

bargaining game and construct a continuum of equilibria, all with the property that the seller’s first

serious offer reveals essentially all the information which she will ever reveal. One interesting

equilibrium in this class is the “monopoly equilibrium”: the seller fully reveals her type in the initial

period by offering essentially the monopoly price relative to her valuation; and then follows a slowly-

descending price path thereafter. This equilibrium is also ex ante efficient—provided that all of the

weight is placed on the seller.

6 Empirical Evidence

Bargaining is pervasive in our economy. Thus, it is not surprising that there is a substantial

empirical literature. However, only recently has this work sought to examine the data in light of

strategic bargaining theories with private information.

Bargaining models with private information are especially well suited for empirical work, since a

main feature of the data is the occurrence of costly disputes. These disputes arise naturally in models

with incomplete information. However, private information models involve several challenges for

empirical work. First, the models are often complex, making estimation difficult. Second, the results

tend to be sensitive to the particular bargaining procedure, the source of private information, and the

form of delay costs. In most empirical settings, the bargaining rules and the preferences of the parties

cannot be fully identified. The researcher then may have too much freedom in selecting assumptions

that “explain” particular facts. Finally, the theory predicts how ex post outcomes depend on

realizations of private information, yet the researcher typically is unable to observe private information

variables, even ex post.

We focus on one of the most prominent examples of bargaining—union contract negotiations—in

understanding bargaining disputes.

Kennan and Wilson (1989) analyze attrition, screening, and signaling models, and contrast the

theoretical predictions of these models with the main empirical features of strike data. They emphasize

five empirical findings:

Strikes are unusual, occurring in 10 to 20 percent of contract negotiations.

The relationship between strike duration and wages is ambiguous. McConnell (1989) found

that wages declined 3% per 100 days of strike in the U.S., but Card (1990) found no

significant relationship between strike duration and wages.
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Strikes are more frequent in good times (Vroman 1989; Gunderson, Kervin, and Reid 1986),

yet strike duration decreases in good times (Kennan 1985; Harrison and Stewart 1989).

Strike activity varies across industries.

Settlement rates tend to decline with strike duration (Kennan 1985; Harrison and Stewart

1989; Gunderson and Melino 1990).

In all of the models, strikes (or their absence) convey private information in a credible way. A

key feature of attrition models is winner-take-all outcomes. In an attrition model, each side attempts to

convince the other that it can last longer, so the other should concede the entire pie under negotiation.

One side clearly wins at the expense of the other. In contrast, wage bargaining typically involves

compromise. For this reason, we focus on screening and signaling models.

The standard setting assumes that the union is uncertain about the firm’s willingness to pay. In

this case, under either screening or signaling, the duration of the strike conveys information to the

union about the firm’s willingness to pay. A firm with a greater willingness to pay settles early at a

high wage; whereas, a firm with a low willingness to pay endures a strike in order to convince the

union to accept a low wage. A documentary film, Final Offer, of the 1984 negotiations between GM

Canada and the UAW provides anecdotal evidence for this explanation for strikes. Early in the strike

the union leaders are discussing whether they should accept GM’s last offer. One says, “You might

convince me that that’s all there is after a month, but not after five days.” Another says, “If they think

it will take a short strike to convince workers to accept, they’re wrong.”

Screening and signaling models share several features: (1) strike incidence and strike duration

increase with uncertainty over private information variables, and (2) wages fall with strike duration.

However, there are important differences in wages and strike activity.

The standard screening model assumes that the union makes a sequence of declining wage

demands, with each demand chosen optimally given beliefs about the firm’s willingness to pay and the

firm’s acceptance and offer strategy. A critical assumption is that the firm employs a stationary

acceptance strategy. At every point in the negotiation, a firm with value v accepts any wage demand

below w(v). Most importantly, this assumption means that the firm’s acceptance rule cannot depend on

the rate of concession by the union. This greatly limits the equilibrium set, assuring that all equilibria

satisfy the Coase (1972) conjecture. As the time between offers shrinks, the union loses its bargaining

power and makes offers that are close to the Rubinstein wage between the union and the lowest-value

firm. Strike duration falls to zero and strike incidence increases to one, but the convergence is slow.

Screening then has the property that wages, strike incidence, and strike duration all depend critically
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on the period over which the union can commit to a wage demand. Kennan and Wilson (1989) argue

that the Coase conjecture may explain why in boom times strikes are more frequent but shorter. This

would follow if the union has a shorter commitment period in boom times; however, it is not clear

why the time between offers would vary with the business cycle.

One potential difficulty with the screening model is that, because of the Coase property, strike

durations must be short when the commitment period is short. In the U.S., mean strike durations are

about 40 days. If offers can be made every day, then the standard screening model may predict strikes

that are too short given plausible interest rates and levels of uncertainty. Hart (1989) provides an

explanation. If bargaining costs are low initially, but then increase at some point during the strike, say

when inventories run out, then strikes can be much longer. Another explanation is given by Vincent

(1989). If the parties’ valuations are interdependent, then strikes of significant duration can occur even

as the time between offers goes to zero.

The signaling model arises when the time between offers is endogenous (Admati and Perry,

1987). Then the informed party (the firm) has an incentive to delay making an offer until after a

sufficient time has passed to credibly reveal its private information. The critical assumption here is that

the uninformed party (the union) is unable to make a counteroffer while it is waiting for the firm to

make an offer. Aside from the union’s initial demand, all settlements are ex post fair, in that the wage

is the full-information Rubinstein (1982) wage. The union’s initial demand is chosen to balance the

cost of delay and the terms of settlement. This initial demand is accepted by the firm if its willingness

to pay is sufficiently high. Otherwise the firm makes a counteroffer after waiting long enough to make

the Rubinstein wage credible. Signaling and screening can be compared along a number of

dimensions:

Screening outcomes depend critically on the minimum time between offers; signaling

outcomes are insensitive to the minimum time between offers.

Screening outcomes strongly favor the informed party (the firm); signaling outcomes are

roughly ex post fair. Hence, wages are higher under signaling and are more sensitive to

the firm’s private information.

Dispute incidence and dispute durations are higher under signaling. Indeed, dispute incidence

is always greater than 50% in the standard signaling model. However, introducing a

fixed cost of initiating a strike can lead to any level of strike incidence.

Cramton and Tracy (1992) emphasize that the union has multiple threats. The union can strike or

the union can holdout, putting pressure on the firm while continuing to work. Holdouts take the form
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of a slowdown, work-to-rule, sick-out, or other in-plant action. From the union’s point of view,

holdouts have two advantages: (1) workers are paid according to the expired contract, and (2) workers

cannot be replaced. The union selects the threat, strike or holdout, that gives it the highest payoff.

Since the desirability of each threat depends on observable factors, modeling this threat choice is

important to understanding key features of the data. When striking is the only threat, then strike

incidence depends essentially on the degree of uncertainty; whereas, with multiple threats strike

incidence can vary as the composition of disputes changes with the attractiveness of each threat. For

example, holdouts are more desirable when the current wage is high, and strikes are more desirable

when unemployment is low and the workers have better outside options.

In Cramton and Tracy (1992), a union and a firm are bargaining over the wage to be paid over

the next contract period. The union’s reservation wage is common knowledge. The firm’s value of the

labor force is private information.

Bargaining begins with the union selecting a threat, either holdout or strike, which applies until a

settlement is reached. In the holdout threat, the union is paid the current wage under the expired

contract. There is some inefficiency associated with holdout. An outcome of the bargaining specifies

the time of agreement, the contract wage at the time of agreement, and the threat before agreement.

Following the union’s threat choice, the union and firm alternate wage offers, with the union making

the initial offer. The time between offers is endogenous.

The equilibrium takes a simple form. If the current wage is sufficiently low, the union decides to

strike; otherwise, the union holds out. A second indifference level is determined by the union’s initial

offer. The firm accepts the union’s initial offer if its valuation is above the indifference level, and

otherwise rejects the offer and makes a counteroffer after sufficient time has past to credibly signal the

firm’s value.

A primary result is that dispute activity increases with uncertainty about private information.

Tracy (1986, 1987) tests this basic result by using stock price volatility as a proxy for the amount of

uncertainty in contract negotiations. With U.S. data, he finds that strike incidence and strike duration

increase with greater relative volatility.

Cramton and Tracy (1994a) fit the parameters of the model to match the main features of the U.S.

data from 1970 to 1989. They also estimate dispute incidence and dispute composition. Consistent

with the theory, strike incidence increases as the strike threat becomes more attractive, because of low

unemployment or a real wage drop over the previous contract. However, the model performs less well

in the 1980s than in the 1970s, suggesting a structural change in the post-1981 period. One
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explanation for a shift is an increase in the use of replacement workers following President Reagan’s

firing of striking air traffic controllers. Indeed, there was a shift away from strikes and towards

holdouts in the 1980s.

Cramton and Tracy (1998) investigate the extent to which the hiring of replacement workers can

account for these changes. They build a model in which a firm considers the replacement option

because it improves the firm’s strike payoff relative to the union’s, resulting in a lower wage.

However, a firm must balance this improvement in the terms of trade with the cost of replacement. A

firm only uses replacements if its cost of replacement is sufficiently low. The union, anticipating the

possibility of replacement, lowers its wage demand in the strike threat in order to reduce the

probability of replacement. This risk of replacement, then, reduces the attractiveness of the strike

threat, making it more likely that the union adopts the holdout threat at the outset of negotiations. For

all large U.S. strikes in the 1980s, the likelihood of replacement is estimated. Consistent with the

model, the composition of disputes shifts away from strikes as the predicted risk of replacement

increases. Hence, a ban on the use of replacement workers should increase strike activity. Moreover, a

ban on replacement increases uncertainty, since replacement effectively truncates the firm’s distribution

of willingness to pay (Kennan and Wilson 1989).

The Canadian data provide an opportunity to test this theory. Quebec instituted a ban on

replacements in 1977, and British Columbia and Ontario introduced a similar ban in 1993. Gunderson,

Kervin, and Reid (1989) find that strike incidence does increase with a ban on replacements, and

Gunderson and Melino (1990) find strikes are longer after a ban. Budd (1996) and Cramton,

Gunderson, and Tracy (1999) examine the effect of a ban on replacement workers on wages and strike

activity. Budd does not find significant effects from the ban using a sample of single province

contracts in manufacturing from 1965-1985. In contrast, with a larger sample of contract negotiations

from 1967-1993, Cramton, Gunderson, and Tracy find that prohibiting the use of replacement workers

during strikes is associated with significantly higher wages, and more frequent and longer strikes.

Predictions of the bargaining models are sensitive to how threat payoffs change over time. Hart

(1989) shows that strike durations are much longer in a screening model when strike costs increase

sharply when a crunch point is reached (say inventories run out). Cramton and Tracy (1994b) consider

time-varying threats within a signaling model. Strike payoffs change as replacement workers are hired,

as strikers find temporary jobs, and as inventories or strike funds run out. The settlement wage is

largely determined from the long-run threat, rather than the short-run threat. As a result, if dispute

costs increase in the long run, then dispute durations are longer and wages decline more slowly during
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the short run. Allowing time-varying threats helps explain empirical results. Settlement rates are lower

during periods of eligibility for unemployment insurance (Kennan 1980). Strike durations are longer

during business downturns (Kennan 1985; Harrison and Stewart 1989). Wages might not decrease with

strike durations (Card 1990). Moreover, the theory can help explain the costly actions firms and unions

take to influence threat payoffs.

An important feature of union contract negotiations is that they do not occur in isolation.

Information from one contract negotiation may be linked with other contract negotiations within the

same industry. Kuhn and Gu (1996) interpret holdouts in this way. In their theory, holdouts are used

as a delaying tactic to get information about other bargaining outcomes in the same industry. When

private information is correlated among bargaining pairs, there is an incentive to holdout, since one

bargaining pair benefits from information revealed in the negotiation of another pair. Three predictions

stem from this theory: (1) holdouts should increase when more bargaining pairs negotiate concurrently,

(2) there should be a clustering of holdout durations within an industry, and (3) holdouts ending later

are less apt to end in strikes. A panel of Canadian manufacturing contract negotiations from 1965 to

1988 support these predictions. A further implication of the linked information is that strike incidence

can be reduced to the extent that private information is revealed in related contract negotiations. Kuhn

and Gu (1995) find support for this hypothesis.

In addition to within-industry links, contracts are linked over time. Today’s negotiation is just one

in a sequence of negotiations between the union and the firm. The current negotiation affects the next

negotiation in two ways: a wage linkage and an information linkage. The wage linkage is as in

Cramton and Tracy (1992). The current wage is the starting point for negotiations and determines the

attractiveness of striking versus holding out. An information linkage arises when the private

information between contracts is correlated. Kennan (1995) studies a screening model of repeated

negotiations where the firm’s willingness to pay follows a Markov process. One implication of this

model is a rachet effect. A firm is more hesitant to give in today, knowing that doing so will worsen

its position in the next negotiation. More importantly, Kennan’s model of repeated negotiation can

explain some of the observed links between prior and current contract negotiations. For example, Card

(1988, 1990) finds that strike incidence is higher after a short strike in the prior negotiation, and lower

after either no strike or a long strike in the prior negotiation.
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7 Experimental Evidence
Strategic theories of bargaining with private information only recently have been evaluated in the

experimental laboratory. The advantage of an experimental test of the theory, compared with an

empirical test, is that the experimenter is able to observe the distribution and realizations of private

information. The power of empirical tests is limited because the parties’ degree of uncertainty must be

estimated indirectly from the data, under the assumption that the theory is true. This has led most

researchers to test other empirical implications of the model, such as the slope of the concession

function. The experimenter, on the other hand, can construct an environment that conforms much more

closely to the theoretical setting. In this way, less ambiguous tests of the theory can be performed.

Unfortunately, even in tightly controlled experiments, some ambiguity will remain, since the subjects

may have relevant private information about their preferences that the experimenter is not privy to.25

Most of the experimental work on strategic bargaining has focused on testing dynamic models

with full information26 or static models with private information.27 Much could be learned by

considering dynamic bargaining with private information. By introducing private information into a

dynamic bargaining environment, we are able to observe how uncertainty influences the incidence and

duration of disputes. This has been the focus of much of the theoretical and empirical work, and yet

few experimental tests have been done.
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