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Summary. The paper develops a general framework for the formulation of generic uniform laws of large
numbers. In particular, we introduce a basic generic uniform law of large numbers that contains recent
uniform laws of large numbers by Andrews {2) and Hoadley [9] as special cases. We also develop a trun-
cation approach that makes it possible to obtain uniform laws of large numbers for the functions under
consideration from uniform laws of large numbers for truncated versions of those functions. The point
of the truncation approach is that uniform laws of large numbers for the truncated versions are typically
casier to obtain. By combining the basic uniform law of large numbers and the truncation approach
gc a}l:o [cllgrive generalizations of recent uniform laws of large numbers introduced in Pédtscher and
rucha [15, 16].
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1. INTRODUCTION!

Uniform laws of large numbers (ULLNs) are important tools for developing asymp-
totic theory in econometrics and statistics. For example, consistency proofs of
estimators in nonlinear econometric models frequently employ ULLNS, In the early
seventieths Hoadley {9] introduced a ULLN that applies to non-i.i.d. data processes.
This ULLN (or some version of it) has been used widely in the econometrics
literature, see, ¢.g., Bates and White [3), Domowitz and White [7), Levine [11],
White [19] and White and Domowitz [20]. However, Andrews [2] and Potscher and
Prucha [14,15] point out that the equicontinuity assumption maintained by
Hoadley’s ULLN is severe and precludes the analysis of many estimators and models
of interest.? These observations motivate interest in alternative ULLNG.

Consider the sum n~' I, [g,(z, 8) — Eq,(z,, 8)], where (z,) denotes a stochas-
tic process that takes its values in a set Z, 0 is an element of a parameter space ©,
and g: Z X © - R. ULLNs then provide conditions under which the above sum
converges to zero uniformly over the parameter space. Ideally, ULLNs should be
applicable to a wide range of*problems. They should be able to handle temporal
dependence and heterogeneity of the stochastic process (z,) as well as hetero-
geneity in the functions g,. ULLNs that are aimed towards that goal have been
introduced recently, e.g., by Andrews [2] and Pétscher and Prucha [15,16].
Those ULLNs are generic in the sense that they transform laws of large numbers
(LLNs) for certain bracketing functions for q.,(2,, 0) into corresponding uniform
ones.

The proofs of most ULLNs, including those mentioned above, are based on an
approximation technique that dates back to Wald [18), see also Jennrich [10]. This
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technique reduces the proof essentially to the verification of a single condition and
also underlies the ULLNs in Amemiya [1], Bierens [4,5), Hansen (8], and Newey
[13]. Several authors refer to that condition (formulated within contexts of varying
generality) as the first moment continuity condition. Therefore, ULLNs that are
based on Wald’s approximation technique differ in essence only in the way how
this first moment continuity condition is verified from basic assumptions on the
functions ¢,(z,, 6).’ For example, Andrews [2] imposes a Lipshitz-type smoothness
condition which enables him to verify the first moment continuity condition by
essentially separating the stochastic component from the parameters. Alternatively,
Hoadley [9] imposes an almost sure equicontinuity condition, which —together with
a standard domination condition—implies the first moment continuity condition.
We note that it is precisely this almost sure equicontinuity condition that is restric-
tive in general. ‘

The present paper is a revision and extension of Pétscher and Prucha [15]. In
the latter paper we introduced a generic ULLN by (i) truncating the (argument z,
of the) functions g¢,(z,, #) appropriately, (ii) by applying Hoadley’s almost sure
equicontinuity condition to the truncated functions to obtain a ULLN for the latter
functions, and (iii) by recovering a ULLN for the untruncated functions from the
ULLN for the truncated functions. The crucial point is that the almost sure equicon-
tinuity condition is not restrictive when applied to the truncated functions. We note
further that this truncation approach was also used implicitly in the proof of a recent
ULLN given in Potscher and Prucha [16].

In Section 2 of the present paper we first show that this truncation approach can
be applied to any ULLN (and not only to Hoadley’s ULLN). More specifically, we
introduce a lemma that gives sufficient conditions under which a ULLN for the
untruncated functions can be recovered from a ULLN for the truncated functions.
Second, we derive a basic generic ULLN that unifies Andrews’ [2] separation
approach and Hoadley’s {9] equicontinuity approach. We note that combining the
lemma and this basic ULLN gives a general ULLN that contains a generalization
of Andrews’ [2] ULLN as well as Pétscher and Prucha’s [15,16] ULLNs (and hence
Hoadley's [9) ULLN) as special cases. In Section 3 we now derive Potscher and
Prucha’s [15] generic ULLN as a special case and provide various simple sufficient
conditions that imply the assumptions of this ULLN and also provide further inter-
pretation to those assumptions. We also illustrate how specific ULLNs can be
obtained from this generic ULLN by presenting a ULLN for a-mixing and ¢-mixing
processes. Various further points of discussion are provided in Section 4. In Section
5 we give an example for which it is possible to establish a ULLN under weaker
conditions based on the results of this paper than is possible based on the resuits
given in Andrews {2] and Pétscher and Prucha [16]. All proofs and some technical
remarks are relegated to the appendices.

2. THE TRUNCATION APPROACH AND A BASIC UNIFORM LAW OF
LARGE NUMBERS

2.1. The truncation approach

Let (2, o7 P) be a probability space, let (Z, 8) be a (non-empty) measurable space
and (O,p) a (non-empty) metric space with metric p.* We refer to © as the
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Remark 1.

(i) The sequence (K,) will frequently (but not necessarily) be an increasing .
sequence of sets exhausting Z, i.e., K1Z,

(i) Inspection of the proof shows that the condition of continuity of
n~'E;_,Eq,(z,0) in part () of Lemma 1 can be dropped if part (a) of
Assumption A is strengthened by replacing “limsup” with “sup”.

(iii) Inspection of the proof shows further that part (b) of Assumption A is not
needed for part (b) of Lemma 1.

2.2. The basic uniform law of large numbers

In i).reparation of our basic generic ULLN we introduce some further assumptions.
Agam, a discussion of those assumptions and, in particular, several sets of more
primitive sufficient conditions will be given in the next section.

Assumption 1. © is compact.
We adopt the following notation: Let JiZx©-Rand r>0, then
Sz 0,7) = sup £(z,0), f.(z,0, r) = inf f(z,0).
p(8,8)<r b0 )y

Definition 2. The sequence (f,(z,0): t ¢ IN) is said to satisfy a strong LLN locally
at ', if there exists a sequence of positive numbers (Te)rens Tx = 7,(0’), with
7y = 0 as k- o, such that for each 7, the sequences (f,*(z,0,7,): teN) and
(e (2,0, 7,): teN) satisfy a strong LLN, i.e.,

Em n“z *(z.9,7) —Ef*(z,0',7,)] =0, P-a.s.,

F aad ] =1

and

imn=' Y [fo(za 8, 7) — Efe(2,0,7)] =0,  Peas..

n=i =
We note that in the above definition it is implicitly understood that FAEM 1:,)
and f.(z, 9, 7,) are measurable P-a.s. and that the respective expectations exist
and are finite.’

Assumption B. The sequence (g,(z,, #): f€N) satisfies a strong LLN locally at 6’
for all '€ 0O,

We note that Assumption B requires nothing else than strong LLNs to hold for
the bracketing functions ¢*(z,0’,7,) = sup,4 )<, 4:(z,,8) and g.(z,,0',7) =
inf, i o)<, 4:(2,,0). Hence, this assumption is satisfied for many stochastic pro-
cesses (2,) like i.i.d. processes, stationary and ergodic processes, a-mixing pro-
cesses, and ¢-mixing processes given standard domination conditions.

Assumption C. For all 9’e© we have:; Let (T)aers T = 7(87), with T 0 as
k — oo, be the sequence defined implicitly in Assumption B. Then there exists a p
with I < p =< o and a k, = k,(8’) such that p(8,0') < 74, implies



UNIFORM LAWS OF LARGE NUMBERS 7

I‘L(zn 0) - QJ(zn 9') l = b,(z,, 0’) hf(zn e, 0)

for a!l w€Q\N,., P(N,) =0, where b(2,0’) and h,(z, 6", @) are finite, non-
negative and oZmeasurable (for given 8’ and all # € ©) and satisfy the following:

(@) sup, ,(z,,8°,0) ~ 0 if p(8,6") = 0 for all « eN\N,..

(b) The functions A (z,, 6, 7,) = SUP, (0, #') <ry M (2, 87, 0) are P-a.s, measurable for
e rko'

(©) sup,n™'E}, E[b,(2,,0°)"] < o if | Sp <o, and sup,|b(z,0'). < o if
p = ; furthermore, (n~'L"_, h*(z, 6’, Tr,)*: n € N) is uniformly integrable if
| <|p f.ao, and sup, [|A?(z,0',7,)]|l. = 0 as k— o if p=1, where g~! +
Pl =1,

In the above ||.)|,, denotes the essential supremum of |.| w.r.t. P.

The above assumptions allow us now to introduce a basic generic ULLN. The
idea behind the proof can be outlined as follows: Compactness of © postulated
in Assumption 1 and the conditions in Assumption C are used to show that
n'Ch.,[q,(z,6) - Eg:(z,, 8)] can be approximated arbitrarily closely by finitely
many functions of the form n~'Ll_,[(g*(z,, 0!, ) — Eq)(2,0/,7,)] and n~'L,
[9:+(20 0/, 7)) — Eqp(z,, 6/,7,)).° The strong LLNs for these functions postulated
in Assumption B are then used to deliver the ULLN.,

Theorem 1. Let Assumptions 1, B and C be satisfied. Then:

(@) The sequence (q,(z,0): te IN) satisfies a ULLN.,
(b) (n~'L,Eq,(z,0): neN] is equicontinuous on 0.

Remark 2. (i) If Assumption C holds for h(2,0,0) = h(p(8,0’)) with h(x)i0
for x{0 and if we put p = 1, then Theorem 1 reduces to a recently introduced ULLN
by Andrews [2], which is based on a Lipshitz-type smoothness condition. If
Assumption C holds for p = o, k,(z,8’,8) = 19:(z,, 0) — q(2,0°)| and b,(z,
6’) = 1, then Theorem 1 reduces to a generic version of Hoadley’s [9, Theorem AS]
ULLN. {In this latter case Assumption C(a) becomes Hoadley’s almost sure equicon-
tinuity condition.) Hence, by applying Theorem 1 to the functions g, » and then
using Lemma 1 we can obtain further generalizations of both ULLNs, In Section
3 we show exemplarily how we can obtain a useful ULLN by generalizing the rather
restrictive ULLN of Hoadley [9) via this truncation approach.

(ii) Also the ULLN given in Pétscher and Prucha [16] is essentially a special case
of Theorem 1 combined with Lemma 1; for a more detailed discussion see comment
(iv) in Section 4. :

3. GENERALIZATION OF HOADLEY'S UNIFORM LAW OF LARGE
NUMBERS AND A DISCUSSION OF SUFFICIENT CONDITIONS

It is important to recognize that, based on the approach developed in Section 2,
we can obtain a very general ULLN by maintaining that Assumptions 1 and A hold,
by postulating Assumptions B and C for the truncated functions g, ,,, and by
appealing to Lemma 1 and Theorem 1. In the following we illustrate the approach
further by considering ULLNs corresponding to sets of sufficient conditions for this
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general catalog of assumptions. In particular, we derive a generic ULLN that
generalizes Hoadley’s [9] ULLN. This generic ULLN was first presented in an earlier
version of this paper, see Potscher and Prucha [15]. In the following we first state
the catalog of assumptions and present the theorem. We then give a discussion of
the maintained assumptions. We will also provide sufficient conditions for the
respective assumptions that can be readily checked. Based on those sufficient condi-
tions we present two ULLNSs for a-mixing and ¢-mixing processes as corollaries.

Assumption 2. (a) For all meN and all 8'¢© we have: (g, .(z,0): teN] is
equicontinuous at 8’, P-a.s..
(b) For all rteN and 6’€© we have that g,(z, ) is continuous at ¢, P-a.s..

A slightly stronger assumption (where the exceptional null set is now not allowed
to depend on 8’) is the following:

Assumption 2’. (a) For all meN we have: {9, (2,0): te N} is equicontinuous
on O, P-a.s.. :
(b) For all reN we have that g,(z,,8) is continuous on ©, P-a.s..

Assumption 3. The function d,(z) is P-a.s. measurable with Ed,(z,) finite.

Furthermore:

(@) lim { limsupn~'E}_, Edf . (z,)} = 0.

(b) The family of functions {n~'E;.,d, ,(z): neN}] is uniformly integrable, for
each meN.

Assumption 4. For all meN:

(a) The sequence (g, ,,(2,8): teN) satisfies a strong LLN locally at 8’, for all
0’€O and all meNN.
(b) The sequence (d;,(z,): t€N) satisfies a strong LLN for all me N,

We introduce the following generic ULLN.

Theorem 2. Given Assumption 1, and given Assumptions 2, 3, and 4 are satisfied
Jor some sequence (K,),c. with K, €p. Then:

(@) The sequence (q,(z,, 8): te N) satisfies a ULLN; and
(b)Y {n~'T].,Eq,(z,8): ne N} is equicontinuous on ©.

Remark 3. (i) We note that for K, = Z Theorem 2 reduces to a (slightly
generalized) generic version of Hoadley’s [9] ULLN. The equicontinuity condition
in Hoadley [9] is identical to Assumption 2' for K, = Z. As explained in more
detail in Andrews [2] and Pétscher and Prucha [15], Hoadley’s assumption is restric-
tive since it will, loosely speaking, be violated if there is unbounded variation in
the variables z,. The basic idea behind Theorem 2 is to avoid this restrictiveness by
requesting only that this condition holds for certain approximations to the functions
q:(z, 8), i.e., for the functions ¢, ,(z,, @). For simplicity of the argument assume
for a moment that Z = R®. If the K,, are chosen as increasing bounded sets, then
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those approximations are obtained by truncating the functions g,(z,, ) for “large”
arguments z,. We note that for these truncated functions the effective domain of
the argument z, is bounded. Consequently, and as demonstrated in more detail
below, we find that the equicontinuity condition is not restrictive, when applied to
the truncated functions.

(ii) We note that for the proof of part (a) of Theorem 2 part (b) of Assumption
2 has not been used. Also, if the sets K, exhaust Z, ie. , US_ K, = Z, it is
readily seen that part (b) of Assumption 2 is already implied by part (a). (The same
is also true for Assumption 2',) _

(iii) Furthermore, if “limsup” in Assumption 3(a) is replaced by “sup”, then
Theorem 2 in its entirety also holds without postulating part (b) of Assumption 2,
cp. also Remark 1(ii).

In tht:l following remarks we discuss simple sufficient conditions for Assumptions
2, 3 and 4.

Remark 4. (Sufficient conditions for Assumption 2) The following discussion is
based on Lemma A3 in Appendix A. As remarked above, Assumption 2 clearly
holds if Assumption 2’ is satisfied. A stronger condition, that is often easier to
verify, and implies Assumptions 2 and 2’, is the following:

(D (@) sup,sup,,_q,(2,9) —q(z,8)| =0 if p(6,8°) =0, for all §'cO,
meN, -
(b) g,(z,9) is continuous on © for each zeZ and feN.

(Of course, if X,, = ¢ the supremum in I(a) is to be interpreted as zero.) If the X,
exhaust Z then part (b) of condition (I) is implied by part (a). If Z = R* (or more
generally, Z is a metrizable space), then condition (1) is implied by:

(D {q,(z,0): teN] is equicontinuous on Z x O, and the sets X, are compact.

We note that in condition (II), in contrast to Hoadley’s equicontinuity condition,
the arguments of ¢, do not depend on r. Hence this condition is (in a practical
sense) far less restrictive, even so g, is assumed to be jointly continuous in both
arguments. For the important special case g, = ¢ condition (II) reduces to the con-
dition that g(z, 8) is continuous on Z x © and that the sets K,, are compact. As a
point of interest, we note that both conditions (I) and (II) do not refer to properties
of the stochastic process (z,). Therefore, both conditions (I) and (II) imply that
Assumptions 2 and 2’ are satisfied, regardless of the nature of the stochastic
process (z,).

Remark 5. (Sufficient conditions for Assumption 3) This discussion is based on
Lemma A4 in Appendix A, and proceeds under the assumption that d,(z,) is
P-a.s. measurable.

(i) The following two conditions are sufficient for Assumption 3 to hold; they
can be checked quite easily:

(1) sup, n~'E}_, E[d(2,)'**] < o for some & > 0,
(V) lim { limsupn~'C]_, P(z,¢KX,)) = 0.

m-o g
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parameter space. Let (2,),,, be a stochastic process defined on (@, of, P) taking
its values in Z. Let g: Z x © — R be such that g,(z, #) is 8-measurable for each
0eB and teN.

It proves helpful to introduce the following definitions: For a sequence of sets
(Km)mlN With Ku EB let ql.m(zs a) =ql(z! o)lx,.(z) and qf,,.(z. 0) =q!(z' 0)12-—K,..(z)!
where 1, denotes the indicator function of a set A; also let d, ,(z) = sup,,e|
4n(2,0) |, a7 n(Z) = SUDyeo|qfn(2,6)| and d,(z) = sup,ee|q,(2,0) |, which may
take on the value +oo. (Note that d, ,(z) = d(z)1, (z) and d{,(2) = d,(z)
1,_y,(2) if we adopt the convention o. 0=0.)

Definition 1. (a) The sequence (g,(z,, 8): t € N) is said to satisfy a (strong) ULLN
if and only if supyee|n~'E}.;[g,(2,8) — Eq,(2,8)}| ~ 0, P-a.s., as n — co.

(b) A sequence of random variables (x,: f&€MN) is said to satisfy a strong LLN
if and only if n~'E{_,[x, — Ex,] = 0, P-a.s., as n = e,

Note, that in this definition it is implicitly understood that the respective expecta-
tions exist and are finite,

We now introduce a basic lemma that makes it possible to generalize existing
ULLNSs via a “truncation principle”, More specifically, the lemma gives basic condi-
tions under which ULLNs for the sequences of truncated functions (q,m(2, 0):
teN) can be carried over into a ULLN for the sequence of untruncated func-
tions (q,(z,0): teN). A discussion of these conditions and, in particular,
several sets of more primitive sufficient conditions will be given in the next
section. We emphasize that the point of the lemma is that it will be typically easier
to verify the conditions of a given ULLN for the truncated functions then for
the original functions. This fact will also be illustrated in more detail in the next
section.

Assumption A, For a sequence of sets (K,),..n With K, €8 the corresponding
functions d; ,(z,) are P-a.s. measurable with Ed},,(z,) finite and furthermore:*
(a) lim { limsupn™'L]., Ed} ,(2,)) =0.°

mrte p=

(b) The sequences (d;,(z,): teN) satisfy a strong LLN for all meN.

Lemma 1. Let Assumption A be satisfied. Then:

(@) The sequence (q,(z,,0): t € N) satisfies a ULLN if for all m e N the sequences
(9, »(2,0): teN) satisfy a ULLN.

(b) (n™'E]_,Eq,(2,8): neN} is equicontinuous on O, if {n~'L;_ Eq, .(z,6):
ne N is equicontinuous on © for each me™ and if n~'L;_, Eq,(z,,9) is con-
tinuous on © for each ne N,

In part (b) of the above lemma it is again implicitly understood that the expecta-
tions Eq, ,(z,0) exist and are finite; hence in view of Assumption A also the
expectations Eq,(z,, 8) exist and are finite.
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Condition (IIT) is a domination condition typical for ULLNs. Condition (IV) is a
kind of asymptotic tightness condition for the average distribution of z,, i.e. , for
n~'L;_, H, where H, is the distribution of z,. Condition (IV) is, e.g., implied by
cither one of the following three simple conditions (Va), (Vb) or (Vc):

(Va) Z=R', K, TR’ is a sequence of Borel measurable convex sets (e.5., a
sequence of closed or open balls), and limsup n~'Eh. Eh(llz ||} < o where
h: [0, )~ [0, =) is a monotone function such that, limA(x) = o !
(Vb) Z=R’, K,,TR* is a sequence of Borel measurable convex sets (e.g. a
sequence of closed or open balls), and (z,) is asymptotically stationary in
the sense that n~'L]., H, converges weakly to some probability measure H,
(V¢) (z,) is identically distributed and X, 1 Z.

More general formulations of (Va) and (Vb) are given after Lemma A4.
(ii) We note that Assumption 3 is also implied by, e.g.,

(VD) limsup n~'L},, Ed,(z,) = 0, or
(VII) (z,) is identically distributed, X, 1 Z, d, = d and Ed(z,) < o».

Furthermore, Assumption 3(a) is trivially satisfied in the case z, € X, P-a.s., for all
t and K, = K|, for all m.

Remark 6. (Sufficient conditions for Assumption 4) In this remark we show that
Assumption 4 is satisfied if the underlying process has a sufficiently short memory.
This is expressed by mixing properties. In particular we consider processes (z,)
that are a-mixing or ¢-mixing. (For a definition of a-mixing and ¢-mixing processes
see, e.8., Domowitz and White [7]; for a definition of size see McLeish [12].}) We
introduce the following assumption:

Assumption 5. The process (z,) is ¢-mixing [e-mixing] with mixing coefficients
of size —r/(2r — 1) where rz1 [of size —r/(r— 1) where r> 1] and sup,
E[d,(z,)"**] < o for some & > 0.

Of course it is implicitly assumed in Assumption 5 that d,(z,) is P-a.s. measurable.
In Lemma AS in Appendix A we show that, given Assumption 1 and 2'(b), Assump-
tion § implies Assumption 4.

From Remarks 4, 5, and 6 we can put together various sets of sufficient conditions
that imply the assumptions of Theorem 2. We illustrate this by two corollaries:

Corollary 1. Suppose Assumptions 1, 2’ and 5 hold. If furthermore li}:ll
ili_l.xul'sup n~'Ti_ P(z, ¢ K,)} = 0, then the conclusions (a) and (b) of Theorem 2
hold.

Corollary 2. Suppose Z = R* and Assumptions t and 5 hold. If q,(z,8) is equi-
continuous on Z X ©, and if limsup n" 'L E(lz)?) < o for some p > 0, then
conclusions (a) and (b) of Theorem 2 hold.

Hoadley's [9] ULLN is a special case of Corollary 1 for K, m Z (which, of
course, implies that P(z, ¢ K,,) = 0.) Corollary 2 is related to a ULLN reported in
Potscher and Prucha [16].
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4. ADDITIONAL COMMENTS

(i) In situations where we wish to apply the above ULLNs to functions that
depend on leads and/or lags we can think of the vector Z, as already containing
those leads and/or lags. Cp. also Pétscher and Prucha [17], Section §.

(i) The assumption that Z does not depend on ¢ can be made without loss of
generality. Since no particular structure was postulated for Z in the general discus-
sion (apart from being a measurable space) situations where the range space for the
variables z, depends on ¢ can always be accommodated by defining Z as the Carte-
sian product of the respective range spaces and by redefining z, and ¢, in an
obvious way,

(i) Clearly any finite linear combination of functions individually satisfying a
ULLN also satisfies a ULLN. One practical implication of this observation is the
following: Although a function 4,(z,, 8) may not satisfy the assumptions of an
existing ULLN, it may be possible to decompose that function such that existing
ULLNSs can be applied to each of the summands in the decomposition. For example,
there may exist functions f,(z,) and £/(0) such that f,(z,) satisfies a LLN and
are such that ¢,(z,0) — f,(z,) ~ £(6) can be readily shown to satisfy a ULLN.
Clearly, then also g,(z, 8) satisfies an ULLN. As an illustration consider the case
where g,(#) = Eq,(z,,0) is a trend increasing with t. Then the dominance condi-
tion may be violated for g, but not for ¢, — Eq,. It may also prove useful in certain
circumstances to subtract the value of g, at a certain parameter 6,, i.e. f,(z,) =
2:(2,, 6), or a finite linear combination thereof. Of course one has then to prove
a LLN for g,(z,, 6,), but this is a much simpler task.

(iv) In Pétscher and Prucha [16] we prove a ULLN for functions of the form
q.(z,8) = Ef.,rk,(z,)s,,(z,, 6) where 7,, is measurable and s, jointly equicon-
tinuous. This ULLN can be viewed as a special case of the results of Section 2
of the present paper (abstracting from the slight differences in the maintained
local LLN conditions). We note that Assumption 3(ii) of Pétscher and Prucha
[16] can be replaced by the slightly weaker but more complex assumption
sup, n7'L_ El|7,(2,) {15 (2,)] < o for all meN without changing the proof.
We note further that if the functions 7,, satisfy the stronger condition sup, |, (z,) |
1x,(Z,) < oo P-a.s. for all me N, then the ULLN of Pétscher and Prucha [16] can
also be obtained as a special case of Theorem 2 of the present paper (again abstrac-
ting from the slight differences in the maintained local LLN conditions).

(v) In this paper we give conditions under which n-'Ef_ (g2, 0) - Eq,(z, 8)]
converges uniformly to zero. For a further discussion of conditions such that not
only a ULLN holds, but such that also n~'Z7_, q.(2,, 8) converges uniformly to a
fixed limit, see e.g. Potscher and Prucha [14,15,16).

(vi) Lemma 1, Theorem 1 and Theorem 2 remain valid if g, and z, also depend
on n, given the following modifications are made: Assumptions A and B are to be
applied accordingly to the triangular array, say, g, (z/,0); in Assumption C the
functions b, and h, may now also depend on n and the “sup,” in Assumptions C(a)
and C(c) is to be replaced by “sup, sup,.,”. In Section 3 the equicontinuity condi-
tions postulated in Assumptions 2(a) or 2(a) have now to hold for the families
{4rn(2/,0): t < n, neN}. Similarly the continuity condition in Assumptions 2(b)
or 2’(b) has now to hold for ¢"(z”, 8). Assumptions 3 and 4 must again be applied
to the triangular array g;(z},8). Of course, sufficient conditions similar to the
ones presented in Remarks 4-6 can again be derived in a completely analogous way.
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We note further that the situation where a norming factor ¢;' other than n-' is
used can be immediately incorporated into the framework of this paper by redefin-
ing the functions q" as (n/c,)q.

(vii) If in the assumptions for Lemma 1, Theorems 1 and 2 the respective
strong LLNs and strong local LLNs are replaced by weak versions thereof {and
all other assumptions are left unchanged), then the lemma and the theorems
still hold with the strong ULLN statements replaced by weak ones. (Of course, one
then has to assume the P-a.s. measurability of quantities like supg|n~'C(q,(z, 8)
— Eq,(2,0)]|, or one has to try to circumvent this problem by the use of outer
probabilities.)

5. EXAMPLE

We next give a simple example for which, by using Theorem 2, it is possible to
establish a ULLN under weaker conditions than is possible by using the ULLN in
Andrews [2] based on a Lipshitz-type condition or the ULLN in Pétscher and
Prucha [16].

Let © = [~a,a] with a> 0, let Z=R? and z, = (y,x,), let q,(z,0) = q(z,0)
= min(c, |y — g(x)6|}s(|x]) with ¢ >0 and where g: R~ R with |g(x)]|=
£(|x|) monotonically increasing to infinity as |x| — o and s: [0, o) — [b, b] with
0 < b < h <o are Borel measurable functions. Assume that ( ¥,) is generated
from the model y, = g(x,)8, + v, with 6,€©, x, and u, (contemporaneously)
independent, and where the distributions of x, and u, put positive probability on
every nondegenerate interval. Assume furthermore that the process (z,) is
a-mixing with mixing coefficients of size —r/(r — 1) for some r > 1, and that
(z,) is asymptotically stationary.

Within the above setup we may interpret n~'L;_, g(z,, 8) as the objective func-
tion of a minimization estimator for 8,. For s(|x|)=1 and for ¢ “large” this
estimator reduces essentially to the least absolute deviation estimator. The function
s(|x|) allzlows different observations to enter the objective function with different
weights,

To establish a ULLN for the above example via Theorem 2 we need to check
the validity of Assumptions 1-4. Assumption 1 is trivially satisfied. Choose X, =
(7, x): |y]=m, |g(x)|=m), then clearly K, tZ and K, convex as |g| is
monotone in |x|. Since |min(b, [v,|} ~ min{b, {t,]}}| < ||v,| — |0y} | = |v,— vy
for all v, v,€R it follows that sup, |g(z,8) — q(z,6')| < mb|6 — 6’|.

Consequently condition (I) and hence Assumption 2’ is satisfied. Condition (II)
holds trivially since g is bounded; condition (IV) is satisfied since clearly condition
(Vb) holds. Consequently Assumption 3 is satisfied. Assumption 5 holds since
(Vs x) is assumed to be a-mixing and g is bounded. It then follows from Lemma
A5 that also Assumption 4 is satisfied. Consequently the example satisfies all of
the respective assumptions of Thecrem 2 and hence (g(z,6): teN) satisfies a
ULLN.

In order to be able to apply Andrews’ [2] ULLN to the above example the follow-
ing Lipshitz-type condition must hold instead of Assumptions 2 and 3:"

For each 8’€© there is a constant v > 0 such that |@ — 6’| < 7 implies

|¢(z., 0) — q(z,8")| = B,(z) ({6 — 8|} )
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a.s. for every t, where B;: Z - [0, o) and A: [0, ®) - [0, o) such that B,(z,) is
a random variable, limsup n~'L;., EB,(z,) < o, h(n) L A(0) =0 as 4 - 0.

Condition (1) has"to hold, in particular, for 8’ = 8, and any admissible 0, we
consider for simplicity the case ¢’ = 8, = 0. Then

|9(2,8) ~ q(2,6")| = |min{c, |u, — g(x,)8]) = min[c, ||} |s(|x]) @

and A(|0 —08'|) = h(|8]).

For expositional reasons we first analyze the case #(|6]) = |8}. Consider some
7> 0 and some realization (u,(w), X,(w)) for which (1) holds and for which
¢/4 < |u(w)| < c/2 (where ¢ is some given index). Clearly there exists a ¢
with 0 < |0| =< r such that |8 (X (@))8| < |4,(w)|. Consequently lg(z(w),8) —
9(z(w),8") | =|g(x,(w})| |]5(|x,(w)]) < B(z,(w)) |6, and hence b|g(x,(w))]|
= B,(z,(w)). This shows that (1) implies blg(x:)ll[d«w.l <c/2 SBr(z:)l[cM<|n,j<c/2]
a.s., and therefore bE[|g(x,)|1P(c/4 < |u,| < c/2) s E(BAZ) ] cuciuycerny) S
E[B,(z)]) <o in view of condition (1). The probability on the Lh.s. of the ine-
quality is positive; consequently for Andrews’ [2] Lipshitz-type condition to be
satisfied in the case h(|8]) = |8| it is necessary that E[|g(x,)|] < o holds in
addition to the assumptions maintained so far for the example. If, for example,
|x| < ]g(x)|, as is the case if g(x) = x or g(x) = —g(=x)=ifori-1<x=xi,
feN, and g(0) = 0, then it is necessary that E|x,| < .

In Appendix B we consider the case of general functions &(|@]). We show by
similar but somewhat more involved argumentation that e.g.

EL[1/A(c’/|8(x) D)1y 5a0] < o

(with ¢’ = ¢/4) for all M sufficiently large is a necessary condition for Andrews’
[2] Lipshitz-type condition to be satisfied. Observing that 1/A(c’/|g(x)|)to as -
|x| = oo, this condition clearly limits in general the class of admissible processes
(x,). Hf, for example, |x| s |g(x)| and h(|8]) = |6]" we obtain E|x,| < o as a
necessary condition.

We have thus demonstrated that in order to be able to apply Andrews’ [2] ULLN
to the example we have to make stronger assumptions concerning the distribution
of x, than is necessary if we apply the ULLN presented in this paper. Furthermore,
to apply Pétscher and Prucha’s {16] ULLN we have to assume that g is continuous.
The example thus shows that the ULLN presented in this paper is neither dominated
by Andrews’ [2] nor Pétscher and Prucha’s [16) ULLN.™ The example also illus-
trates how the sufficient conditions discussed in Section 3 can be conveniently
utilized to check whether Assumptions 1-4 hold in a specific application.

APPENDIX A

In the appendix all summations are to be taken over ¢ = 1, . . ., n unless indicated
otherwise.

Lemma Al. Let h,(8) for ne N be continuous real Junctions on the metric space
(0,0). If for each meN the family of real functions (Am s nEN] is equi-
continuous on © and if lim Hmsup sup,eo|A,, ,(8) — h,(8)| =0, then also the

m-eo o

SJamily {h,: ne N} is equicontinuous on ©.
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Proof. Choose € > 0. Then there exists an m, = m,(¢) such that limsup SUPyeo|
n-om

B, n(8) —h,(0) | < &/3; hence, for some ny=n,(m,(e), &) we have SUDpeo | Amg,a ()
- h,(0)| < ¢/3 for all n = n,. Consider an arbitrary ¢, then there exists a posi-
tive 8, = 8,(rmy(€), €) such that SUP, | Ay, n (8) ~ A, (87)] < €/3if p(8,08') < &,
since the family (4, .. ne€N) is equicontinuous on ©. It now follows that for
all n=ny and o(0,0°) <8: |h,(8) — h,(6°)| < }h,(6) — Ry ,(8)] + | By, A (0)
= P n(0°) | + | B, 4 (8°) — h,(8')| < &. For | s n < n, we can find a §, > 0 such
that |A,(6) — h,(8’)| < e for p(8,0') < §, since h,(8) is continuous. Let § =
min(&,, 5,) then for all neN: |h,(8) — k,(8')] < e for p(8,6') < 8, which is the
desired result. [

We note in connection with Remark 1(ii) that the lemma remains valid if the condi-
tion that A, be continuous is dropped but the condition involving the “limsup” is
strengthened by replacing the “limsup” with the respective “sup”.

Proof of Lemma 1. To prove (a) observe that Eq, »(2,0) and Eg;,(z,0) exist
and are finite by the assumptions of the lemma and hence also Eqg,(z, @) exists and
is finite. Furthermore for all meN

sup |n~'Clq,(2,,0) — Eq(2,6))| S Ay + By

where

Apm= SUPueI""E[qpfm(zu 0) — Eqf (2, 0)] |
and

Bn.m = supﬂcﬂl "-lE [ql.m(zu a) - EQl.m(zh a)] '-
Since by assumption a ULLN holds for g, .(z,8) we have lim B, » =0, P-as.

Since A, ,, < n~'C[d! ,(2,) — Edfn(z)] +2n~'TEd, (z,) it follows from Assump-
tion A that 0 =< limsuplimsupA, , < lim limsup 2n'LEd; (z,) =0, P-as..

mM=ow n—aoo -+ o
This proves part (a) of Lemma 1. Part m(b) follows (given the maintained set
of assumptions) from Lemma Al and observing that lim limsup SUDgeq|nt™!

m-—o e

L[Eg, (2, 6) — Eq,(2,,0)]| =< lim limsup n~'TEd’,,(z,) = 0. »

m=o. g

Proof of Theorem 1. The existence and finiteness of Eq,(z,,8) follows from the
existence and finiteness of Eg? (2, 8, 7,(8)) and Eg.(z, 8, 7,(#)), which in turn is
implied by Assumption B and Definition 2. Consider an arbitrary '€ ©, let
(7:(0°)) en: be the sequence defined implicitly by Assumption B and Definition 2,
and let N, be the exceptional null set in Assumption C. We first show that for
Ty = Tt(o’) - 0

A(0°,7,(8") = sup,|n~'E[Eq* (2, 0", 7.(8")) — Eq,(2,8°)]| =0, (A.1)
B(6’,7,(6’)) = sup,|n~'E[Eq,.(2,, 0", 7,(6")) — Eq,(2,6")]| = 0. (A.2)

Upon taking appropriate suprema and upon applying Hélder’s inequality twice to
the inequality given in Assumption C we obtain for 7, < ot
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A (9" 7&(01)) s supn H_IEE[b,(Z,, ef)hr'(Zn a’l 1".(0'))] (A.3)
= [sup, n”'CE[b,(z,, 8")°]}"*{sup, n~'EE[A? (2, 8", 7,(0'))?]}3,

where for p =« the first expression on the r.h.s. has to be replaced by
sup, ||b,(z,,0')||. and where for p = 1 the second expression on the r.h.s. has to be
replaced by sup, (2, 0’, 7,(6')}||.. Assumption C(c) implies that the first
expression on the r.h.s. of (A.3) if finite for 1 < p 5 o, Hence to prove (A.1) it
is sufficient to show that the second expression on the r.h.s. of (A.3) goes to zero
as 7,(8’) = 0. For p = 1 this is directly implied by Assumption C(c). Next con-
sider the case 1 < p s oo: Assumption C(a) implies that sup,h®(z,8’, .(8'))
— 0 and hence sup,n~'Ch#(z,0’,7,(8’))? - 0 for w € B\ N,,. and 7,(8’) = 0. The
family {n~'Ch?(z,6’,7,(6)): neN, 1, < 7, ) is uniformly integrable as a con-
sequence of Assumption C(c) since 7, < 7,, for k large enough. Applying Theorem
A3 of Hoadley [9] completes the proof of (A.1)." A similar argument proves
(A.2). Clearly for p(8,6’) < 7,(68"):

sup,|n~'C[Eqi(z, 6) — Eq,(2, 0")] | < max [A(8’, 7,(8")), B(0’, 7,(6"))].

Part (b) of Theorem 1 then follows since the r.h.s. goes to zero as 7,.(0’) —+ 0. To
prove part (a) of Theorem 1 observe that using (A.1) and (A.2) we can find for
every € >0 and 6'€© a 7(¢,0') = 7, 4,(8’) such that A(8’,7(e,8’)) < ¢ and
B(8',7(e,0')) < e. Consequently, for all €O with p(8,0’) < 7(e,8’), for all
neN and wefl: ~
_28 + n_IS[QI'(zn a’s T(C, 0’)) - Eq{'(zu 0’3 T(E, 9'))]

s n'C{ge(z,0',7(e,6")) — Eq¥*(z,0',7(¢,8"))]

= "_IEIQf(Zn 0) — Eq,(z, 0)]

= "_lE[qr (zn 0',7(c,8%)) — EQt'(zn 0, 1'(8,0'))] A

S ﬂ_lz[qr(zn 0" T(B, 0’)) - EG’? (zﬂ 0” T(C, 0'))] + 28'

Now cover © by the collection of balls (O(8’,7(8,¢)): 6’€©) where O(0’,7)
= {0e€©: p(0,8’) < 7]. Since O is compact there exists a finite subcover of balls
from this collection centered at 8/, - . ., 8/. Let 7, = 7(¢, 8), then we have for all
0€0, all nelN and all we:

—2e +min.,  ,n'E[qg.(2,0/, 1) — Eq.(z,0/ 1))
< n"'Clq(z,8) — Eq(z,0)]
< max., _,n'Elqg*(z,0,71) — Eq* (2,8, 7)] + 2¢.
Because of Assumption B it follows further that limsup sup,.e|7~'Elgq,(z, 6) ~

| -

Eq,(z, 0)]1| < 2¢e, P-a.s.. This clearly implies part (a) of Theorem 1. [ |

Lemma A2. Under Assumptions 1 and 2'(b) the functions d(z,), df,.(z.),
q'n(2,0,7), Qume(2,0°,7), q¥(2,0',7) and q.(z,0',7) are measurable P-a.s..

Proof. Observe that for w ¢ N, the null set defined in Assumption 2/(b), g,(z,(w),
6) is continuous on ©. Hence for all w ¢ N and any countable dense set 6, S O we
have d,(z,(w)) = SuUpPyeo,|q:(z(w),8)|. The latter expression is a countable
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supremum of measurable functions and hence it is measurable. Since d,(z,) coin-
cides with this expression except on a set of measure zero, d,(z,) is measurable
P-a.s.. The proof for the remaining functions is analogous. |

Proof of Theorem 2. We first show that the assumptions of the theorem imply that
the assumptions of Theorem 1 hold for g, ,, for each m e N. Assumption B holds
for g, . because of Assumption 4. To verify Assumption C for q.m Put b,(z,8’)
=1 and 4,(z,0'.0) = Iqhm(zuo) = q,m(Zn _6’)|, let 7,(6’) be the sequence
defined implicitly in Assumption 4 (corresponding to g, ), put ko(¢’) =1 and
P = . Then part (a) of Assumption C follows from Assumption 2(a). To verify
part (b) observe that A?(z,8’,7,(8')) = max{q?2,(z, 0", 1:.(8')) — ¢, (2, 0"),
Q.m(2,0') — @ (2,0, 7,(0°))} is P-a.s. measurable for all k = 1 in view of the
P-a.s. measurability assumption implicit in Assumption 4. Part (c) of Assumption
C follows clearly from Assumption 3(b) for p = =, using the triangle inequality and
bounding A? by 2d, ,. Consequently, g, ,, satisfies (a) and (b) of Theorem 1. Now
Assumption A is satisfied in view of Assumptions 3(a) and 4(b). Hence part (a) of
Theorem 2 follows from Lemma 1 and the just established ULLN for g, . Part
(b) also follows from Lemma 1 if we can establish existence, finiteness and con-
tinuity of n~'Z Eq,(z,, 8). But since Ed,(z,) < by Assumption 3 existence and
finiteness are obvious; since g,(z,8) is P-a.s. continuous at each 6’6 by
Assumption 2(b), we get continuity of Eq(z,08) at each 8’€© using the
Dominated Convergence Theorem.

Lemma A3. (i) Condition (I) implies Assumption 2' and hence Assumption 2.
(ii) If Z is a metrizable space then condition (II) implies condition (I).

Proof. Part (i) of the lemma follows trivially since sup,|q, n(2,, 8) — g, (2, 6")|
< SUp, Sup,x, |4,(2,0) — g,(z,0’)|. Part (ii) of the lemma follows from Lemma
Al in Pétscher and Prucha [16] if K, # ¢ and is trivially true if X, = ¢.

Lemma Ad4. Assume d,(z,) is measurable P-a.s..

(/) Conditions (III) and (IV) imply Assumption 3.
(if) Condition (IV) is implied by either one of (Va), (Vb) or (Vc).
(iii) Conditions (VI) or (VII) also imply Assumption 3.

Proof. (i) Condition (III) clearly implies E{d,(z,)'*’] < o and hence Ed.(z,)
< oo, Since the family of functions in Assumption 3(b) is clearly dominated by the
family of functions {n~'Ed,(z,): meN]} it is sufficient to prove uniform inte-
grability for the latter, However, this is readily seen since sup, E{# 'Ld,(z)}'*®
< sup,{n~'CE[d,(z,)'**)]}, which is finite as a consequence of condition (II1). Next
define p = 1+ éand p~! + g~' =1, then by applying Holder’s inequality twice we see
that n~'LEd; . (z,) <n 'C(E[d,(2,)"])"*(E1;_g, (2,))"*< (n~'CE{d,(2,)"])*(n"'LP
(z, ¢K,))"/9. Therefore 0 =< limsup {limsup n“"’EEd;f m(Z ) =sup,{n~'CE[d(z,)"]}?

{lim limsup n~'EP(z, ¢ K,,)}'¥ = 0 because of conditions (II) and (IV).

m}ﬁ)"e;ndition (IV) is trivially implied by (Vc). Next consider conditions (Va) and
(Vb). We can then find open balls B(0, r,,) = {z: ||z]| <r,) such that r,, — o and
B(0, r,) € K,, for all large enough m, say m > m,. (This follows since every ball
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B(0, r) is contained in the convex hull of a finite number of suitably chosen points,
since these points will be contained in X,, for large enough m and since K, is con-
vex.) From Markov's inequality we have for m large enough:

0 < limsup n"'LP(z,¢ K,,) < limsup n~'LP(z,¢ B(0,r,))
= limsup n~'ZP(|iz ]| 2 7,) = [limsup n='EEA(|z])]} /A (r.).
A= n-ron

Observing that condition (Va) implies that the r.h.s. goes to zero as m — o we see
that (Va) implies (IV), Furthermore for m > my:

0 < limsup n~'LP(z,¢ K,,) =< limsup n~'EP(z,¢ B(0, r,,))
= 'llLr{l.sup I IZ-B(Q-MD (Z) d(ﬂ_lgﬂa) = Ilz-a(o.r.) (Z) dH

by Theorem 2.1 in Billingsley. [6]. Observing that the r.h.s. goes to zero as m— o
shows that (Vb) implies (IV).

(iif) Condition (VI) clearly implies Ed,(z,) < o and Assumption 3(a). Since
d,(z,) = 0 holds, condition (VI) is equivalent to L -convergence of n~'Ed(z,).
Therefore this sequence is uniformly integrable, which in turn implies Assumption
3(b). Finally, Assumption 3 is trivially implied by condition (VII). [

We note that Lemma A4(ii) also holds if the following generalizations are made in
(Va) or (Vb). In (Va) Z can be taken to be an arbitrary set and the sequence K,
is taken such that there exists a S-measurable function g: Z— [0, »] and real
numbers r,, — oo satisfying (i) {ze Z: g(z) < r,,) S K,, and (ii) limsup n~'CEg(z,)

< o, In (Vb) (Z, 8) can be taken to be a metrizable space with its Borel field and
the sequence K, (€8) is taken to satisfy int K, 1 Z where int K,, denotes the
interior of K,,. We also note that given Z is a metrizable space, condition (Iv)
holds for some sequence of compact sets X, if the sequence n~'LH, is tight. In
particular this follows if n~'LH, converges weakly to a probability measure H and
if each measure n~'LH, as well as H are tight, cf. Billingsley [6, Theorem 8,
Appendix I1I] and Potscher and Prucha [16].

Lemma AS. Assumptions 1, 2'(b) and 5 imply Assumption 4.

Proof. Similarly as in the proof of Lemma A2 it follows that

‘Ir?m(zn 0’! Tk(e’)) = 8,,,.(2,), P'a-s-.
where '

8.»(2) = sup{q, »(z,0): 86y, p(6,0") < 7,(0"))

and 6, < © is an arbitrary countable dense set. Clearly g, ,, is 8-measurable and
takes its values in R U { +oo}. By Assumption § (z,) is ¢-mixing [a-mixing]. The
measurability of g, ,, implies that g, ,,(z,) — Eg, .(2,) is ¢-mixing [e-mixing] with
mixing coeffients of the same size. Furthermore sup,Elg, ,(z,) — Eg, .(z)]"*
< . Observing that McLeish’s [12] definition of mixing coefficients is slightly
weaker than the usual definition employed in this paper it follows from his Theorem.
2.10 that g, ,(z,) and hence gt.(z,8’,7,(8')) satisfies a strong law of large
numbers. Analogously the same is established for g, ,.(z,, 8, 7,(6’)) and d; .(2,).
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APPENDIX B

Consider the example of Section 5 and assume that Andrews’ [2) Lipshitz-type con-
dition (1) holds. As remarked in the text this condition has to hold in particular
for 8’ = 6,=0. Consider some r > 0, some M > 0 such that ¢/ [4g{M)] < r and
g(M) > 0. Let (u,(w),x,(w)) be some realization for which (1) holds for all ¢
with |¢| s 7 and for which ¢/4 < |u,(w)| < ¢/2 and | % (w)| > M. Choose 8 =
¢/[4g(x,(w))] and observe that for this choice 0 <|6| =< r. Utilizing (2) it is
readily seen that condition (1) implies |g(z,(w),8) — g(2(w),8")| = | |4, (w) —
/4] = |u(w)]|s(|x (@) |) = (c/4)s(|x(w)|) s B,(z(w))h(c/|4g(x,(w))]) and
hence ¢, < B,(z,(w))h(c/|4g(x(w))|) with ¢, = bc/4 observing that s is
bounded from below by b. Consequently [1/k(c/ [48 (XY 1)1 1150y Licrac it <erz)
s(1/¢,)B/(z,)1, x| >Mi (/4 < g <er2) 8.8., and therefore E[[1/h(c/|4g ()11, i >m)
P(c/4< |u,| < ¢/2) < (1/¢,)E[B,(z,)] < o. That the first factor on the L.h.s. has
to be finite follows since P(c/4< |u,| <c/2) is assumed to be positive.

Endnotes

1 We would like to thank Donald Andrews, Charles Bates, Manfred Deistler, lan Domowitz, Ronald
Gallant, Nanhua Hu, Harry Kelejian, Whitney Newey, Peter Phillips, Ching-Zong Wei, Halbert
White, and Ernest Zampelli for helpful comments. We assume responsibility, however, for any
errors. Some of the results presented in this paper were circulated earlier in Pétscher and Prucha
[15]). The present paper is both an extension and revision of this earlier paper.

2 We note that Hoadley [9] does not use his ULLN in his consistency proof, hence his consistency
result is not affected by the restrictiveness of his equicontinuity assumption. We note further that
the proofs of theorems regarding consistency in the papers by Bates, Domowitz, Levine and White
are such that Hoadley's ULLN can be replaced by some alternative ULLN. lL.e., the theorems can
be rectified and/or restored to their intended generality by use of an alternatively ULLN accom-
panied by a corresponding change in the catalogs of assumptions. For a more detailed discussion
of this issue see, ¢.g., Potscher and Prucha [15).

3 Of course, rather than to specify a set of assumptions that implies the first moment continuity condi-
tion one could maintain the latter as an assumption. It seems that the usefulness of such a result
is limited, apart from emphasizing the structure of the proof.

4 All of the subsequent conditions and results do not depend, in an essential way, on the metric struc-
ture of (O, p), but only on the metrizability of the topolegy on 8. The choice of a fixed metric
is made only for convenience.

5 We call a function measurable P-a.s. if it coincides with a measurable function on a set of P-measure
one. Clearly integrals of such functions remain well defined and every measurable function is
measurable P-a.s.. Compare also footnote 10.

6 We note that the limit on the Lh.s. of the equation in Assumption A(a) exists automatically if the
sequence (X,,) is monotonically increasing. In fact, (for general sequences (X)) the formally
weaker condition where “liminf” replaces “lim” in A(a) can always be reduced to the condition as
given in A(a) by passing to a suitable subsequence of X,,. We also note that in this paper often con-
ditions which are satisfied for X, are also satisfied for the corresponding monotonized sequence
Ky =U_, K;; e.g. Assumption A(a) holds for K, if it holds for K,

7 This also implies that f*(z,, 8, r,) and f.(2,, 8’, 7,) are P-a.s. finite, hence the Césaro-sums in
Definition 2 are P-a.s. well defined. Note that these Césaro-sums are even well defined for all w e @
if the expectations exist, are finite and if f, has as its range R, since then the range of f;* and f,.
is, respectively, RU {+o) and R U | - o0].

8 We note that also p may depend on @°. Furthermore, Theorem [ clearly remains valid if b, and A,

in Assumption C are specified as b,(w, 8°) and A, (w, 8’, 8), respectively, and not as composite func-

tions of z,.

Assumption B enters this argument also insofar as the existence and finiteness of the expectations

Eq,(z,, #), etc., is derived from that assumption.

10 Note that the existence and finiteness of Eq;. (2, 0, 74), and Eq, e (2, 8', 7;), and Edy ,(z,),

p -
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which is implicitly assumed in Assumption 4, is automatically implied by Assumption 3. Further-
more, it follows from Lemma A2 in Appendix A that under Assumptions 1 and 2(b) the P-a.s.
measurability conditions postulated explicitly and implicitly in Assumptions 3 and 4 are automatically
satisfied. Also, note that under Assumptions 1 and 2'(b) the functions d,(z,) are measurable P-a.s.,
but not necessarily measurable. By modifying d,(z,) on an appropriate w-set of measure zero, we
could always obtain a measurable function of the argument w. However, this modified function need
not be expressible as a composite function of z,. It is for this reason that we only assume P-a.s.
measurability rather than measurability,

11 For example h(x) = x?, p > 0, or h(x) = In(l+x),

12 Asit is of interest to analyze the properties of feasible GLS estimators under classical (OLS) assump-
tions, we allow for different weights for different observations in the objective function defining
the estimator, although the spread of u, is assumed not to depend on X,

13 Compare Assumption A4 in Andrews {2, p. 1467] or Remark 2 above, and observe that ¢, = qand
that the z's are identically distributed.

14 From the discussion in Andrews [2] and P8tscher and Prucha [15] it is also evident that Hoadley's
{9] ULLN does not apply to this example in general.

15 Theorem A3 in Hoadley [9] is formulated for measureble functions. Since we apply that theorem
only to a sequence of P-a.s. measurable functions, we can modify them on a common null set so
that they are measurable and then apply Hoadley’s Theorem A3 to the modified functions.
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