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Abstract
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1 Introduction

Government bailouts for financially-troubled industrial firms have been justified by policy-

makers on the grounds that they want to preserve employment, protect strategically im-

poirtant assets and maintain competition that might be weakened if the troubled firms were

liquidated. Arguments that bailouts will prevent surviving competitors from exercising sig-

nificantly greater market power were used during the rescue of defense contractor Lockheed

in 1971, the first major industrial bailout in the U.S., as well as in subsequent bailouts, such

as those of the automobile manufacturer Chrysler, and the airlines Pan-Am and Eastern.1

Surprisingly, given the controversy surrounding most bailouts, and economists’ natural inter-

est in how market structure affects outcomes, there is almost no research trying to quantify

the value of preserving competition in these settings (as discussed below, Wollmann (2014)

is an exception).

In this article, we study this type of justification in the context of the Reagan administra-

tion’s 1984 bailout of timber companies that faced bankruptcy following a slump in lumber

prices. In this case it was argued that the bailout would maintain competition in future

auctions where the government sells contracts to harvest timber on public lands. We focus

on United States Forest Service (USFS) timber auctions in California, one of the three states

(together with Oregon and Washington), that were most affected by the bailout. While many

hundreds of sawmills (mills) and logging companies (loggers) purchase timber nationally, the

bailout had potentially important effects for USFS revenues because, for a given tract, the

potential bidders are, in practice, limited to the small number of firms active in nearby

forests. A feature of how the bailout was implemented allows us to identify insolvent firms

that would have been particularly likely to exit without assistance, and we estimate a model

to quantify how much USFS revenues in subsequent auctions would have changed if these

insolvent firms had exited.

As well as providing one of the first empirical evaluations of some of the effects of an

industrial bailout, a central contribution of our paper comes from our use of an empirical

model of competition in auctions where bidders are asymmetric (mills and loggers), and

1Lockheed: Secretary of the Treasury, John Connally, noted that “You can’t have a corporate organization
of [Lockheed’s] type go under without seriously and adversely affecting future competition among suppliers
to the defense establishment” (Senate, 92nd Congress 1st Session (1971)). See also Markusen (1997) and
Newhouse (1982). Chrysler: Rep. John LaFalce (D-NY) said “I think we should consider...the preservation of
competition within the automobile industry” (House of Representatives, 96th Congress 1st Session (1979)).
Pan-Am and Eastern: the House Aviation subcommittee hearings included “extensive discussion of actions the
government” could take to “preserve competition” in the industry. It was decided that the government needed
the existing carriers to survive so they could remain “competitors to preserve the benefits of deregulation.”
(House of Representatives, 96th Congress 1st Session (1979)). See also Borenstein (1992) and Mathiesen
(1995). Prior to Lockheed’s 1971 bailout, assistance to private firms in the US was associated with wars and
economic emergencies (Ritholtz (2009)).
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entry is both endogenous and potentially selective. Endogeneity of entry arises when firms

face costs of participating in an auction that are large enough to discourage at least some

potential entrants from participating. As entry decisions are strategic substitutes, when

some potential bidders are eliminated, as in our counterfactuals, the remaining firms will be

more likely to enter, reducing any losses to the seller. By selective entry, we mean that these

new (marginal) entrants may tend to have lower values for the timber being sold, and so be

less valuable to the seller, than inframarginal entrants, who would want to enter auctions

whether or not they faced competition from the bailed-out firms. As we discuss below, the

degree of selection can have important effects on the value of additional potential bidders in

an auction setting.

We model auctions with endogenous and selective entry by considering a two-stage auc-

tion game in an independent private values (IPV) environment. In the first-stage potential

bidders receive noisy, private signals about their values for the object being sold, before tak-

ing simultaneous decisions about whether to enter the auction, which involves incurring a

common entry cost. In the second-stage, entrants learn their true values and submit bids

in a second-price auction.2 In equilibrium, a firm will enter when it receives a high enough

signal and the degree of selection, i.e., the extent to which inframarginal entrants tend to

have higher values than non-entrants, will depend on the precision of the signals. In this

way, our model can capture, as polar cases, two models that have been widely used in the

theoretical literature and which also assume a common entry cost: the Samuelson (1985)

(S) model, where each potential entrant knows its value before deciding whether to enter,

so selection is perfect, and the Levin and Smith (1994) (LS) model, where each potential

entrant only knows the distribution from which its value is drawn.

We view our model as a reasonable representation of the way that timber auctions actually

work. A firm wishing to submit a bid conducts a survey (‘cruise’) of the tract in order to

evaluate how much the timber on the tract is worth to the firm. A cruise, which can involve

sending a team to the forest for several days, implies a non-trivial cost to participating in

the auction, and we think of the entry cost in our model as being primarily the cost of

acquiring information. Consistent with the IPV assumption, valuations may differ across

firms, as firms may have heterogenous capacities to process different types of timber and in

the contracts that they have to sell cut or processed timber to customers. However, even

before they conduct a cruise, firms are likely to have some information about their private

values through their knowledge of local forests and their own contracts and capabilities, as

2As discussed in detail below, our data comes from open-outcry auctions. We estimate the model assuming
that the outcome of an open-outcry auction involves the entrant with the highest value winning the auction
at a price equal to the value of the second-highest bidder.
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well as the information on the tract published by the USFS when announcing the auction.3

We estimate our model using a sample of USFS auctions held in California from 1982 to

1989. Our estimates imply moderately selective entry into auctions, consistent with firms

having some private information on their values but also collecting valuable additional infor-

mation by performing cruises. Estimated entry costs are high enough that many firms that

believe they have low values, in particular logging companies, choose not to enter, and they

are broadly consistent with estimates of how much cruises actually cost.

In our counterfactuals, we remove the firms that were identified as being insolvent at

the time of the bailout, but which we see as active in our data, as potential entrants from

a set of auctions that were held after the bailout took place.4 We predict that without

these firms, USFS revenues would have fallen by an average of just over 11%. This can be

seen as a fairly large effect as, for the average auction, we are only reducing the number of

potential bidders from nine to seven, and in many settings, IO economists believe that three

or four firms are sufficient to generate quite competitive outcomes, at least in the absence

of collusive behavior.5 It is also large relative to how much we predict that the USFS could

have increased its revenues, without the bailout, by using an optimal reserve price (2.2%).

This large effect reflects three features of our model, the data and our estimates. First,

most of the insolvent firms were mills, and our estimates show that mills have, on average,

much higher values than logging companies, making them more valuable to the USFS. Sec-

ond, in common with other studies of timber, we find that, within bidder type, values for

tracts are heterogenous, so that adding an additional competitor can increase the expected

first- or second-highest order-statistics of values significantly. This result holds even though

we allow for cross-type asymmetries and cross-auction unobserved heterogeneity in values.

Finally, selective entry plays an important role, as firms that enter auctions when the insol-

vent firms are removed, tend to have relatively low values and so cannot offset the drop in

revenues very much. As discussed below, an LS-style common-entry cost model without no

selection could predict that the USFS’s revenues would increase when the number of potential

entrants was reduced.

One should view our work as providing a partial analysis of the effects of the bailout,

3The information released by the USFS, unlike some state agencies, does not contain information about
tree diameters, which is relevant information for mills that have machinery that can process particular sizes
of tree.

4We only consider auctions where, once we remove the insolvent firms, there would still be two potential
entrants. We are therefore ignoring auctions where the bailout prevented monopsony, and this will tend to
give us smaller estimates of the value of preserving competition.

5For example, Bresnahan and Reiss (1991) find that two or three firms generate most of the effects of
competition in a number of service industries. Mergers are also now rarely challenged unless the merger will
reduce the number of significant competitors below four (Coate and Ulrick (2005)). Of course, these results
refer to the number of actual competitors (entrants), not the number of potential entrants.
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focusing on the revenue effect of changing the set of potential bidders in USFS auctions. We

rely on several strong assumptions that could be relaxed in future work. In particular, we

assume that value distributions, and other structural parameters, would be the same with and

without the bailout. In reality, the bailout would have affected lumber prices and, therefore,

the willingness of firms to pay for timber. As lumber prices are set in a much larger national

market, quantifying the size of the effect on values would require estimates of the supply-

elasticity of the rest of the domestic industry and imports, estimates of how much the bailout

might have affected the exit decisions of solvent firms and a model of how expectations of

future lumber prices would affect the bidding behavior of a mill or logger.6 As a robustness

check we show that it would have taken increases in surviving mill values of more than 10%

to offset the effect of the removal of the insolvent firms on USFS revenues. We also do

not try to account for the fact that, even if the insolvent firms had been liquidated without

the bailout, the plant and equipment of the liquidated firms, might have been purchased

by competitors or new entrants, although a long-run trend where the number of mills was

falling suggests that de novo entry may have been unlikely.7 The USFS could also have

responded to firm exit by changes in strategy more radical than changing its reserve price,

such as changing the number of auctions held, their location, or changing the amount of

information provided to bidders. Finally, we do not try to quantify the effects of the bailout

on other sellers of timber, including the federal Bureau of Land Management, state agencies

and private landowners, or local economies, in many of which the timber industry may have

accounted for a substantial share of employment.8

Our paper is related to several literatures. Industrial bailouts have received little atten-

tion in the academic literature, even though they are often justified by economic arguments

such as the value of maintaining competition. Wollmann (2014) estimates a repeated two-

stage entry model and uses it to predict how eliminating GM and Chrysler would have

affected the commercial vehicle industry, taking into account that rival firms would likely

have expanded their product portfolios. Wollmann’s question is similar to ours, but as he

assumes that unobserved product qualities and marginal cost shocks are unknown to firms

6In the early 1980s about one-third of the U.S. softwood harvest came from the Pacific coast (Adams,
Hayes, and Daigneault (2006)), a share that subsequently declined as production transferred to the southern
US.

7For example, the number of mills in California fell from 216 in 1968, to 142 in 1976 and 101 in 1982.
Even with the bailout, the decline continued so that there were only 93 mills in 1988. There was an even
more rapid decline in the 1990s when the courts prohibited logging in the habitats of the Northern Spotted
Owl (Morgan, Keegan, Dillon, Chase, Fried, and Weber (2004)).

8Adams, Hayes, and Daigneault (2006) estimate that for the Pacific Southwest region, including California,
national forests contributed 37.5% of the timber harvest in 1982, with 2.4% from other government forests,
52.3% from forests owned by industry and 7.8% from non-industrial private timberlands. A 25% share of
USFS revenues was also distributed to state governments (U.S. GAO (1995)).
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when they take entry decisions, his empirical approach effectively assumes no selection, like

almost all of the entry literature in non-auction settings. In contrast, allowing for selection

is central to our model.9

Bulow and Klemperer (1996) show that additional competition (i.e., an additional bidder)

is more valuable to a seller than an optimal auction design, in an IPV setting with symmetric

bidders and exogenous entry. In this case, the optimal design is simply a standard auction

with an optimal reserve price. When bidder entry is endogenous, there are no similar general

results, and the value of both additional potential bidders and different designs will depend

on the way that entry is modeled. One standard approach, following LS, assumes that there

is a common entry cost and that potential bidders have no private information about their

values when they take their entry decisions. When bidders are symmetric, these assumptions

lead to a mixed strategy symmetric equilibrium in the entry game, and when equilibrium

entry probabilities are strictly less than one (and above zero), the model has the feature

that expected revenues decline in the number of potential entrants.10 When bidders are

asymmetric, as we want to allow in our setting, the LS assumptions imply that at most one

type should be mixing over entry in a type-symmetric equilibrium. Given how we define the

set of potential entrants, this assumption would be inconsistent with our data as we observe

partial entry by both mills and loggers in many auctions.11 These results can change when

one allows either for potential bidders to have some information on their values (selection), as

we do in this paper, or one allows for potential bidders to draw idiosyncratic entry costs (e.g.,

9To be precise, Wollmann’s approach assumes that products that only enter when GM and Chrysler are
eliminated do not have systematically lower unobserved quality or higher costs than those that enter when
GM and Chrysler are competitors. Standard entry models, such as the Berry (1992) model for airline markets,
allow for firms to receive unobserved shocks to their payoffs prior to taking entry decisions, but they assume
that these shocks do not affect the profits of other firms, so they should be interpreted as affecting sunk or
fixed costs, rather than product quality or marginal costs. Similarly, dynamic entry models (e.g. Ericson and
Pakes (1995)) assume that potential entrants are symmetric apart from i.i.d. shocks to their entry costs. In
our model, signals are correlated with a bidder’s value and the selected value of an entering bidder should
affect other bidders’ payoffs. In Roberts and Sweeting (2012) we estimate a model of entry into airline
markets that allows for selection on entry costs and product qualities.

10A precise statement of Levin and Smith’s (1994) result is that when the seller sets an optimal reserve
price, expected revenues will increase in the number of (symmetric) potential bidders up to a number n∗,
the highest number such that all bidders will choose to enter for sure, before declining monotonically above
n∗ (the corollary to their Proposition 9). This reflects the lack of the coordination in the entry process
when potential entrants make simultaneous, independent entry decisions. In particular, as the number of
potential entrants rises, the probability that a given player enter falls, and the probability that no bidders or
a very small number of bidders enter rises, which reduces the seller’s revenues even if the expected number
of entrants increases.

11In estimating an LS model using data very similar to ours, Athey, Levin, and Seira (2011) assume that
all potential mill entrants enter, so that only loggers mix. In an LS model with two asymmetric types,
removing potential bidders of a high-value type that enters for sure would tend to hurt the seller even if the
lower-value type mixes over entry.
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Moreno and Wooders (2011)).12 We assume that entry costs are common across potential

bidders as all timber companies have access to the same cruising technologies, while it also

seems plausible that they should have some information on their values prior to performing

a cruise.13

Many papers have empirically estimated auction models with endogenous entry, typically

under the assumption that there is no selection.14 Li and Zheng (2009) estimate an S-type

of entry model with selection, and compare its fit to an LS model with heterogenous entry

costs and an LS model with a common entry cost, finding that the last model fits their data

on bidding for highway mowing contracts the best. Marmer, Shneyerov, and Xu (2013) and

Gentry and Li (2014) consider the identification of models with imperfect selection based

a generalization of the signal structure that we consider. We estimate a parametric model,

using a method based on importance sampling (Ackerberg (2009)), which facilitates allowing

for cross-auction unobserved heterogeneity in both bidder values, the degree of selection and

entry costs.15 In related work, Roberts and Sweeting (2013) and Bhattacharya, Roberts, and

Sweeting (2014), we consider the value of alternative auction designs, such as a sequential

bidding procedure and a two-stage entry rights approach, when entry is partially selective. In

the current article, we use a partially selective model to find the value of additional potential

bidders, and while we are motivated by the bailout that affected our data, one can also see

the number of potential bidders as another margin that the seller could try to affect through

its choice of sale strategy.

There is also a significant literature that has specifically studied timber auctions in several

countries. We follow this literature in assuming that an IPV model is appropriate for the

12Samuelson (1985), Menezes and Monteiro (2000) and Li and Zheng (2009) show that in the S model,
where potential bidders know their values when deciding whether to enter, the relationship between the
number of potential bidders and expected revenues is distribution/parameter dependent. Li and Zheng
(2009) identify the forces that determine how an increase in the number of potential bidders affects revenues
in models with endogenous entry. In particular they show how a “competition” effect increases revenues
through more aggressive bidding, while an “entry effect”, where each firm may become less likely to enter
when it faces more competition, will decrease revenues. In our setting, the relationship between the number
of potential bidders and revenues will also depend on the asymmetry between bidder types and the degree
of selection.

13See Sweeting and Bhattacharya (forthcoming) for more discussion comparing models with selection and
models with variation in entry costs.

14See, for example, Athey, Levin, and Seira (2011) and Athey, Coey, and Levin (2013), who examine timber
auctions using similar data, Bajari and Hortaçsu (2003), Palfrey and Pevnitskaya (2008), Krasnokutskaya
and Seim (2011), Li and Zhang (2015), Bajari, Hong, and Ryan (2010) or Ertaç, Hortaçsu, and Roberts
(2011).

15We have used this estimation approach in recent work on auctions (Roberts and Sweeting (2013) and
Bhattacharya, Roberts, and Sweeting (2014)) and on modeling entry and competition in airline markets
(Roberts and Sweeting (2012)). Other applications of the method include Hartmann (2006), Hartmann and
Nair (2010) and Wang (2015) who use these methods to study consumer dynamic discrete choice problems
and Bajari, Hong, and Ryan (2010) who use a related method to analyze entry into a complete information
entry game with no selection.
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auctions in our sample (e.g., Baldwin, Marshall, and Richard (1997), Brannman and Froeb

(2000), Haile (2001) and Athey, Levin, and Seira (2011) (ALS hereafter)), and we allow

for unobserved cross-auction heterogeneity in values which several papers (e.g., ALS, Li

and Zheng (2009)) have shown to be important. Many papers in this literature estimate

the seller’s optimal reserve price (Mead, Schniepp, and Watson (1981), Mead, Schniepp,

and Watson (1984), Paarsch (1997), Haile and Tamer (2003), Li and Perrigne (2003) and

Aradillas-Lopez, Gandhi, and Quint (2013)). Our estimates indicate that the potential

benefit to the seller of using an optimal reserve is quite small, and, in particular, much lower

than the value of additional potential bidders, in the context of a model with selective entry.

The paper proceeds as follows. Section 2 describes the 1984 timber bailout in more detail.

Section 3 presents our model of entry and competition in USFS timber auctions. Section 4

introduces the data. Section 5 describes our estimation method and discusses identification.

Section 6 presents our structural estimates. Section 7 examines how much USFS revenues

would have fallen if insolvent firms rescued by the bailout had exited the industry. Section

8 concludes. The Appendices contain details of our approach to dealing with the model’s

multiple equilibria and Monte Carlo studies of our estimation method.

2 USFS Auctions and The Federal Timber Contract

Payment Modification Act of 1984

For over forty years, federal and state agencies have used auctions to sell contracts for har-

vesting timber on public land to private companies. Bidders in these auctions can be classified

(e.g. ALS) as either mills or loggers, depending on whether they own processing facilities,

with loggers reselling cut-timber to mills. When the USFS announces a sale, it provides its

own estimate of the volume of each species of timber on the tract as well as estimated costs

of removing and processing the timber, together with a reserve price. A firm must indicate it

is willing to pay the reserve to participate in the auction. After the sale is announced, each

bidder can perform its own private cruise of the tract to assess its value, and people in the

industry have told us that firms will not bid without performing a cruise. These cruises can

be informative about the tract’s volume, species make-up and timber quality. The auction is

held a few weeks after the sale is announced. The USFS uses both open-outcry and sealed-bid

auctions, with the mix of formats varying over time. When we estimate our model we will

use data on open-outcry auctions.

A feature of timber contracts prior to the bailout was that winning bidders only paid
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the seller when the timber was cut.16 As contracts were also quite long in duration (many

contracts in California lasted more than five years), this provided an incentive for firms to

speculate by delaying the harvest when prices were expected to rise. Of course, this also

meant that a winner would face large losses if lumber prices fell as, even if it returned the

tract to the USFS, it would be liable for the difference between their bids and the winner’s

bid when the tract was re-auctioned.

Figure 1 shows the time series of quarterly prices (in 1983 $s per thousand board feet)

for processed Douglas Fir, a common California lumber product (Sugar Pine and Hem Fir

show similar patterns), from 1975 to the end of 1988, together with the average and 75th

percentile of auction sale prices. We also show the average reserve price of USFS auctions in

California for the period in which these are consistently reported in our data.

Both auction and lumber prices in California rose significantly in the late 1970s, a period

that has been termed the “timber bubble” by Mattey (1990), who attributes this increase to a

mix of speculative bidding and overly-optimistic USFS projections of construction demand for

lumber.17 Some evidence for speculation comes from the increasing difference between average

sale prices and auction reserve prices, which, under the so-called “residual value” method,

were based on the difference between the USFS’s estimate of what the timber was worth at

current prices and its estimates of harvesting costs.18 Lumber prices fell dramatically in 1980

and 1981 when construction demand plunged as the Federal Reserve rapidly increased interest

rates, in an attempt to reduce inflation (the average interest rate on a 30-year mortgage was

18.5% in November 198119 and housing starts in 1981 were 38% below their 1979 level20).

Auction prices fell some months later than lumber prices, possibly because bidders, especially

those without their own timberland, wanted to secure access to timber in case lumber prices

recovered (Mattey (1990)).21

Mattey describes some firms faced losses of over $200/mbf on their existing federal con-

tracts when prices fell, with industry-wide losses exceeding $2 billion (Wiegner (1984)). Con-

16In response to the crisis of the early 1980s, new contracts required winners to make both an initial
downpayments and annual payments to the USFS (see https://www.law.cornell.edu/uscode/text/16/618,
accessed July 21, 2015).

17Expectations about rising construction demand were coupled with expectations of falling softwood har-
vests in the Pacific Northwest due to its increased reliance on younger, smaller trees. U.S. GAO (1978), for
example, placed weight on an Oregon State University study that predicted a six-fold increase in softwood
prices between 1976 and 2000.

18See Baldwin, Marshall, and Richard (1997) for a detailed discussion of the method. The level of the
reserve price was also constrained by a policy that 85% of auctions should result in a sale.

19http://www.freddiemac.com/pmms/pmms30.htm (accessed July 13, 2015)
20http://www.huduser.org/portal/periodicals/ushmc/summer12/USHMC 2q12 historical.pdf (accessed

July 13, 2015)
21As James Geisinger, a representative for one firm, stated “there are basically two ways to go out of

business in our industry. One is to have no timber to process, and the other is to have timber that may be
too costly to process.” (Mattey (1990), pg. 32)
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Figure 1: Prices of lumber products and USFS winning bids and reserve prices in California over

time. Both are measured in $/mbf, in 1983 dollars. The vertical line is the quarter the Act was

passed. The Douglas Fir prices come from Random Lengths Publishing Inc. The prices are quarterly

averages of the prices, net f.o.b., received by surveyed mills in California. 2x4 indicates the type

of lumber, Std & Btr is the wood grade, and 8/20’ means that the shipments contained random

lengths ranging from 8 to 20 feet. The USFS auctions that we use to construct the average sale

price and the difference between sale price and reserve price exclude set-asides and salvage sales.

Average reserve prices before 1978 are not shown due to a large number of missing values in our

data.

sequently, the affected firms lobbied the government for relief from these contracts, which

was attractive as, in bankruptcy, the government might “be lucky if it ended up collecting

25 cents on the dollar for defaulted contracts” (House of Representatives (1984)).

In 1983 the government moved to lengthen existing contracts (Federal Register 48 (1983)),

but, when it appeared that this would not prevent troubled firms from shutting down (Rea-

gan (1984)), Congress, with the support of the USFS, passed the Federal Timber Contract

Payment Modification Act (HR 2838), which was signed into law on October 16th, 1984.

The bill was sponsored by congressman from western states, including California, partly

on the grounds that it would provide for “enhanced competition” (Senate (1984)) in future

government auctions.22

22For example, Rep. Al Swift (D-WA) argued “Failure of these...companies will result in the increased
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The Act allowed firms to buy out their existing contracts, returning tracts to the USFS at

rates much lower than the prices in the original contracts (to avoid further depressing prices,

the USFS spread out the sale of the returned tracts over a seven year period). Buyout rates

were structured to give the most relief to firms in the most financial trouble. Firms with losses

above their net book value could buy out at a rate of $10/mbf. Firms with losses between

50 and 100 percent of their net book value, could buy out at the maximum of $10/mbf and

10 percent of the contract overbid (the original price less the USFS’s estimate of the value of

the remaining merchantable timber on the tract). Firms with smaller losses could buy out

at the maximum of $10/mbf and a percentage of the overbid that varied with the volume

being bought out.23 In total, a mixture of local firms and large national timber companies,

including Weyerhaueser (1984 net book value of $3.3 billion) and the timber subsidiary of

Burlington Northern ($4.4 billion) paid $172 million (1984 dollars) for relief from 1,625 USFS

contracts covering 9.7 billion board feet of timber that were originally priced at $2.5 billion

(U.S. GAO (1989)).24 Some firms’ financial positions were transformed dramatically by the

bailout. For example, Bohemia Corp. paid only $2 million to lower losses of $138 million

(144% of its net book value) to $63 million (firm-specific numbers are taken from Wiegner

(1984)).

In data provided to us by Doug MacDonald of the Timber Data Company, which helped

the government determine buyout rates, we observe the rate paid by each firm that bought

out of contracts. We define the set of firms that likely faced insolvency which we will assume

would have exited without the bailout in our counterfactuals as those that paid the minimum

buyout rate of $10/mbf. The average buyout rate of the other firms in our auction data that

participated in the bailout is $41.90/mbf.

Figure 2 gives a sense of the scale of the bailout by indicating which mills in northern

California, where most of our auction data comes from, were owned by firms that participated

in the bailout. Roughly half of all mills participated and we classify around half of these

participants as facing insolvency. The figure also shows the location of post-bailout (i.e., those

taking place after October 1984) auctions where at least one participant mill submitted a

bid. These auctions account for over 83% of the post-bailout auctions in our data, and 51%

of these auctions were actually won by an insolvent mill.25

concentration of the timber industry, which will lead to decreased competition on future contract bids”
(House of Representatives (1984)).

23For the first 125 million bf, this percentage was 15%. The percent increased in 5 percentage point
increments for every 25 million bf over that amount (Muraoka and Watson (1986)).

24Under the same legislation, firms also paid $11.9 million to buy out of 279 Bureau of Land Management
contracts originally priced at $436 million (U.S. GAO (1989)).

25These are only a sample of the USFS auctions in this region of California during this time period since our
sample excludes first price auctions and auctions with some extreme features (like very high or low acreage).
We give details on how we form our data sample in Section 4.
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Figure 2: The figure shows the location of mills in Northern California (by participation in
the buyout) and of all auctions held after October 1984 where at least one participating mill
bid.

Of course, the effect of removing insolvent firms should depend on how many other firms

might enter auctions in their place. A key feature of the data is that the firms typically only

participate in auctions in quite limited geographic areas, so that the set of potential entrants

is usually limited to firms that are active in the surrounding forests. This is illustrated in

Figure 3 which shows the set of auctions entered by four specific mills that participated in the

bailout. Given this pattern, and the mill and auction locations in Figure 2, the elimination of

insolvent mills would clearly have reduced the number of mill potential entrants significantly

in a substantial number of auctions. Fewer loggers bought out contracts, but as we show

below, loggers tend to have much lower values for timber, so that the presence of loggers as

potential bidders would have been largely unable to offset losses to the USFS had insolvent

mills exited.
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Figure 3: The figure shows the location of four specific mills that bought out of contracts
and of auctions held after 1984 that these mills bid in.

3 Model

We now present the model that we estimate and use to assess the effects of removing insolvent

firms from post-bailout auctions. As mentioned above, we focus on open-outcry auctions and

follow the literature in assuming that an IPV model is appropriate.26

Consider an auction of timber tract a with Nτa potential bidders (firms) of observable

type τ with τ types in total. In our setting τ = 2 and the types are mills and loggers.

Type τ firm values V (in $/mbf) are i.i.d. draws from a distribution F V
τa(V ) (with associated

pdf fVτa(V )), which is continuous on an interval [0, V ]. We set V = $500/mbf, which is

significantly above the highest price observed in our data. The distribution can depend

26We use data from 1982-1989 when the ability of winners to resell their contracts, which can introduce a
common value element, was limited (see Haile (2001) for an analysis of timber auctions with resale).
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on the characteristics of the tract being sold, although the support is fixed. Both the Nτas

and the fVτa(V )s are common knowledge to all potential bidders. In practice, we will assume

that the fVτa(V )s will be proportional to the pdfs of lognormal distributions with location

parameters µτa and squared scale parameters σ2
V a on the [0, V ] interval, and, as a labeling

convention, that µ1a > µ2a.

Firms play a two stage game. In the first stage, each firm independently decides whether

to enter the auction, which requires incurring an entry cost Ka. Participation in open-outcry

auctions is costly partly because bidders need to attend the auction, but in our context

we think of most of the cost as coming from the cost of performing a cruise of tract, and,

consistent with industry practice, we assume that firms cannot bid without incurring Ka.

Prior to taking an entry decision, each firm i receives an independent, private information

signal si about its value, where si = vizi, zi = eεi , εi ∼ N(0, σ2
εa). A firm who pays the

entry cost finds out its true value vi, since at this point the firm will have performed its own

cruise. It is possible that a bidder’s realized value is below the USFS’s announced reserve

price, Ra. For reasons connected with equilibrium selection, the parameters σ2
V a, σ

2
εa and Ka

are assumed to be common across the types.

In the second-stage, entrants with values above Ra submit bids in a second price auction.

If any bids are submitted the object is sold to the highest bidder at a price equal to the

maximum of the second highest bid and the reserve price. Although the auction format is

modeled as second price sealed-bid, equilibrium strategies would be the same in an English

button auction as we assume that bidders have independent private values. In Section 5

we will explain how we apply our model to data from an open-outcry auction. We assume

non-collusive bidder behavior in the second-stage because, although there has been some

evidence of bidder collusion in open-outcry timber auctions, ALS find strong evidence of

competitive bidding in a similar sample of open-outcry auctions in California. Of course,

collusion might have been sustained if the insolvent firms had exited the industry, and, in

this case, our predictions may substantially underestimate how much USFS revenues would

have fallen without the bailout.

3.1 Equilibrium

We assume that players use strategies that form type-symmetric Bayesian Nash equilibria,

where “type-symmetric” means that every player of the same type will use the same strategy.

In the second stage, entrants know their values so it is a dominant strategy for each entrant to

bid its value. In the first stage, players take entry decisions based on what they believe about

their value given their signal. By Bayes Rule, the (posterior) conditional density gτa(v|si)

14



that a player of type τ ’s value is v when its signal is si is

gτa(v|si) =

fVτa(v) 1
σεa
φ

(
ln( si

v )
σεa

)
∫ V

0
fVτa(x) 1

σεa
φ

(
ln( si

x )
σεa

)
dx

(1)

where φ (·) denotes the standard normal pdf.

The weights that a player places on its prior and its signal when updating its beliefs

about its true value depend on the relative variances of the distribution of values and ε

(signal noise), and this will also control the degree of selection. A natural measure of the

relative variances is σ2
εa

σ2
V a+σ2

εa
, which we will denote αa. If the value distribution were not

truncated above, a player i’s (posterior) conditional value distribution would be lognormal

with location parameter αaµτa + (1− αa)ln(si) and squared scale parameter αaσ
2
V τa.

The optimal entry strategy is a type-specific threshold rule where a firm enters if and

only if its signal is above a cutoff, S ′∗τa.
27 S ′∗τa is implicitly defined by the zero-profit condition

that the expected profit from entering the auction of a firm with the threshold signal will be

equal to the entry cost:∫ V

Ra

[∫ v

Ra

(v − x)hτa(x|S ′∗τa, S ′∗−τa)dx
]
gτa(v|s)dv −Ka = 0 (2)

where gτa(v|s) is defined above, and hτa(x|S ′∗τa, S ′∗−τa) is the pdf of the highest value of other

entering firms (or the reserve price Ra if no value is higher than the reserve) in the auction.

A pure strategy type-symmetric Bayesian Nash equilibrium exists because optimal entry

thresholds for each type are continuous and decreasing in the threshold of the other type.

With multiple types, there may be several type-symmetric equilibria, where different

types of firms have different entry thresholds. The entry literature has considered various

ways of dealing with multiplicity. The approach we take here is to assume that σva, σεa

and Ka are the same across the types and to assume that firms play an equilibrium where

S ′∗1a < S ′∗2a (the type with higher mean values has the lower threshold). With two types of

bidders, our parameter restrictions imply that there is always exactly one equilibrium of this

type. Appendix A explains the restrictions in more detail.28

27A firm’s expected profit from entering is increasing in its value, and because values and signals are
independent across bidders and a firm’s beliefs about its value is increasing in its signal, a firm’s expected
profit from entering is increasing in its signal. Therefore, if a firm expects the profit from entering to be
greater (less) than the entry cost for some signal s, it will also do so for any signal s̃ where s̃ > s (s̃ < s). As
it will be optimal to enter when the firm expects the profit from entering to be greater than the entry costs,
the equilibrium entry strategy must involve a threshold rule for the signal, with entry if s > S′∗τa.

28We choose this approach for several reasons. First, it is computationally simple to implement and it
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It is computationally straightforward to solve for the equilibrium entry thresholds given

our selection rule. Specifically, we use a standard non-linear equation solver (in MATLAB)

to solve the zero profit conditions (Equation (2)) subject to the constraint that S ′∗1a < S ′∗2a.

The integrals in Equation (2) are evaluated on a 10,000 point grid, which runs from 0.01 to

V .29

4 Data

We estimate our model using a sample of USFS open-outcry auctions from California (USFS

Region 5), where many firms participated in the bailout.30 From the set of all such auctions

held between 1982 and 1989, we drop small business set-aside auctions, salvage sales and

auctions where data on USFS estimated costs are missing. We also remove auctions with

extremely low or high acreage (outside the range [100 acres, 10,000 acres]), volume (outside

the range [5 hundred mbf, 300 hundred mbf]), USFS estimated sale values (outside the range

[$184/mbf, $428/mbf]), maximum bids (outside the range [$5/mbf, $350/mbf]) and those

with more than 20 potential bidders (which we define below). We keep auctions that fail to

sell due to no bidder being willing to meet the reserve price. We are left with 887 auctions.

Note that our sample period coincides with auction and lumber prices being quite stable

after their large declines in 1980 and 1981.

Table 1 shows summary statistics for our sample. Bids are given in $/mbf (1983 dollars).

For each auction, we observe the names of firms that submit bids. For any auction, we define

the set of potential entrants as the observed bidders plus any firm that submitted a bid in

any auction for a tract within 50 km of the tract in question over the next month. As

98% of observed bidders also bid in another auction within 50 km in the next month, this

approach should capture almost all of the firms that would have been perceived as potential

entrants by the USFS or auction participants.31 The median number of potential bidders in

ensures that our fully parametric model is point identified, which greatly simplifies the counterfactuals.
Second, the parameter restrictions are fairly reasonable ex ante (for example, it is likely to cost mills and
loggers similar amounts to survey a tract) and, when we make them, we are still able to fit the entry
probabilities of both types and revenue outcomes quite well. Finally, in practice, it is clear from the data
that mills are more likely to enter auctions, consistent with S′∗1 < S′∗2 , and that they have significantly
higher average values than loggers, as they bid more and win more often. When the difference in values
is large enough, only one equilibrium, that has the form that we assume, will exist, so that imposing this
assumption ex ante is unlikely to be restrictive. Indeed, at the parameters we estimate multiple equilibria
are not supported in any of the auctions (based on drawing 10 simulated auctions for each of the auctions in
our data).

29The tolerances for solving the non-linear equations are set equal to 1e-13. Bhattacharya, Roberts,
and Sweeting (2014) extend the methodology to first-price auctions where it is also necessary to solve for
equilibrium bid functions.

30The data was generously provided to us by Susan Athey, Jon Levin and Enrique Seira.
31An alternative approach would be to use geographic areas, such as counties. However, as Figure 3 shows,
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an auction is eight (mean of 8.9), evenly split between mills and loggers.

The median number of firms that indicated that they were willing to pay at least the

reserve price is four (mean of 3.9), although some other firms may have incurred the entry

cost and found out that their values were low. We account for this possibility in estimation.

More mills than loggers tend to indicate that they will meet the reserve price (medians of

three and one respectively), and, on average, mills submit bids that are 20.3% higher than

those of loggers. Loggers win only 15% of the auctions in our sample. As suggested by ALS,

mills may have higher values due to cost differences or imperfect competition that loggers

face in selling harvested timber.32 Note that in 54.5% of auctions where we observe at least

one logger participating, not all of the mill potential entrants participate. As mentioned

in the Introduction, an LS-type model with common entry costs would predict that if any

loggers (low-value type) enter, then all of the mills (high-value type) must enter. The fact

that this is inconsistent with our data provides one rationale for estimating a model that

allows for selection.

Further suggestive evidence comes from estimation of a two-step Heckman selection model

(Heckman (1976)) using data on the highest bid submitted by each firm during an auction.

With no selection, an entrant’s value should be a random draw from the distribution of

values in the population of potential bidders, whereas if there is selection, we would expect

entrants to have higher values as S ′∗τ rises, for example when there are more potential entrants.

The second step regression uses an entrant’s highest bid, as a proxy for its value, as the

dependent variable, with tract characteristics, year dummies and a dummy for whether the

bidder is a mill or a logger as controls, together with the Inverse Mills Ratio from a first

step probit regression of the entry decision of each potential entrant, with the same controls

plus a flexible polynomial of the number of other potential mill and logger entrants.33 The

identifying exclusion restriction is that potential competition affects a bidder’s decision to

enter an auction, but has no direct effect on values.

The second step results appear in column (2) of Table 2, with column (1) showing the

estimates when we do not include the Mills Ratio. The positive and significant coefficient

on the Inverse Mills Ratio is consistent with bidders being a positively selected sample of

potential entrants. In addition, comparing the coefficient on LOGGER across the columns

illustrates that selection partially masks the difference between logger and mill values. This

while bidding activity is clustered, many bidders participate in auctions in multiple counties.
32The difference between mill and logger entry rates could also be explained by a difference in entry costs

for a given auction, which we assume away. In our data, the fact that a logger is less likely to win conditional
on participating in the auction (conditional probability 0.155 vs. 0.279 for mills) suggests that loggers do not
have higher entry costs, and in practice all firms have access to the same cruising technology.

33In an open-outcry auction some bidders may drop out below their values and as entrants we are using
the subset of firms that actually participated in the auction.
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Variable Mean Std. Dev. 25th-tile 50th-tile 75th-tile N
POTENTIAL ENTRANTS 8.93 5.13 5 8 13 887
LOGGER 4.60 3.72 2 4 7 887
MILL 4.34 2.57 2 4 6 887
INSOLVENT LOGGER 0.42 0.58 0 0 1 887
INSOLVENT MILL 1.64 1.35 1 1 2 887

FIRMS WILLING TO MEET THE
RESERVE PRICE 3.86 2.35 2 4 5 887
LOGGER 0.99 1.17 0 1 1 887
MILL 2.87 1.85 1 3 4 887
INSOLVENT LOGGER 0.24 0.45 0 0 0 887
INSOLVENT MILL 1.18 1.04 0 1 2 887

WINNING BID ($/mbf) 86.01 62.12 38.74 69.36 119.11 847
BID ($/mbf) 74.96 57.68 30.46 58.46 105.01 3,426
LOGGER 65.16 52.65 26.49 49.93 90.93 876
MILL 78.36 58.94 32.84 61.67 110.91 2,550
INSOLVENT LOGGER 59.44 40.71 27.80 50.08 83.00 210
INSOLVENT MILL 77.26 58.55 31.02 60.99 108.87 1,050

AUCTION RESULTS IN SALE 0.95 0.21 1 1 1 887
LOGGER WINS 0.15 0.36 0 0 0 887
MILL WINS 0.80 0.40 1 1 1 887
INSOLVENT LOGGER WINS 0.08 0.27 0 0 0 887
INSOLVENT MILL WINS 0.42 0.49 0 0 1 887

RESERVE ($/mbf) 37.47 29.51 16.81 27.77 48.98 887
SELL VALUE ($/mbf) 295.52 47.86 260.67 292.87 325.40 887
LOG COSTS ($/mbf) 118.57 29.19 99.57 113.84 133.77 887
MFCT COSTS ($/mbf) 136.88 14.02 127.33 136.14 145.73 887
SPECIES HHI 0.54 0.22 0.35 0.50 0.71 887
DENSITY (hundred mbf/acre) 0.21 0.21 0.07 0.15 0.27 887
VOLUME (hundred mbf) 76.26 43.97 43.60 70.01 103.40 887
HOUSING STARTS 1620.80 261.75 1586 1632 1784 887

Table 1: Summary statistics for our sample of California ascending auctions from 1982-1989. All

monetary figures in 1983 dollars. INSOLVENT refers to a firm that bought out contracts at the

minimum $10/mbf rate. SPECIES HHI is the Herfindahl index for wood species concentration on

the tract. SELL VALUE, LOG COSTS and MFCT COSTS are USFS estimates of the value of the

tract and the logging and manufacturing costs of the tract, respectively. In addition to the USFS

data, we add data on (seasonally adjusted, one-month-lagged) monthly housing starts, HOUSING

STARTS, for each tract’s county.
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(1) (2)
CONSTANT -5.475∗∗∗ -5.792∗∗∗

(0.849) (0.852)

LOGGER -0.090∗∗∗ -0.203∗∗∗

(0.026) (0.04)

SCALE SALE 0.003 -0.017
(0.054) (0.054)

SPECIES HHI 0.025 0.064
(0.056) (0.057)

DENSITY 0.016 0.013
(0.063) (0.063)

VOLUME 0.0003 0.0002
(0.0003) (0.0003)

HOUSING STARTS 0.0002∗∗ 0.0002∗

(0.00008) (0.00008)

log SALE VALUE 2.750∗∗∗ 2.775∗∗∗

(0.081) (0.081)

log LOG COSTS -1.052∗∗∗ -1.093∗∗∗

(0.066) (0.067)

log MFCT COSTS -0.262∗ -0.181
(0.147) (0.148)

λ̂ 0.159∗∗∗

(0.044)

R2 0.4297 0.4319
N 3,426 3,426

Table 2: Evidence of Selection. In both columns the dependent variable is log of the bid per mbf

and year dummies are included. Column (2) shows the second step results for a two-step selection

model, where the first step specification is a probit for entry where we include a flexible polynomial

in the number of (other) potential mill and logger entrants. λ̂ is the coefficient on the Inverse Mills

Ratio.
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is to be expected as most mills enter, but loggers may only enter when they expect their

values to be high enough to compete with mills.

The focus of our counterfactuals is on the value of additional potential bidders to the

USFS. To provide an initial assessment, we regress the log of auction revenues (using only

auctions that end in a sale) on auction characteristics (specifically SPECIES HHI, DENSITY,

VOLUME, HOUSING STARTS, log SALE VALUE, log LOG COSTS, log MFCT COSTS

and year fixed effects) and a count of the number of potential entrants. The coefficient on

the count indicates that an additional potential entrant raises revenues by 3.3% (std. error

0.3%).34 When we include separate measures of the number of mill and logger potential

entrants, and also interact them, we find a larger, positive effect of additional mill potential

entrants, and a smaller, positive effect of additional loggers, which also declines when there

are more mills. This pattern is consistent with loggers having lower values and the fact that

loggers only tend to win when they do not face competition from mills: in 74 of the 136 times

that a logger wins an auction, there are no more than two potential mill entrants.

Using the additional data from the Timber Data Company on buyout rates, we can also

compare the bidding behavior of insolvent and non-insolvent firms. There are two reasons

for looking at this: first, our model assumes that insolvent mills (loggers) draw their values

from the same distribution as non-insolvent mills (loggers), and one might be concerned

that insolvent firms are systematically different to firms that did not get themselves into

such financial difficulty; and, second, anticipation or implementation of the bailout may have

directly impacted bidding behavior of these firms.35 The regressions in Table 3 examine

whether there is any evidence of this by relating a firm’s bids and success in winning auctions

to its buyout rate. All regressions include auction fixed effects, thereby removing the effects

of cross-auction heterogeneity, so that identification comes from a within-auction comparison

of firms with different degrees of financial distress, and we allow the effects to vary with

whether the auction took place in the pre- or post-October 1984 period. Standard errors

are clustered at the auction level. There is no indication that the level of financial distress

systematically affected the level of bids, and while there is weak evidence that firms that

bought out but which did not face insolvency were less likely to win an auction before the

bailout (specification (3)), this effect disappears when we remove two specific firms, Sierra

Pacific and Schmidbauer.

34The full results are available on request.
35Allowing for more than two types in the structural model would complicate how we deal with multiple

equilibria.
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5 Estimation

To take the model to data, we need to specify how the parameters of the model may vary

across auctions, as a function of observed auction characteristics and unobserved heterogene-

ity. Both types of heterogeneity are likely to be important as the tracts we use differ in

observed characteristics, such as sale value, size and wood type (see Table 1), and they also

come from different forests so they are likely to differ in other characteristics as well. Both

observed and unobserved heterogeneity may affect entry costs and the degree of selection, as

well as mean values.

Our estimation approach is based on Ackerberg (2009)’s method of simulated maximum

likelihood with importance sampling. This method involves solving a large number of games

with different parameters once, calculating the likelihoods of the observed data for each of

these games, and then re-weighting these likelihoods during the estimation of the distribu-

tions for the structural parameters. This method is attractive when it is believed that the

parameters of the model are heterogeneous across auctions and it would be computationally

prohibitive to re-solve the model (possibly many times in order to integrate out over the

heterogeneity) each time one of the parameters changes.

To apply the method, we assume that the parameters are distributed across auctions ac-

cording to the following distributions, where Xa is a vector of observed auction characteristics

and TRN(µ, σ2, a, b) is a truncated normal distribution with parameters µ and σ2, and lower

and upper truncation points a and b.

Location Parameter of Logger Value Distribution: µa,logger ∼ TRN(Xaβ1, ω
2
µ,logger, 2, 6)

Difference in Mill/Logger Location Parameters: µa,mill − µa,logger ∼ TRN(Xaβ3, ω
2
µ,diff, 0, 1.5)

Scale Parameter of Mill and Logger Value Distributions: σV a ∼ TRN(Xaβ2, ω
2
σV
, 0.01, 2.01)

α: αa ∼ TRN(β4, ω
2
α, 0, 1)

Entry Costs: Ka ∼ TRN(Xaβ5, ω
2
K , 0, 20)

The set of parameters to be estimated are Γ = {β1, β2, β3, β4, β5, ω
2
µ,logger, ω

2
µ,diff, ω

2
σV
, ω2

α, ω
2
K},

and a particular draw of the parameters {µa,logger, µa,mill, σV a, αa, Ka} is denoted θa. Note that

the supports of the structural parameters are not functions of the parameters, which is a re-

quirement for our method to work, and we choose them to be wide enough to include all

reasonable values of the parameters. For example, the support of K, [$0, $20]/mbf, includes

very large realizations of entry costs, both relative to the average winning bid ($86.01/mbf,

see Table 1) and plausible estimates of cruise costs (see Section 6).

These specifications reflect our assumptions that σv, α and K are the same across bidder-
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types within an auction, although they can vary across auctions. One could allow for the

cross-auction heterogeneity for the different parameters to be correlated, but when we have

tried to allow for completely flexible correlation structures, we have not found consistently

significant correlations across specifications and the estimation time increases significantly.36

Denoting the outcome for an observed auction by ya, the log-likelihood function for a

sample of A auctions is
A∑
a=1

log

(∫
La(ya|θ)φ(θ|Xa,Γ)dθ

)
(3)

where La(ya|θ) is the likelihood of the outcome y in auction a given structural parameters θ,

φ(θ|Xa,Γ) is the pdf of the parameter draw θ given Γ, our distributional assumptions, the

unique equilibrium strategies implied by our equilibrium selection rule and auction charac-

teristics, including the number of potential entrants, the reserve price and observed charac-

teristics Xa.

Unfortunately, the integral in (3) is multi-dimensional and cannot be calculated exactly.

A natural simulation estimator would be∫
La(ya|θ)φ(θ|Xa,Γ)dθ ≈ 1

S

S∑
s=1

La(ya|θs) (4)

where θs is one of S draws from φ(θ|Xa,Γ). The problem is that this would require us to

make new draws of θs and re-solve the model S times for each auction in our data each time

one of the parameters in Γ changes. Instead, we follow Ackerberg by recognizing that∫
La(ya|θ)φ(θ|Xa,Γ)dθ =

∫
La(ya|θ)

φ(θ|Xa,Γ)

g(θ|Xa)
g(θ|Xa)dθ (5)

where g(θ|Xa) is the importance sampling density whose support does not depend on Γ,

which is true in our case because the truncation points are not functions of the parameters.

This can be simulated using

1

S

∑
s

La(ya|θs)
φ(θs|Xa,Γ)

g(θs|Xa)
(6)

where θs is a draw from g(θ|Xa). Critically, this means that we can calculate La(ya|θs) for a

given set of S draws once, and during estimation of Γ simply change the weights φ(θs|Xa,Γ)
g(θs|Xa)

,

rather than re-solving the game.

This simulation estimator will only be accurate if a large number of θs draws are in

36Li and Zheng (2009) estimate a Samuelson model, i.e., one with perfect selection, and one type of bidder
allowing for a common shock to affect the distribution of values and the distribution of entry costs.
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the range where φ(θs|Xa,Γ) is relatively high, and, as is well known, simulated maximum

likelihood estimators are only consistent when the number of simulations grows fast enough

relative to the sample size. We therefore proceed in two stages. First, we estimate Γ using

S = 2, 500 where g(·) is a multivariate uniform distribution. Second, we use these estimates

Γ̂ to repeat the estimation using a new importance sampling density g(θ|Xa) = φ(θs|Xa, Γ̂)

with S = 500 draws per auction. The supports of the structural parameters are the same for

φ(·) and both stages of g(·). Appendix B provides Monte Carlo evidence that the estimation

procedure works well even for smaller values of S.

To apply the estimator, we also need to define the likelihood function La(ya|θ) based on

the data we observe about the auction’s outcome, which includes the number of potential

entrants of each type, the winning bidder and the highest bids announced during the open-

outcry auction by the set of firms that indicated that they were willing to meet the reserve

price. A problem that arises when handling data from open-outcry auctions is that a bidder’s

highest announced bid may be below its value, and it is not obvious which mechanism leads

to the bids that are announced (Haile and Tamer (2003)).

In our baseline specification we therefore make the following assumptions that we view

as conservative interpretations of the information that is in the data: (i) the second highest

observed bid (assuming one is observed above the reserve price) is equal to the value of the

second-highest bidder37; (ii) the winning bidder has a value greater than the second highest

bid; (iii) both the winner and the second highest bidder entered and incurred Ka; (iv) other

firms that indicated that they would meet the reserve price or announced bids entered and

incurred Ka and had values between the reserve price and the second highest bid; and, (v)

all other potential entrants may have entered (incurring Ka) and found out that they had

values less than the reserve, or they did not enter (did not incur Ka). If a firm wins at the

reserve price we assume that the winner’s value is above the reserve price. Based on these

assumptions, the likelihood of an observed outcome where a type 1 (mill) bidder wins the

auction, a type 2 (logger) bidder submits the second highest bid of b2a, and nτa−1 other firms

of type τ participate (i.e., indicated they would pay the reserve or placed bids) out of Nτa

potential entrants would be proportional38 to the following, where S ′∗τa are the equilibrium

37Alternative assumptions could be made. For example, we might assume that the second highest bidder
has a value equal to the winning bid, or that the second highest bidder’s value is some explicit function of his
bid and the winning bid. In practice, 96% of second highest bids are within 1% of the high bid, so that any
of these alternative assumptions give similar results. We have computed some estimates using the winning
bid as the second highest value and the coefficient estimates are indeed similar.

38This ignores the binomial coefficients, which do not depend on parameters.
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entry thresholds:

La(y|θ) ∝ f2(b2a|θ) ∗ Pr(enter2|v2 = b2a, S
∗′
2a, θ)×

 V∫
b2a

f1(v|θ) Pr(enter1|v1 = v, S∗′1a, θ)dv


×

 b2a∫
Ra

f1(v|θ) Pr(enter1|v1 = v, S∗′1a, θ)dv

(n1a−1)

×

 b2a∫
Ra

f2(v|θ) Pr(enter2|v2 = v, S∗′2a, θ)dv

(n2a−1)

(7)

×

(
1−

∫ V

Ra

f1(v|θ) Pr(enter1|v1 = v, S∗′1a, θ)dv

)(N1a−n1a)

×

(
1−

∫ V

Ra

f2(v|θ) Pr(enter2|v2 = v, S∗′2a, θ)dv

)(N2a−n2a)

reflecting the contributions to the likelihood of the second highest bidder, the winning bidder,

the other firms that attended the auction and those that do not attend, respectively.39

5.1 Identification

Our fully parametric model is point-identified under our assumption on equilibrium selection.

However, as usual, it is natural to ask under what conditions our model would be identified

non-parametrically.

Gentry and Li (2014) show non-parametric identification of an “affiliated-signal” partially

selective entry model for standard auctions, including the case where there is unobservable

cross-auction heterogeneity that affects both entry costs and the distribution of values. The

essence of their results is that the joint distribution of values and signals and entry costs are

either partially or point identified when there are observed exogenous variables that affect

equilibrium entry thresholds. These variables could include the number of potential entrants

(N), reserve prices or some variable that affects the entry costs that bidders have to pay. In

our setting, as reserve prices reflect the USFS’s estimates of the value of the timber (which

we control for in estimation) and we do not observe variables affecting entry costs, we rely on

variation in the number of potential entrants. Fortunately, in our data there is considerable

39If an entrant wins at the reserve price, then the likelihood is calculated assuming that winning bidder’s
value is above the reserve.
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variation (the 10th and 90th percentiles of Nm + Nl are 2 and 16).40 They also note that

there will be additional sources of identification when potential entrants can be classified into

different observed types, as we can do in our setting, under the assumption that only one

type-symmetric equilibrium would be played across auctions with the same primitives. As we

explained in Section 3, this is an assumption that we impose when estimating our model.41

Although their identification proofs are constructive, Gentry and Li note (p. 332) that

more parametric estimation approaches are likely to be preferred in practice, especially when

controlling for observable variation across auctions. We also introduce parametric unob-

served heterogeneity across auctions in the degree of selection (α), as well as entry costs and

values, so that we can use the computationally convenient importance sampling estimator.42

This also allows us to better fit the considerable heterogeneity that exists in both entry and

winning bids across auctions with similar characteristics in our data. While we do not ex-

plore identification in this expanded model here, we refer interested readers to Bhattacharya,

Roberts, and Sweeting (2014) where we use the scaled sensitivity parameter approach of

Gentzkow and Shapiro (2013) to investigate which moments identify the parameters in the

context of a selective entry model for low-bid procurement auctions with ex-ante symmetric

bidders. There we find that heterogeneity in the number of observed entrants is especially

important in determining the estimated value of ωα.

6 Results

Table 4 presents the parameter estimates for our structural model. We allow the USFS

estimate of sale value and its estimate of logging costs to affect mill and logger values and

entry costs since these are consistently the most significant variables in regressions of reserve

prices or winning bids on observables and in the specifications in Table 2. We also control for

species concentration since our discussions with industry experts lead us to believe that this

matters to firms. The right-hand columns show the mean and median values of the structural

parameters when we take 10 simulated draws of the parameters for each auction. For the

rest of the paper, we refer to these as the “mean” and “median” values of the parameters.

A “representative” auction means an auction with the mean parameters, 4 potential bidders

40As Gentry and Li show, limited variation, caused, for example, by the discreteness of the number of
potential entrants, may result in only partial identification. As they also note, as the degree of variation
increases these bounds should become tighter.

41Of course, our selection assumption does something slightly stronger by imposing that a particular
equilibrium, where mills have the lower entry threshold, is played.

42We note that in our estimation, we assume that unobserved heterogeneity in entry costs and values is
uncorrelated. As noted in Section 5, we have tried to allow for more flexible correlation structures without
finding consistently significant results.
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of each type (median values) and a reserve price of $27.77/mbf, the average observed in our

data. All standard errors are based on a nonparametric bootstrap with 100 repetitions.

The coefficients show that tracts with greater sale values and lower costs are more valu-

able, as one would expect. There is significant unobserved heterogeneity in values (the

standard deviation of µlogger) and in the difference between mill and logger mean values (the

standard deviation of µmill − µlogger) across auctions.

Based on the mean value of the parameters, the mean values of mill and logger potential

entrants are $61.95/mbf and $42.45/mbf respectively. Figure 4 shows the value distributions

for potential entrants of both types for these parameters. Our estimates also indicate a

moderate degree of selection, and partly for this reason this difference in values is greater

than the difference in the average bids of mills and loggers (Table 1) or the differences found

by ALS when estimating a non-selective entry model using sealed-bid data (see their Figure

2). For the representative auction, we can compare the difference in values between a marginal

bidder who observes signal S ′∗τa, and the average (inframarginal) entrant. The average mill

entrant’s value is $68.13/mbf and the average marginal mill bidder’s value is $45.22/mbf.

The fact that the average potential mill entrant’s value is higher than the average marginal

mill’s value reflects the fact that most mills enter. The comparable numbers for average

entrant and marginal loggers are $59.80/mbf and $48.13/mbf, respectively. The differences

between marginal and inframarginal bidders is indicative of the degree of selection in the

entry process.43

The mean entry cost is $2.05/mbf, or $4.49/mbf in 2010 dollars.44 One forester we spoke

with estimated current cruising costs of approximately $6.50/mbf in 2010 dollars, which is

at least broadly consistent with our estimates, and it is also sensible that our estimate is less

than the forester’s estimate if firms in our data are able to use any information they learn

on a cruise when deciding whether to enter other auctions.

Our estimated model is able to match the main moments in the data quite well. For

example, on average 0.99 loggers participate in each auction, while our model predicts 1.07

loggers will enter and have values greater than the reserve. For mills these numbers are 2,87

and 2.44 respectively. In the event of sale, average prices are $85.76/mbf, compared to a

prediction of $86.39/mbf.

43Marginal loggers tend to have higher values than marginal mills because in an auction with asymmetric
bidder types the weaker type (loggers) expect to face stronger rivals than stronger types (mills) do and so
they need to have higher expected values to justify entry.

44We could also assume that firms that did not participate did not incur K. The estimates under this
assumption (available on request) are very similar except that there is slightly more selection and slightly
higher entry costs. These changes are sensible as we are now assuming that fewer firms entered and that all
that did so had values above the reserve price.
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Figure 4: Comparing the value distributions for mills (dash-dot) and loggers (solid). Based on the

mean value of the parameters from Table 4.

7 The Value of Preserving Competition in Auctions

We now use our estimated model to predict how the USFS’s revenues in post-bailout auc-

tions would have changed if the firms that faced insolvency before the bailout had not been

potential entrants.

Our evaluation procedure involves the following steps. First, for each of the auctions

in our data we draw 10 sets of auction-specific parameters, based on the estimates in Table

4. Second, for each of these auction-draw combinations, we solve our model both with all

of the potential entrants observed in the data and with the insolvent firms removed, using

(for now) the reserve price in the data. Third, for each of these cases, we simulate 5 million

outcomes to calculate expected sale revenues in the event of sale and the probability of sale.

Rather than assuming that the USFS receives no payoff when a tract is not sold, we follow

Li and Zheng (2011), and Paarsch (1997), in one of his specifications, by assuming that the

USFS receives an expected payoff equal to the observed reserve price, reflecting its ability

to re-auction the tract in the future.45 Fourth, we average across the draws for each auction

to give us a predicted change in revenues for each of the 545 post-bailout auctions in our

data. In reporting our results, however, we only aggregate across the 489 auctions where

there are at least two remaining potential entrants when the insolvent firms are removed.

As mentioned in the Introduction, revenues would fall more if we included the remaining

auctions, but it is not clear that USFS would actually have tried to run auctions in these

45Aradillas-Lopez, Gandhi, and Quint (2013) use the USFS’s estimate of sale value less its estimate of costs
as the agency’s payoff when a tract is unsold. This number is similar to the reserve price.
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cases.

Non-strategic Reserve Optimal Reserve
Set of Exiting Firms ∆ Revenues % Change ∆ Revenues % Change
Firms that Buy Out at $10/mbf $43.52 m 11.11% $35.40 m 9.07%

($3.00 m) (0.37%) ($2.69 m) (0.37%)

All Firms that Buy Out $73.48 m 19.56% $64.07 m 17.06%
($4.99 m) (0.48%) ($4.32 m) (0.44%)

Mills that Buy Out at $10/mbf $40.83 m 10.46% $33.19 m 8.50%
($2.87 m) (0.35%) ($2.60 m) (0.36%)

Table 5: The table shows the change in USFS revenues in our sample of post-bailout auctions. For
$ figures, m indicates millions. The columns with the “Non-strategic Reserve” header assume that
once the firms exit the market, the USFS continues to set the reserve price observed in the data. The
columns with the “Optimal Reserve” header assume that once the firms exit the market, the USFS
sets an optimal reserve price. Bootstrapped standard errors are in parentheses. All numbers are
based on auctions that, for each assumption about the firms that are no longer potential entrants,
would still have had at least two potential entrants.

The ‘non-strategic reserve’ columns of the first row in Table 5 present the results. We

predict that without the insolvent firms, USFS revenues would have fallen by a total of $43.52

million46, or 11.1% of what expected revenues would be with the insolvent firms as potential

entrants. As well as being economically significant, the prediction is also precise (standard

error on the percentage change is 0.37%). The drop in revenues comes almost entirely from a

drop in revenues from auctions that result in sales: the expected percentage of tracts that do

not sell only increases from 4.1% to 5.7%. The second row of Table 5 shows that revenues

fall by substantially more if all firms participating in the bailout are excluded as potential

entrants (in this case the number of auctions we are using falls to 458 in order to maintain

at least two remaining potential entrants).

The ‘optimal reserve’ columns show the predicted changes when we allow the USFS

respond to the absence of the insolvent firms in the counterfactual by using an optimal

reserve price (we continue to assume the observed non-optimal reserve when the insolvent

firms are included).47 The reductions in expected revenues when the insolvent firms are

excluded only fall by about one-fifth, and remain large and statistically significant. The fact

46Recall that sealed-bid USFS auctions and auctions by other government agencies would also have been
affected, so the total revenue effect on government auctions would be much larger.

47We assume that the USFS would set an optimal reserve with full knowledge of the parameters for a
particular auction and the number of potential entrants. If the USFS was uncertain about some parameters,
this would tend to reduce the value of setting an optimal reserve price. The optimal reserve is found by
searching over a fine grid of reserve prices where we calculate expected revenues based on a fixed set of 5
million simulations for each auction.
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that the a reserve price only increases revenues by a small amount, and by much less than

the addition of potential bidders, is consistent with what happens in models with exogenous

bidder entry. In that setting, Bulow and Klemperer (1996) show that an additional bidder

is more valuable to the seller than an optimal reserve, or any alternative auction design.48

This result does not have to hold for additional potential bidders when entry is endoge-

nous, because, as in the symmetric and common entry cost LS model, additional competition

can actually lower the seller’s revenues. However, because additional potential competition

(at least from the insolvent firms, see discussion below) increases expected revenues signifi-

cantly given our parameter estimates, it is once again more valuable than a reserve price that

is a relatively blunt tool for the seller to try to extract information rents from bidders.49 As an

illustration, consider the representative auction where the non-strategic reserve is $27.77/mbf.

The use of a seller-optimal reserve, of $55/mbf, only reduces the expected (combined) bidder

profit from $22.80/mbf to $22.09/mbf (raising expected USFS revenues from $70.20/mbf to

$70.83/mbf).50 While this finding does not imply that no auction design would have offset

the USFS’s losses, and indeed the optimal design is not known for this partially selective

entry model, it does provide an additional metric by which the revenue changes from the loss

of competition should be seen as large, and it also suggests that when entry is endogenous

and moderately selective the seller may be better-advised to try to encourage interest in the

object being sold rather than trying to employ the most-widely discussed design tool in the

literature.51

We now turn to the question of why the changes in revenues when the insolvent firms

exit are so large. Our view that an 11% effect is large comes from the fact that, for the

average post-bailout auction, we are only reducing the number of potential entrants from

(approximately) nine to seven and that, as mentioned in the Introduction, in many homo-

geneous product industries one would expect five or six firms to lead to quite ‘competitive’

outcomes. There are three reasons why we find large revenue effects when the insolvent

firms are removed.

The first reason is that most of the insolvent firms were mills, and that, on average,

48Bulow and Klemperer’s results are derived under the additional assumptions that bidders are symmetric,
always have higher values of winning the good being sold than the seller does of holding onto it, and that
bidders’ marginal revenue curves are always downward sloping. Under these assumptions, an auction with
an optimal reserve is the optimal design.

49It is blunt, in part, because an increase in the reserve price tends to reduce entry which, in turn, tends
to increase the information rents of the firms that do enter.

50A reserve price has a larger effect on seller revenues when there are fewer potential entrants, as in our
counterfactuals.

51See Sweeting and Bhattacharya (forthcoming) for a comparison of the performance of several auction
designs when entry is partially selective, including examples where a design change increases expected revenues
by more than the addition of a potential bidder. Therefore while potential competition may typically be
more valuable than adding a reserve price, the general Bulow and Klemperer result certainly does not hold.
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we estimate that mills have much higher values than loggers, so that the removal of a mill

has much more of an effect on revenues than the removal of an ‘average’ potential entrant,

because mills tend to enter and win or set the auction price more often. Specifically, on

average, 1.8 potential entrant mills are classified as insolvent, compared with 0.4 loggers.

The importance of mills is illustrated in the final row of Table 5, which shows that revenues

decline by almost as much as in the baseline case when we remove only affected mills as

potential entrants. Recall that the very large difference in estimated mean values for mills

and loggers - which is much larger than the difference in the average observed bids of entrants

of each type - partly reflects the fact that our model allows for selective entry.

The second reason is that there is substantial heterogeneity of values within a type for

a given auction, which implies that adding additional bidders (entrants) can increase the

expected first- or second-highest order statistics of entrant values quite substantially. To il-

lustrate the effects of variance, consider an auction with exogenous entry where six symmetric

bidders draw their values from a lognormal distribution with location parameter 3.9607 and

scale parameter 0.5763 (the mean estimated parameter values for mills), and a non-strategic

reserve price (and value to the seller of holding onto the tract) of $27.77/mbf (the median

reserve price in the sample). When the number of bidders falls from six to five, expected

USFS revenues decrease from $79.66/mbf to $73.57/mbf, or 7.6%. If the scale parameter is

halved to 0.2882, the percentage decrease in revenues from losing a bidder is much smaller,

4.0%. Note that we find significant within-auction heterogeneity in values even though we

explicitly allow for cross-auction heterogeneity in mean values. In this regard our results

are consistent with ALS and Aradillas-Lopez, Gandhi, and Quint (2013), who also allow for

cross-auction heterogeneity in timber auctions.

The final reason is that our estimated model implies that there is (moderate) selection

in entry. In an LS model with a common entry cost, where there is no selection, expected

revenues could increase with the removal of a potential entrant, and this is true even when

values are heterogeneous. This is partly because the new entrants that are induced to enter

when competition is reduced are just as likely to as valuable to the seller as the inframarginal

entrants who would have entered in any event. This is not true when there is selection, be-

cause the marginal entrants are likely to have relatively low values, and, because the marginal

entrants know this, the amount of new entry also tends to be small. To see this, we extend

the previous example where the six initial firms are now potential entrants, K = 2.0543 and

α = 0.6890, their estimated mean values. The seller’s expected revenue is $76.55/mbf and

the expected number of entrants is 4.38. When a potential entrant is removed, the expected

number of entrants only falls from 4.38 to 3.96, as the entry probability of the remaining firms

increases from 0.73 to 0.80. However, the expected value of a firm that only enters because
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the number of competitors has fallen is $46.83/mbf, compared with an expected value of the

average entrant when there are six potential entrants of $70.00/mbf. Expected revenues fall

to $71.25/mbf (a decline of 6.9%).52 If entry was more selective, then the revenue decrease

might be larger. For example, if α = 0.1, then reducing the number of potential entrants

from six to five would lower revenues by 7.3%.

Our counterfactuals assume that the elimination of insolvent firms would not affect the

values of the survivors. It is reasonable to assume that the elimination of one local competitor

would not affect the value of a surviving mill as output (i.e., lumber) prices are determined

in a much broader regional or national market. The value of a surviving logger might be

expected to fall, suggesting our predictions are underestimates, if surviving mills are able to

exercise greater monopsony power in the local market for cut-timber. On the other hand, the

exit of insolvent mills throughout the western US, which could well have happened without

the bailout, would almost certainly have affected equilibrium lumber prices, especially once

construction activity recovered from its early 1980s low. Evaluation of this effect would

require estimation of the elasticity of lumber imports, the supply-elasticity of the rest of the

domestic industry and of how the bailout affected the exit decisions of solvent firms. This

exercise is beyond the scope of this paper.53 Instead, as a simple check on the sensitivity of

our results, we re-calculate our predictions assuming that, when insolvent mills exit, surviving

mill values increase by 2, 5 or 10%, with entry costs, selection and logger values held constant.

More surviving mills enter auctions and, upon entry, submit higher bids. Table 9 in Appendix

C shows the results. Expected USFS revenues still fall by more than 9% when mill values

increase by 2%, and even when they increase by 10%, we predict that USFS revenues would

decrease by 3.38% (s.e. 0.38%). Therefore surviving mill values would have had to increase

by significantly more than 10% for USFS revenues not to have declined if the insolvent mills

had exited.

It is also possible that the plant and equipment of many insolvent firms would have been

purchased by either incumbents or new entrants. This possibility is also hard to assess

without a better model or more complete data, although it is certainly plausible that more

efficient equipment would have been purchased by surviving firms rather than being scrapped.

In the case of purchase by rival local mills, however, the changes in competition that drive

52Note that in this example, reducing the heterogeneity in values would still reduce the size of the revenue
change. For example, if the scale parameter is halved to 0.2882, the seller’s expected revenues would fall
by only 3.0% when the number of potential entrants falls from six to five, a smaller percentage change than
when the scale parameter is 0.5763.

53Our discussions with people in the industry, for example at the publication Random Lengths, support the
idea that it is unlikely lumber prices would have risen rapidly without the bailout. In fact in Congressional
hearings on the draft bill, several speakers argued that if the contracts were enforced lumber prices would
fall even further through a disorderly cutting of the timber (House of Representatives, 98th Congress 2nd
Session (1984)).
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our results would still tend to reduce USFS revenues.54

8 Conclusion

This article has estimated the value of additional competition in auctions with endogenous

entry in the context of the Reagan administration’s 1984 bailout of the timber industry.

This intervention, which, like most bailouts, was controversial, aimed to prevent the closure

of firms that faced heavy losses on earlier contracts USFS and other timber contracts, and it

was partly motivated by a desire to preserve competition in future federal timber auctions.

We have evaluated that claim, motivated by the fact that, when entry into an auction is

endogenous, the direction of the effect of additional competition on revenues is theoretically

ambiguous and, given the number of surviving firms, one might expect any revenue effects

to be small.

Using a model where bidders can be asymmetric, there is unobserved heterogeneity across

auctions and we can estimate the degree to which entry into auctions is selective, i.e., the

extent to which potential bidders with higher values are more likely to enter, we predict

that USFS revenues in post-bailout auctions would have been 11% lower if the firms in

the greatest financial distress had exited the industry. This is a relatively large change in

revenues given that the average auction in our sample has over nine potential entrants and, by

our criterion, only two of them were saved by the bailout. This result reflects three features

of our model and our estimates. First, mills, which were more likely to be insolvent, are

estimated to have significantly higher average values than loggers, implying that the more

relevant piece of information is that a much larger share of mills were insolvent. Second, we

estimate that bidder values for a given tract are heterogeneous, so that adding an additional

competitor can increase the expected first- or second-highest order-statistics of values quite

substantially. Finally, the fact that we estimate auction entry to be moderately selective

plays an important role, as while, without the bailout, additional surviving firms (including

mills) may have entered the auction, these marginal entrants tend to have relatively low

values so that their entry has only a small effect on expected USFS revenues. We also show

that the USFS would have only been able to offset a small proportion of the revenue loss by

using an optimal reserve price, the most widely considered design tool in the literature.

This research could be pushed in several directions. One direction concerns the ability

of a seller, such as the USFS, to control the degree of selection through the information

54Of course, if a firm owns two mills one might want to model its value as being the maximum of two
different draws from the value distribution as in Li and Zhang (2015). Alternatively, the buyer might have
closed its existing plants, in which case assuming a single draw would still be appropriate.
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that it releases to potential bidders before they have to decide whether to incur the costs of

researching the product for sale. Variation in the information provided by different federal

and state agencies might be used to identify this effect in the timber context. Increasing

selection will always tend to improve efficiency as it will tend to raise the probability that the

potential bidder with the highest value wins the object being sold, while economizing on the

entry costs of those with lower values. However, for the seller, raising the degree of selection

can reduce expected revenues, because it can increase the information rents of bidders with

high values substantially (Sweeting and Bhattacharya (forthcoming)). However, to the

extent that bidder rents encourage investment and potential interest in timber auctions there

may be some potential long-run advantage for the USFS in making entry more informative.

A second direction would involve a more thorough examination of the effects of the bailout,

taking into account the equilibrium effects that the bailout had on lumber prices, imports, the

potential purchase of the plant and equipment of insolvent firms by their solvent competitors

and the exit decisions of those competitors, as well as the potential benefits to maintaining

employment in the affected rural areas. This would be especially valuable as, especially

during recessions and financial crises, there are often demands for governments to assist

private firms.
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A Multiple Equilibria and Equilibrium Selection (FOR

ONLINE PUBLICATION)

Even when we restrict attention to type-symmetric equilibria, a game with more than one

bidder type may have multiple equilibria where different types of firm have different thresh-

olds. For example, in our empirical setting, some parameters would support both equilibria

where the mills have a lower entry threshold (S ′∗mill < S ′∗logger), and equilibria where loggers

have a lower threshold (S ′∗mill > S ′∗logger).

This is illustrated in the first panel of Figure 5, which shows the reaction functions for the

entry thresholds of both types of firm, when there are two firms of each type, σV = 0.05, K =

4, α = 0.1 (σε = 0.0167) and µ1 = µ2 = 5, so that the types are actually identical.55 The

reserve price R is set to 20. There are three equilibria (intersections of the reaction functions),

one of which has the types using identical entry thresholds (45◦ line is dotted), and the others

involving one of the types having the lower threshold (and so being more likely to enter). The

fact that there are at most three equilibria follows from the inverse-S shapes of the reaction

functions.

The second panel in Figure 5 shows the reaction functions when we set µ1 = 5.025 and

µ2 = 5, holding the remaining parameters fixed. This change causes the reaction function

of type 1 firms to shift down (for a given S ′2 they wish to enter for a lower signal) and the

reaction function of the type 2 firms to shift outwards (for a given S ′1, type 2 firms are less

willing to enter). There are still three equilibria, but because of these changes in the reaction

functions, there is only one equilibrium where the stronger type 1 firms have the lower entry

threshold so that they are certainly more likely to enter. When the difference between µ1

and µ2 is increased, there is only one equilibrium and it has this form, as illustrated in the

third panel of Figure 5.

The result that with two types of bidders there is a unique equilibrium with S ′∗1 < S ′∗2

when µ1 ≥ µ2 and σV , σε and K are the same across types holds generally if the reaction

functions have only one inflection point.56 Under these assumptions it is also generally true

that the game has a unique equilibrium, in which it will be the case that S ′∗1 < S ′∗2 , if µ1−µ2

is large enough.

The empirical literature on estimating discrete choice games provides several approaches

55In this diagram the reaction function represents what would be the symmetric equilibrium best response
between the two firms of a particular type when both firms of the other type use a particular S′.

56In general, the exact shape of the reaction functions depends on the distributional assumptions made
for the distributions of values and signal noise. Under our distributional assumptions, we have verified that
the reaction functions have no more than one inflection point based on more than 40,000 auctions involving
different draws of the parameters and different numbers of firms of each type.
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Figure 5: Reaction functions for symmetric and asymmetric bidders. In the top panel, the types

are identical so that µ1 = µ2 = 5 and there are two firms of each type, σV = 0.05,K = 4, α = 0.1

(σε = 0.0167). In the next two panels firms are asymmetric in means only and the solid (dash dot)

lines correspond to the type with the higher (lower) mean. In the middle (bottom) panel µ1 = 5.025

and µ2 = 5 (µ1 = 5.075 and µ2 = 5) and the remaining parameters are held fixed. The 45◦ line is

dotted. 41



for estimating games with multiple equilibria including assuming that a particular equilibrium

is played, estimating a statistical equilibrium selection rule that allows for different equilibria

to be played in the data (Sweeting (2009) and Bajari, Hong, and Ryan (2010)) and partial

identification tecnhiques that may only give bounds on the parameters (e.g. Ciliberto and

Tamer (2009) and Beresteanu, Molchanov, and Molinari (2009)). In this paper we assume

that the parameters σV , σε and K are the same across types and that, if there are multiple

equilibria, the equilibrium played will be the unique one where S ′∗1 < S ′∗2 . We view our focus

on this type of equilibrium as very reasonable, given that it is clear in our data that mills

(our type 1) tend to have significantly higher average values than loggers (our type 2), so

that it is almost certain that only one equilibrium will exist (a presumption that we verify

based on our parameter estimates).

B Monte Carlos (FOR ONLINE PUBLICATION)

This Appendix describes a set of Monte Carlo exercises where we investigate the performance

of our Simulated Maximum Likelihood (SML) estimator, which uses Importance Sampling,

to approximate the likelihood of the observed outcome for a particular auction (Ackerberg

(2009)). This evidence is important because SML estimators may perform poorly when the

number of simulation draws is too small. We also study the performance of our estimator

under alternative definitions of the likelihood, which make different assumptions about the

data available to the researcher.

Simulated Data

To generate data for the Monte Carlos, we allow the number of {mill, logger} potential

entrants to take on values {3,3}, {5,5}, {8,8}, {6,2} and {2,6} with equal probability. For

each auction a, there is one observed auction covariate xa, which is drawn from a Uniform

[0,1] distribution, and the vector Xa is equal to [1 xa]. We assume

Location Parameter of Logger Value Distribution: µa,logger ∼ N(Xaβ1, ω
2
µ,logger)

Difference in Mill/Logger Location Parameters: µa,mill − µa,logger ∼ TRN(Xaβ3, ω
2
µ,diff, 0,∞)

Scale Parameter of Mill and Logger Value Distributions: σV a ∼ TRN(Xaβ2, ω
2
σV
, 0.01,∞)

α: αa ∼ TRN(Xaβ4, ω
2
α, 0, 1)

Entry Costs: Ka ∼ TRN(Xaβ5, ω
2
K , 0,∞)

where TRN(µ, σ2, a, b) is a truncated normal distribution with parameters µ and σ2, and

upper and lower truncation points a and b. The true values of the parameters are β1 =
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[2.8; 1.5], β2 = [0.3; 0.2], β3 = [0.5;−0.1], β4 = [0.5; 0], β5 = [4; 4], ωµ,logger = 0.2, ωσV = 0.3,

ωµ,diff = 0.2, ωα = 0.2 and ωK = 2. The reserve price can take on values of 10, 30 or 50. We

allow for R to be correlated with x, as one would expect if the seller sets a higher reserve

price when he believes the tract has higher value. Specifically, for each auction, we take a

draw ua from a uniform [0, 1] distribution and set

Ra = 10 if
xa + ua

2
< 0.33

Ra = 30 if 0.33 ≤ xa + ua
2

≤ 0.66

Ra = 50 otherwise.

For each auction we find the unique equilibrium that satisfies the constraint that S ′∗mill <

S ′∗logger, and generate data using the equilibrium strategies assuming that the auction oper-

ates as a second price sealed-bid auction, or, equivalently, an English button auction. The

exercises described below all use the same 100 data sets of 1,000 auctions each.

Having constructed the data we estimate the parameters in three different Monte Carlo

exercises, which differ in the importance sampling density used to draw the simulated pa-

rameters.

B.1 Monte Carlo Exercise 1: Importance Sampling Density is the

True Distribution of the Parameters

In the first exercise we make the (generally infeasible) assumption that the researcher knows

the true distribution of each of the parameters, which depends on the value of xa for a

particular auction. The number of simulation draws per auction is set equal to 250, and

different draws are used for each auction. We compute the results for four different definitions

of the likelihood (the same simulation draws are used in each case) that make different

assumptions about the information available to the researcher, which will vary with the

exact format of the auction (open-outcry vs. sealed-bid) and with the information that the

seller collects about entry decisions. The alternative assumptions are:

1. the researcher observes the values (as bids) and identities of all firms that pay the

entry cost and have values above the reserve, and he observes the entry decision of each

potential entrant;

2. the researcher observes the values (as bids) and identities of all firms that pay the entry

cost and have values above the reserve, and he knows that these firms entered, but for
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other firms he does not know whether they paid the entry cost and found that their

values were less than R, or they did not pay the entry cost;

3. the researcher observes the value and identity of the firm with the second highest value

as the final price, the identity of the winning bidder (e.g. whether it is a mill or logger),

the identity of all entering firms with values above the reserve price and he observes

the entry decision of each potential entrant;

4. the researcher observes the value and identity of the firm with the second highest value

as the final price, the identity of the winning bidder (e.g. whether it is a mill or logger),

the identity of all entering firms with values above the reserve price, but for other firms

he does not know whether they paid the entry cost and found that their values were

less than R, or they did not pay the entry cost. This informational assumption forms

the basis of the likelihood function shown in Equation (7).

Table 6 shows the mean value of each parameter and its standard deviation across the

simulated datasets for each definition of the likelihood. With the true distribution as the

importance sampling density and S = 250, all of the parameters are recovered accurately,

including the standard deviation parameters. Several of the parameters appear to be recov-

ered less precisely when less information is available to the researcher (likelihood definition

4), but the differences are never large.

B.2 Monte Carlo Exercise 2: Importance Sampling Density is a

Uniform Distribution

When the true distributions are unknown, it is necessary to choose importance sampling

densities that provide good coverage of the possible parameter space. In this exercise we

draw parameters from independent uniform distributions where µa,logger ∼ U [2, 6], σV a ∼
U [0.01, 2.01], µa,mill−µa,logger ∼ U [0, 1.5], αa ∼ U [0, 1], Ka ∼ U [0, 20]. In this case we set the

number of simulation draws per auction equal to 1,000 to try to compensate for the fact that

a relatively small proportion of the simulated draws are likely to be close to the parameters

that really generate the data (in our empirical work we use 2,500 simulated draws per auction

so that we get even better coverage). We use the four alternative definitions of the likelihood

that we used for the first exercise.

Table 7 shows the mean value of each parameter and its standard deviation across the

simulated datasets for each definition of the likelihood. The parameters which determine

the means of each distribution are recovered accurately, but four out of the five standard
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deviation parameters are biased upwards. As in the first exercise, the alternative likelihood

definitions appear to have only small effects on the precision of the estimates.

B.3 Monte Carlo Exercise 3: Two Step Estimation

As some of the parameter estimates appear to be biased using a uniform importance sampling

density, the estimator we use in the paper uses the estimates based on a uniform importance

sampling density to form new importance sampling densities that are used in a repetition

of the estimation procedure. As long as the first step estimates are not too biased, this two

step procedure should give accurate results, provided that the number of simulation draws

is large enough.

To confirm that this is the case, we apply this two step procedure using likelihood defini-

tion 4 estimates from exercise 2 for each of the 100 datasets to form an importance sampling

density from which we take S = 250 simulation draws for each auction (when we apply our

estimator to the real data we use S = 500). We focus on likelihood definition 4 as it is the

basis of our preferred estimates in the paper.

Table 8 shows the mean and standard deviation of the estimates for each of the parameters.

We see that both the mean and standard deviation parameters are recovered accurately,

although the estimated standard deviation of entry costs is recovered slightly less accurately

than when we used the infeasible estimator in exercise 1. Overall, we regard these Monte

Carlo results as providing strong support for our estimation procedure, especially as we use

more than twice as many simulation draws when we apply our estimator to the actual data.

47



Parameter Variable True Value Definition 4
Logger Constant 2.8 2.7313
Location Parameter (0.1389)

xa 1.5 1.3720
(0.2138)

Std. Dev. 0.2 0.1722
(0.0349)

Difference in Mill and Logger Constant 0.3 0.3308
Location Parameters (0.0976)

xa 0.2 0.3138
(0.1490)

Std. Dev. 0.2 0.2039
(0.0257)

Value Distribution Constant 0.5 0.5741
Scale Parameter (0.0639)

xa -0.1 -0.0380
(0.1078)

Std. Dev. 0.3 0.2706
(0.0292)

α (Degree of selection) Constant 0.5 0.4725
(0.1321)

xa 0.0 -0.0902
(0.2193)

Std. Dev. 0.2 0.2064
(0.0590)

Entry Cost Constant 4.0 4.2557
(0.9945)

K 4.0 3.5161
(2.0808)

Std. Dev. 2.0 2.5403
(0.4681)

Table 8: Two Step Estimator Monte Carlo. The table shows the mean and standard deviation (in

parentheses) for each of the parameters estimates across the 100 repetitions based on the fourth of

the different definitions of the likelihood when we use the true joint distribution of the parameters

as the importance sampling density, with S = 250 draws. See paper for the likelihood definition.

48



C Counterfactual with Strengthened Surviving Mills

(FOR ONLINE PUBLICATION)

In this appendix we present results of our counterfactual simulations when we increase the

value distribution of the mills that we assume survive due to what would be an increased

concentration of mills, as described at the end of Section 7. We focus on the case when only

the mills that bought out at $10/mbf shut down, which corresponds to the second row in

Table 5. Table 9 gives the results (the first row of this table is identical to the second row

of Table 5). The last three rows correspond to different assumptions about how the value

distribution of surviving mills increases after those that faced insolvency shut down. For each

row, we increase µa,mill in each auction, not only those in which there is a potential entrant

who we assume exits, so that at the current value of σV a, the mean of the surviving mills

value distribution in an auction a is increased by X%, where X = 2, 5 and 10%.

Non-strategic Reserve Optimal Reserve
∆ Revenues % Change ∆ Revenues % Change

Baseline $40.83 m 10.46% $33.19 m 8.50%
($2.87 m) (0.35%) ($2.60 m) (0.36%)

Surviving Mill Mean Values ↑ by:
2% $35.46 m 9.08% $27.59 m 7.07%

($2.57 m) (0.35%) ($2.27 m) (0.34%)

5% $27.22 m 6.97% $18.86 m 4.83%
($2.15 m) (0.35%) ($1.78 m) (0.31%)

10% $13.21 m 3.38% $4.20 m 1.08%
($1.60 m) (0.38%) ($1.09 m) (0.29%)

Table 9: The format of the table is identical to Table 5 and all cases here correspond to the

assumption that only insolvent mills shut down. The first row is identical to the second row in

Table 5, and the next three rows assume that the average mill value in each auction increases by 2,

5 and 10%, respectively.
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