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Abstract. In the standard model of procurement auctions with endogenous and free entry, too many or too

few suppliers may enter because their entry decisions are not coordinated. We show how an alternative “entry

rights auction” mechanism, where an initial auction is used to allocate rights to participate in a second auction

for the contract, may improve efficiency depending on how much information suppliers have about their costs

when they decide whether to enter. In an empirical application, using data from highway procurement auctions,

we predict that the entry rights auction mechanism would both increase efficiency and reduce procurement costs

significantly.
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1. INTRODUCTION

Given the importance of public procurement for many economies around the world (e.g., 12% of GDP is

spent on public procurement in OECD countries (OECD (2011))), there is natural interest in improving the

efficiency of the procurement process and reducing procurement costs. Under the assumptions, which we

maintain, of symmetric and independent private costs, quite standard auction formats, such as first-price

Contact. bhattacv@mit.edu, j.roberts@duke.edu, sweeting@econ.umd.edu. We are very grateful to Dakshina De
Silva, Timothy Dunne, Anuraddha Kankanamge, and Georgia Kosmopoulou for sharing their data with us. Ali Hortaçsu,
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(low-bid) auctions with suitably chosen reserve prices will be optimal when the number of bidders is

fixed. Assuming a fixed set of bidders will not be appropriate, however, when suppliers have to spend

significant resources in “due diligence” to understand how much it will cost them to complete the project,

and in most of the procurement settings that have been studied, these types of entry costs appear to be

significant (e.g., Li and Zheng (2009) and Krasnokutskaya and Seim (2011)). In this paper we examine

the performance of a standard first-price auction with costly but unregulated, or “free”, entry relative

to an alternative mechanism where the procurer regulates entry by using an initial auction to allocate a

fixed number of rights to participate in a second auction for the contract (an “entry rights auction”).

When entry is endogenous, a standard first-price auction is usually thought of as a two-stage game. In

the first stage, a set of potential suppliers (for example, a set of local contractors who purchase or are

issued with specifications for the contract) simultaneously and non-cooperatively decide whether to pay

the cost of entering the auction based on any private information (signals) that they have about their

costs of completing the project. In the second stage, the entrants find out their true costs of completing

the project and submit bids. The contract is allocated to the firm with the lowest bid, as long as this

is less than any reserve price, at a price equal to its bid. We will call this standard model a “first-price

auction with free entry” (FPAFE). In the equilibrium of an FPAFE, the marginal entrant in the first

stage will be indifferent between entering the auction, which involves paying the entry cost but allows the

supplier to potentially win the contract, and staying out.

A natural question is whether these entry decisions are efficient, in the sense of being consistent with

the minimization of the expected sum of the winning bidder’s cost of completing the project and total

entry costs (social costs). As shown theoretically by Levin and Smith (1994) and Gentry and Li (2012)

under different assumptions about the private information that potential suppliers have about their costs

prior to entry, entry decisions will be efficient in the sense that a planner who had to choose whether a

potential supplier should enter based only on that firm’s private information would choose the same entry

rule that the potential supplier would choose in the symmetric equilibrium.1 However, inefficiencies in

1The typical Mankiw and Whinston (1986) result that free entry results in excess entry in a homogeneous goods market
does not hold because an entrant only takes business from other firms when it is socially optimal for it to do so. The Levin
and Smith and Gentry and Li results are conditional on the auctioneer setting a reserve price that is equal to the cost of
completing the project outside of the auction if there is no winner. This is the auctioneer-optimal reserve in the Levin and
Smith model, but not the Gentry and Li model, although it is the natural “non-strategic” reserve price in that setting
as well. As pointed out by a referee, one interpretation of these results is that the procurer cannot improve efficiency by
choosing a reserve strategically.
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entry can still arise from the fact that the entry decisions of different potential bidders are not coordinated,

so that there can be outcomes where too many or too few firms enter. For example, when potential

suppliers have no private information about their costs when taking entry decisions, as assumed by Levin

and Smith (1994) (LS), the symmetric equilibrium involves potential suppliers mixing over entry. As

a result, the number of entrants will be stochastic, and Milgrom (2004) shows that efficiency would be

increased if the procurer instead randomly selected a fixed number of potential suppliers to enter the

auction.

The assumption that potential suppliers have no private information about their costs before entering

seems implausible for many procurement settings, as firms are likely to know at least something about

their free capacities and their costs of securing some of the necessary inputs. When their private signals

are informative about their costs (Gentry and Li (2014) and Roberts and Sweeting (2013b)), free entry

will tend to lead to the most efficient firms entering and an arrangement where the auctioneer randomly

selected entrants without using this private information would have a natural disadvantage. However, there

could still be scope for the auctioneer to regulate the number of entrants by using an entry rights auction

mechanism (ERA) where, based on their private information, the potential suppliers first participate in an

auction for a fixed number of rights to perform due diligence and enter the auction for the contract. As

long as first-stage bids are monotonic in the bidders’ private signals, the ERA will also tend to select the

most efficient firms, but the ERA will have the advantage that the number of entrants will be controlled.

We show, using an example, that whether an FPAFE or an ERA is more efficient can depend in a

non-monotonic way on the precision of the private information that suppliers have about their costs. When

signals are imprecise, the ERA is more efficient, as one would expect given the informational assumptions

made by LS and Milgrom in deriving the result mentioned above. When signals are very informative,

in which case the model tends towards the Samuelson (1985) (S) model where potential entrants know

their costs exactly, the ERA is also more efficient because it is optimal to have only the supplier with the

best (lowest cost) signal paying the entry cost; this is the outcome that the ERA ensures will happen,

whereas no supplier or more than one supplier may enter in an FPAFE. However, when potential bidders’

signals are moderately informative about their costs, an FPAFE can be more efficient. The reason is that

with free entry the number of entering suppliers will depend on the private information available to the

suppliers but not the auctioneer, and this can be desirable. For example, while on average it might be
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desirable to have two entrants, three entrants might be preferred if they all have signals that indicate that

their costs are likely to be low.

Given this ambiguity in which mechanism is more efficient, we estimate our model using data on a

sample of contracts for highway projects involving work on bridges let by the Departments of Transportation

(DoTs) in Oklahoma and Texas using FPAFEs in order to understand which mechanism might perform

best in a real-world context. To do so, we develop methodologies for both solving and estimating a

parametric model of FPAFEs where potential bidders have imperfect information about their costs when

deciding whether to enter. We solve the model using the Mathematical Programming with Equilibrium

Constraints approach proposed by Su and Judd (2012).2 We estimate our model using a simulated method

of moments estimator where the moments are computed using importance sampling, following Ackerberg

(2009). This approach enables us to allow for observed and unobserved heterogeneity in the parameters

across auctions, unlike the one previous attempt to estimate this type of model of which we are aware

(Marmer, Shneyerov, and Xu (2011)).3

We estimate that entry is moderately selective for these contracts. However, given the other parameters

of our model, our model predicts that overall efficiency would have been increased by using the ERA

format. For example, for the representative (average) auction in our data, we predict that the sum of the

expected cost of the winning bidder and total entry costs would be 2.4% lower in the ERA than the FPAFE

and that the total cost to the DoT of letting the contract (procurement cost) would fall by the same

proportion. This fall in DoT procurement costs is much greater than what we predict would be achieved

by using a more standard design adjustment to an FPAFE, such as adding an optimal reserve price, which

for our representative case would only reduce costs by 0.03%, or by adding additional potential entrants.

We are not aware of any previous attempts in the literature to compare ERAs and auctions with free

entry using real-world parameters. A related theoretical literature has considered so-called “indicative

bidding” schemes where potential bidders submit non-binding indications of what they are willing to

bid, which the seller may use to select a subset of firms to participate in an auction.4 In contrast, in

2Hubbard and Paarsch (2009) use this approach to solve first-price auction models under the S model assumption that
potential bidders know their values when deciding whether to enter. We extend their solution method to allow for noisy
signals about values (in our case, costs), creating imperfect selection of low cost bidders into the auction.

3Some earlier work, such as Krasnokutskaya and Seim (2011), estimates models of endogenous entry into first-price auctions
under the informational assumptions of LS. This implies that there is no selection in the entry process, which simplifies
estimation because the distribution of values for bidders will be the same as the distribution of values in the population of
potential suppliers.

4There are other designs that also have the flavor of using an auction to select a small number of firms into another round.
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an ERA, first-round bids are binding and can result in payments by firms that do not win the contract.

Indicative schemes are often used by investment banks and as part of the complicated processes by which

defense equipment is purchased (Quint and Hendricks (2013), Foley (2003), Welch and Fremond (1998)).

Ye (2007) argues that, generically, indicative schemes will not induce strictly monotonic first-stage bids

in equilibrium and so will not tend to guarantee the selection of the bidders that are most likely to

have the highest values or the lowest costs in the second stage. However, he shows that certain types

of ERA schemes, like the one that we consider, will induce strictly monotonic first-stage bidding and so

guarantee an efficient selection of entrants. Recently Quint and Hendricks (2013) have shown that, when

indicative bids are limited to a discrete set and either entry costs or the number of bidders is large, the

unique indicative bidding equilibrium can involve weakly monotonic bid functions, and that, in computed

examples, indicative schemes can outperform standard auctions with free entry. By guaranteeing fully

efficient selection of entrants, ERAs should, in theory, be more efficient than indicative schemes when the

number of selected entrants is the same. At the end of the paper we discuss several possible reasons why

ERAs may be less common than indicative schemes or FPAFEs in practice.

The paper is also related to our earlier work on selective entry auction models (Roberts and Sweeting

(2013a), Roberts and Sweeting (2013b)).5 In those papers we consider selective entry into second-price

auctions, where the simpler form of equilibrium bidding eases computation and estimation relative to the

first-price auctions considered in this paper. FPAFEs are the auction format that is most widely used in

practice.6 In Roberts and Sweeting (2013b), we compare the performance of a free-entry auction with a

sequential bidding process which is more efficient, and can improve the seller’s revenues for a wide range

of parameters, even though it allows early bidders to deter entry. Here we consider a different type of

design change, which retains the simultaneous bidding feature of most auction formats. This may be

attractive, as sequential procedures have the potential weakness that the auctioneer may favor certain

For example, in the Anglo-Dutch auction described by Klemperer (2002), bidders first participate in an ascending auction
that selects a smaller set of bidders who compete in a first-price sealed bid auction. This design has been discussed
primarily in settings where bidders are asymmetric (for example, where there are well-known strong incumbents) and where
valuations are likely to have some common component. In our model, suppliers are symmetric and we assume IPV.

5Other work on selective entry in auctions includes Gentry and Li (2014), who focused on identification, and Marmer,
Shneyerov, and Xu (2013), who consider non-parametrically testing different models using first-price auction data in the
absence of unobserved auction heterogeneity.

6As we assume potential suppliers are symmetric, it is possible to compute expected efficiency and procurement costs for
first-price auctions by exploiting the fact that these outcomes should be the same in the second-price format. However, to
use the information contained in the distributions of submitted bids and winning bids in estimation it is necessary to be
able to solve first-price auctions with selective entry.
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bidders when determining the order.

Four comments are in order about both our model and the nature of the results. First, when considering

the ERA, we model the first-stage auction for entry rights as an all-pay auction. Following Ye (2007), the

advantage from a modeling perspective of using the all-pay format is that equilibrium first-stage bids are

guaranteed to be strictly monotonic in the signal that potential bidders have about their costs when entry

costs are subsidized, which we also assume. This guarantees that the suppliers that are most likely to

have the lowest costs are selected. When the more common discriminatory or uniform price formats are

used to sell entry rights, this property may not hold because the expected benefit of being the marginal

entrant allowed into the final auction, which determines the bid in these formats, is not guaranteed

to be monotonic in the signal. In fact, it is straightforward to find examples where the relationship is

not monotonic for the distributions that we consider. However, as Ye shows, when the relationship is

monotonic, the expected costs and efficiency under all three first-stage schemes (all-pay, discriminatory

and uniform) will be identical.

Second, we are comparing our results to a specific form of ERA, where the seller announces an exact

value for the number of bidders who will be able to enter the second-stage auction in advance, rather than

considering the optimal mechanism or even the optimal entry rights auction, where the number of allowed

entrants into the second stage might well depend on the bids that are announced in the first stage. We

do this partly because it is not straightforward to characterize the procurer-optimal form of entry rights

auction in our model, but also because even if it were known, the optimal mechanism would likely have

such a complicated form that a public agency would likely not want to use it in practice.7 In any case,

because our bottom-line conclusion is that there may be significant cost and efficiency advantages to using

ERAs, this conclusion would only be strengthened if we considered the optimal form of the ERA instead.

In discussing our results we do, however, compare the efficiency of our ERA mechanism with the efficiency

of two hypothetical mechanisms where we allow a planner to have access to the private information of the

bidders and to use these signals to choose how many firms enter. While these hypothetical alternatives

are naturally more efficient, we show that the ERA actually performs almost as well as they do for the

parameters that we estimate.

7Lu and Ye (2013) characterize the optimal entry rights auction format in a setting where there is heterogeneity in potential
bidders’ entry costs, but they have no private information on their values prior to entering. Cremer, Spiegel, and Zheng
(2009) characterize the optimal mechanism in this case, which involves a complicated sequential search process.



Regulating bidder participation in auctions 7

Third, our results are numerical. When entry is partially selective, it is very difficult to solve models

analytically outside of some special cases.8 Moreover, as we show, efficiency and cost comparisons will

often depend on the distributions and parameters that are assumed, so it is important to try to be as

realistic about these elements as possible. For this reason, we focus our results on parameters that are

estimated from real-world data and emphasize the magnitude as well as qualitative direction of our results.

Finally, while we allow for partially selective entry and a model of auction heterogeneity, we maintain

the independent private costs/values assumption that has been typically made in both empirical studies of

public procurement (e.g., Krasnokutskaya and Seim (2011)) and theoretical work on models of two-stage

entry rights or indicative bidding procedures (e.g., Quint and Hendricks (2013)). Understanding the

effects of trying to regulate entry where costs have both common value and private value components is

left to future work. Similarly we assume that firms would act competitively in both FPAFEs and ERAs,

whereas in some settings it might be important to consider which mechanism would be more susceptible

to collusion.

The paper proceeds as follows. Section 2 presents the model of imperfectly selective entry for FPAFEs

and ERAs, and explains how we solve these models. Section 3 describes the data. Section 4 explains

our estimation method. Section 5 discusses the estimates of the model’s parameters and compares the

performance of the FPAFE and the ERA. Section 6 concludes. The Appendices contain some additional

details on our numerical routines and present some Monte Carlo evidence on the performance of our

estimator.

2. A MODEL OF ENDOGENOUS BIDDER PARTICIPATION IN AUCTIONS

We introduce the general structure of costs and information in our model of procurement and then describe

the FPAFE and the ERA. We also present a numerical example illustrating how an efficiency comparison

of the two mechanisms will depend on the degree of selection in the entry process.

A procurement agency, which we will call the “procurer” in what follows, wishes to select one of N

risk-neutral suppliers to complete a project. In our empirical setting, a project might involve repairing or

constructing a bridge, and we will allow for cross-auction variation in both N and the other parameters.

The agency may require that it pay no more than a reserve price r to complete the project, and if no firm

8For example, Ye (2007) considers a case where bidders are uncertain about a component of costs that can only take on
discrete high or low values.
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submits a bid below this amount, the agency incurs a cost c0 of procuring the work outside of this specific

auction (e.g., this could be the expected cost from re-running the auction at a later date, or negotiating

one-on-one with a particular contractor). Supplier i can complete the project at cost Ci distributed FC(·)

with compact support [c, c] that admits a continuous density fC(·). We assume that suppliers are ex-ante

symmetric and have independent private costs. To participate in the project-allocation auction of any

mechanism,9 a supplier must pay an entry cost K. Entrants learn their true costs of completing the project.

One interpretation of K is that it includes the cost of research involved in finding out the true cost, but it

will also include any costs associated with preparing a bid. An important assumption that we maintain

throughout is that a firm cannot participate in the project-allocation stage of any mechanism without

paying K.10 Prior to deciding whether to enter, each supplier observes a signal Si that is correlated with

its true cost Ci and that is not correlated with any other supplier’s cost. Signals are affiliated with costs

in the standard sense: the cost distribution conditional on a signal s first-order stochastically dominates

the cost distribution conditional on a signal s̃ < s. We assume that the marginal distribution of signals

admits a continuous density on a compact interval [smin, smax].

The LS and S models are limiting cases of this model. If Si = Ci, then signals are perfectly informative

of costs, and the setup reduces to the S model. When Si is independent of Ci, signals contain no

information about costs, and the setup reduces to the LS model. For many empirical settings, it seems

plausible that buyers will have some, but imperfect, information about their costs prior to conducting

costly research, consistent with Si being positively, but not perfectly, correlated with Ci.

2.1. Selective Free Entry into First-Price Auctions

The first model of procurement is the FPAFE, which we view as describing the procedure used by the

DoTs in our data and most other government agencies. In the first stage, potential suppliers observe their

imperfectly informative cost signals. Based on these private signals, they take independent, simultaneous

entry decisions and pay K if and only if they enter. In the second stage, the set of entrants compete

9This will be the auction in the FPAFE and the second-stage auction in an ERA.
10As pointed out by a referee, if K is interpreted as containing an information acquisition cost then there may be incentives

for some suppliers to bid without paying the information acquisition cost. To get around this objection, one can either
assume that K is simply a cost that must be paid in order to be responsive in the auction (in which case we could allow
non-entering suppliers to find out their costs as well once they have decided not to pay K) or we can assume that there
are some penalties outside of our model that deter this type of uninformed bidding. For example, there may be penalties
that arise from defaulting on the contract or incurring financial losses, or it may be harder for an uninformed supplier to
find suitable sub-contractors.
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in a first-price (low-bid) auction with reserve price r. We assume that firms that do not pay K cannot

participate in the auction and that agents bid without knowing how many of their competitors actually

entered the auction, as is done in Li and Zheng (2009). If an entrant learns that his true cost exceeds the

reserve price, he will not bid.

We solve for entry decisions and bid functions that define the unique symmetric Bayesian Nash

equilibrium with monotone bidding behavior.11 Potential bidders enter using a cutoff strategy; that is, a

supplier enters if and only if he observes a signal si < s′∗ for some critical value of s′∗ (Gentry and Li

(2012)). Define H(c) to be the probability (not conditional on Si) that a given supplier either (i) enters

the auction and has a cost no smaller than c or (ii) does not enter the auction; thus, H(·) depends on the

value of the signal cutoff used for the entry decision. The equilibrium bid functions β∗(·) are given by the

solutions to the optimization problem

β∗(c) ≡ arg max
b

(b− c)
[
H
(
β∗−1(b)

)]N−1
.

The first order condition associated with this optimization problem gives the differential equation

1 + β∗−1′(b)
(
b− β∗−1(b)

)
(N − 1)

H ′
(
β∗−1′(b)

)
H
(
β∗−1′(b)

)
 = 0, (1)

with the upper boundary condition

β∗(r) = r. (2)

The equilibrium critical cutoff values s′∗ are determined by the indifference condition that any potential

supplier who receives a signal of s′∗ must be indifferent between entering the auction or not paying the

entry cost at all. This zero-profit condition is thus written

∫ r

b

(
b− β∗−1(b)

)
fC
(
β∗−1(b)|s′∗

) [
H
(
β∗−1(b)

)]N−1
db = K, (3)

where b ≡ β(c), and fC(·|s) is the conditional density of a supplier’s costs, computed using Bayes’ Rule,

given he receives a signal s.

11Gentry and Li (2012) establish uniqueness of the symmetric equilibrium in a class of affiliated signal models. As usual in
entry games, asymmetric equilibria may exist.
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To solve for the bid functions, we use the Mathematical Programming with Equilibrium Constraints

(MPEC) approach (Su and Judd (2012)). In a manner similar to that outlined by Hubbard and Paarsch

(2009), who use MPEC to solve an FPAFE model where bidders know their values when they decide

whether to enter, we express the inverse bid function as a linear combination of the first P Chebyshev

polynomials (we use P = 25), scaled to the interval [b, r]. The choice variables in our programming

problem are, therefore, P Chebyshev coefficients, the signal cutoff, and the value of the low bid (b). We

pick a fine grid {xj}Ji=1 with J = 500 points on the interval [b, r]. Then we solve for the bid functions

(more precisely, the Chebyshev coefficients) and the signal cutoff using

arg min
{b,β∗−1,s′∗}

J∑
j=1

g
(
β∗−1(xj)

)2
s.t. (2) and (3), (4)

where g
(
β∗−1(b)

)
is defined to be the left-hand side of equation (1). This nonlinear programming problem

is solved using the SNOPT solver called from the AMPL programming language. We give more details

about the numerical methods in Appendix A.12

2.2. Entry Rights Auctions

When entry is regulated and suppliers have some information about what their costs are likely to be, a

straightforward way to choose the firms that will be allowed to bid for the contract is to use an initial

auction to allocate a fixed number of rights to participate in a second-stage auction for the contract (Ye

(2007)). Before the first stage, the procurer announces the number of suppliers that will be selected to

participate in a (second-stage) auction for the contract and the reserve price in that auction. In the first

stage of our ERA, each supplier i receives its signal si and submits and pays a non-negative bid, given

by a function γ∗(si), for the right to participate in the second-stage auction. The highest n bidders are

selected to participate in the second stage.13 In the second stage, the procurer pays each of the selected

entrants K to cover their entry costs, and the selected firms incur these costs and find out their true

costs of completing the contract. The procurer also publicly announces the value of the (n+ 1)st highest

12We assume that suppliers are ex-ante symmetric, but this procedure can also be used to solve for equilibria when suppliers
belong to certain discrete types. However, a procedure for finding all of the equilibria in an asymmetric FPAFE model
remains a topic of ongoing research.

13We assume that there is no reserve price in the first-stage auction, as, given the all-pay nature of the auction, a reserve
price might lead some suppliers being unwilling to participate in the mechanism at all. However, it is possible that a
first-stage reserve price could be used to improve the performance of the ERA beyond the gains that we currently identify.
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first-stage bid.14 The second-stage auction uses a first-price format with the pre-announced reserve price, r.

However, as discussed by Ye (2007) any standard auction format used in the second stage (i.e., one where

the firm with the lowest bid wins the contract and a firm with the highest possible cost pays nothing),

will generate the same expected payoffs for all parties, and therefore the same incentives in the first stage,

as long as entrants have symmetric beliefs about their rivals and the first stage has selected the firms with

the lowest costs. We assume a first-price format because it reveals an interesting difference in bidding

behavior between the FPAFE and the second stage of an ERA with at least two entrants.15

The first-stage auction is therefore a binding all-pay auction with an entry subsidy. Some explanation

for why we model the ERA in this way is required. As shown by Ye (2007) in his Proposition 5, in an

all-pay auction, there will be a unique, symmetric pure strategy equilibrium where the first-stage bid

function, γ∗(s), is a strictly decreasing function of the cost signal, so that a firm with a lower cost signal

will bid more, when the entry subsidy is sufficiently large.16 This monotonicity property is important

because it guarantees that the selection of entrants into the second stage will be efficient. An entry subsidy

equal to the due diligence cost K is sufficient for this property to hold, and, by Ye’s Proposition 6, the

level of the subsidy does not affect either the procurer’s or the bidders’ total payoffs from the mechanism

as long as equilibrium first-stage bids are strictly decreasing, as more generous subsidies are exactly offset

by higher first-stage bids. A corollary of this argument is that none of our efficiency or procurement

cost comparisons would change if we considered slightly lower subsidies that also gave rise to monotonic

first-stage bid functions.

In contrast, a strictly decreasing equilibrium first-stage bid function might not exist if we considered a

first-round format that operated as either a uniform price auction (e.g., the n selected entrants would

each pay the (n+ 1)st highest bid) or a discriminatory auction where only the selected entrants pay their

bid. As shown by Ye (2007) in his Proposition 3, first-round bid functions will be strictly decreasing

14Publicly revealing the (n+ 1)st highest bid in the first stage, but not the winning bids, ensures that bidders enter the
second stage with symmetric beliefs about the distribution of their rival entrants’ costs, which helps to ensure the efficiency
of the second-stage allocation and the revenue equivalence of different second-stage formats. Otherwise beliefs about rivals’
costs will depend on an entrant’s own signal and so they will not be symmetric. As pointed out by a referee, it is unclear
whether the procurement cost or efficiency performance of the ERA would change significantly if this information was not
revealed, but it would certainly complicate our analysis.

15We exploit payoff equivalence so that we can verify our solutions are accurate by considering a second-stage auction that
operates in a second-price format where we do not need to solve for Chebyshev-approximated bid functions.

16Fullerton and McAfee (1999) also show how an all-pay auction with an entry subsidy induces efficient entry into the
related mechanism of a research tournament. See Ye (2007) for an extensive discussion of the differences between the
Fullerton and McAfee model and the type of model considered here.
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in these formats only if, in the first stage, a bidder’s expected gain from participating in the second

stage conditional on being the marginal (i.e., nth) selected entrant is strictly decreasing in the cost signal.

Whether this will be the case will depend on both n and the specifics of the cost and signal distributions

considered, and we have found ranges of signals over which this monotonicity property does not hold for

some of the parameters that we consider in this paper. However, if the property does hold, then both

efficiency and the expected payoffs of all parties should be the same as under the all-pay format, so it

is still insightful to use the all-pay format even if it is used less frequently than other formats in the

real-world.

We are interested in the symmetric Bayesian Nash equilibrium where the first-round bidding strategy

γ∗(·) is monotone in the signal and the second-round bid function β∗(·; s) is monotone in the cost for

every possible value of the revealed (n+ 1)st highest first-round bid. Note that in such an equilibrium,

revealing the (n+ 1)st highest bid is equivalent to revealing the (n+ 1)st lowest signal s. Thus, entrants in

the second round use Bayes’ Rule to compute the distribution of the costs of any one of their opponents

as FC|S≤s(·), with density fC|S≤s(·).

The second-stage bid function β(·; s) solves the differential equation

β∗′(c; s) = (n− 1) (β∗(c; s)− c)
[

fC|S≤s(c)

1− FC|S≤s(c)

]
,

with the boundary condition β∗(r; s) = r. To solve for the bid function γ∗(·), note that the profit of a

bidder with cost c who is invited to enter the auction, when the (n+ 1)st signal is s, is, in the case of a

second-round auction operating in a first-price format,

Π(c; s) = (β∗(c; s)− c)
[
1− FC|S≤s(c)

]n−1
,

where we are exploiting the fact that the entry cost is being fully subsidized by the procurer.

The first-stage bid function γ∗(s) should solve

γ∗(s) ≡ arg max
g

∫ smax

γ∗−1(g)

∫ c

c

Π(c; s)dFC|S=s(c)dFS(n:N−1)(s)− g,

where FC|S=s(·) is the conditional distribution of the cost given a signal of s and FS(n:N−1)(·) is the
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distribution of the nth highest signal of the remaining N − 1 bidders, with pdf fS(n:N−1)(·). Solving this

maximization problem and imposing that in equilibrium g = γ∗(s) gives the differential equation

γ∗′(s) = −
∫ c

c

Π(c; s)fS(n:N−1)(s)dFC|S=s(c),

with boundary condition γ∗(smax) = 0. As entry is subsidized, the integrand on the right-hand side is

always positive (a selected firm cannot lose money in the second stage because the entry subsidy covers the

entry cost), so the first-stage bid function will be monotonically decreasing in s. The total procurement

cost will be equal to the price paid in the second round plus the sum of the entry subsidies for the n

entrants less the sum of the first-stage bids.

The value of n, the number of firms selected for the second stage, plays an important role in the

ERA, and is chosen by the procurer. So that the first stage is meaningful, it is natural to assume that

1 ≤ n < N .17 If n = 1, then the procurer selects one firm in the first stage and effectively makes that firm

a take-it-or-leave-it offer to complete the project at the second-stage reserve price r (we assume that the

chosen firm would still have to pay the entry cost even if it faces no competition in the second stage).

While this case may seem somewhat trivial, this is exactly what an efficiency-maximizing procurer would

like to do when bidders are well-informed about their costs, because the firm with the best signal will

be the one that should be selected to complete the project with high probability. Therefore for the rest

of this section we allow for the possibility that n = 1, but in the empirical application we will restrict

ourselves to allowing only 2 ≤ n < N . As we find that the ERA outperforms the FPAFE, changing this

constraint could only strengthen our conclusions.

2.3. Efficiency of Bidder Entry

We now compare the efficiency of the ERA and the FPAFE using an example to illustrate how the

advantage of fixing the number of entrants depends on how well informed bidders are about their values

before they pay the entry cost. We say that a mechanism is more efficient when the expected social costs

of completing the project (the cost of the auction winner or c0 if there is no winner, plus the sum of

17Considering a case where all suppliers are invited to participate in the second stage (n = N) would involve no competition
in the first stage, so all bids would be zero. In essence, the procurer would subsidize the entry costs of all the potential
suppliers and then run a standard FPA in which everyone knows their true costs. For the parameters that we look at in
Section 5 choosing n = N would not be optimal.
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entry costs) is lower than in the other mechanism. Recall from the discussion in the Introduction that

while entry strategies in the FPAFE are optimal from an efficiency perspective whether or not signals

are affiliated with true costs (Levin and Smith (1994), Gentry and Li (2012)), if a potential bidder’s

entry strategy is only allowed to depend on that firm’s private information, there may be an efficiency

advantage to fixing the number of entrants, for example through an ERA. Doing so will help overcome

the problem that conditioning only on a bidder’s own private information will result in uncoordinated

entry, and possibly too many or too few entrants.

It is straightforward to show that an ERA must be more efficient when either signals are completely

uninformative, as in the LS model, or completely informative, as in the S model. In the former case,

Milgrom (2004) p. 225–227, shows this result.18 In the case of the S model, efficiency requires that only

the firm with the lowest cost signal enters (assuming this signal is less than c0), and this is achieved

through an ERA with n = 1 but cannot be guaranteed in any mechanism where entry decisions are not

coordinated.

The situation is more complicated when signals are partially informative. An ERA, where the number

of entrants is fixed in advance, does not allow the number of entrants to depend on the private information

that suppliers have about their costs, which is correlated with how valuable their entry is likely to be

from an efficiency perspective. To illustrate, consider a specific example where there are four suppliers

with costs distributed lognormally with location parameter µC = −0.09 and scale parameter σC = 0.2 (so

that the mean cost is 0.93 and the standard deviation is 0.19). We assume that c0 and the reserve in the

FPA and the second round of the ERA are equal to 0.85. We truncate the costs to the interval [0, 4.75].

K = 0.02 and Si = Ci · exp (εi), where εi ∼ N(0, σ2
ε ). Initially we assume that σε = 0.2.

For these parameters, the equilibrium signal threshold in the FPAFE would be 0.829 and, on average,

1.46 suppliers would enter. An ERA designed to maximize expected efficiency, without knowledge of what

suppliers’ signals are, would select a single entrant. To illustrate why the FPAFE might be more efficient,

suppose that the signals of the four potential entrants are {0.78, 0.79, 0.80, 0.90}. Given these signals,

expected efficiency would be maximized by having the three firms with the lowest signals enter (expected

social costs are 0.812), which in this example is what happens in the FPAFE, rather than just the firm

18The results reflects the fact that when signals are uninformative, the sum of the expected cost of the lowest cost entrant
plus total entry costs will be convex in the number of realized entrants either in an FPAFE or when a fixed number of
entrants is chosen randomly by the procurer. Under the LS assumptions, the expected cost of the lowest cost firm among
n will be the same in both of these cases.
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with the lowest signal, which is what happens in the ERA (expected social costs 0.823).

Given these parameters, the FPAFE also dominates in expectation (i.e., integrating out over all

possible realizations of suppliers’ cost signals). To show how this result relates to the precision of the

suppliers’ information, the top panel of Figure 1 shows the percent decrease in expected social costs from

using an ERA rather than an FPAFE, allowing for either n = 1, 2, or 3 in the ERA. Positive numbers

reflect the ERA outperforming the FPAFE, while negative numbers reflect the FPAFE doing better. The

solid line indicates the gain from using an ERA with n chosen to maximize efficiency, so that it marks the

upper envelope of the lines for the individual ERAs. On the horizontal axis, we measure the precision of

information by a parameter α ≡ σ2
ε/ (σ2

ε + σ2
C) which varies from 0 to 1.19 Holding σC fixed, as α→ 1,

the model will tend towards the informational assumptions of the LS model, and as α → 0, it tends

towards the informational assumptions of the S model. The other parameters are the same as in the

preceding example. The middle panel shows the expected cost of completing the project for each of these

mechanisms (the cost is c0 if no bidder submits a bid below the reserve price), while the bottom panel

shows the expected number of entrants in the FPAFE and the efficiency-maximizing ERA.

When α is close to 0 or 1, an ERA is more efficient in expectation when n is chosen appropriately.

However, for values of α between 0.45 and 0.7 the FPAFE is more efficient than any of the ERAs. Whether

the FPAFE does better because it economizes on entry costs or lowers the expected cost of completing

the project depends on the value of α, because this affects how many firms the ERA should select for

the second stage. When α = 0.5, the optimal n is 1 and we are in the case considered above where the

additional entry under the FPAFE lowers the expected cost of completing the project by enough to lower

social costs. When α = 0.6, a different logic applies. In this case, the optimal ERA has n = 2, and

there is higher expenditure on entry costs and a lower cost to complete the project than in the FPAFE.

However, because the firm with the second-lowest signal will be less likely to win in the second-stage

auction, especially if it would not have entered the FPAFE, the entry cost effect dominates and the

FPAFE is again more efficient.20 The fact that which mechanism is more efficient can depend on the

parameters, including the degree of selection, motivates us to estimate our model using real-world data on

procurement auctions.

19If the support of the lognormal distribution were not truncated, then the conditional distribution of the cost given a signal
s would be lognormal with location parameter αµC + (1− α) log(s) and scale parameter σC

√
α.

20As illustration, the supplier with the second lowest cost signal wins in the second stage of the ERA with probability 0.314
if its cost signal would have led it to enter the FPAFE and with probability 0.178 if it would not have entered the FPAFE.
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[Figure 1 about here.]

3. DATA

We estimate our model using a sample of FPAFE procurement auctions for bridge construction projects

conducted by the Oklahoma and Texas Departments of Transportation (DoTs) from March 2000 through

August 2003. This data is part of the sample originally collected and used by De Silva, Dunne, Kankanamge,

and Kosmopoulou (2008), and we detail how our sample was chosen in Appendix B. As they describe, the

data comes from all areas of Oklahoma, but only the North Texas and Panhandle regions of Texas, so

that the geographic, construction, and economic conditions are likely to be similar across the two states.

For each project, the data contain information on the number of “planholders”, which are the

construction companies that were interested enough in the project to purchase, at a price of about $100,

the detailed plans for the project developed by the state’s engineer. The list of planholders is publicly

available prior to the auction and we use the number of planholders to define N , the commonly known

number of potential suppliers for the project.

[Table 1 about here.]

Summary statistics for the sample are presented in Table 1. On average, the number of potential

suppliers, the number of entrants, the level of unemployment, and the number of entrants (observed

bidders in the FPAFE) are significantly (at the 1% level) higher in Texas than Oklahoma, but the entry

rate (measured by the proportion of planholders that submit bids) is not significantly different across

the states. One feature of the data is that the number of entrants can vary significantly across auctions

even when the number of planholders is fixed. For example, out of the 51 Oklahoma auctions with 6

planholders, there are 2, 6, 11, 13, 14 and 5 auctions with 1 through 6 observed bidders respectively. If

entry is costly, which is suggested by the fact that around one-third of planholders ultimately chose not to

submit bids, this type of variation in the number of entrants suggests that coordinating entry may help to

increase efficiency.

Since we will apply the FPAFE model presented in Section 2 to these data, we briefly discuss how far

its major assumptions are appropriate in this setting. The assumption of independent private costs is

common in the literature studying highway procurement auctions (e.g., Krasnokutskaya and Seim (2011),
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Li and Zheng (2009) and Jofre-Bonet and Pesendorfer (2003)). We also follow much of the literature in

assuming that bidders are ex-ante symmetric (see, for example, Li and Zheng (2009)).21 Lastly, our model

assumes that there is a commonly known reserve price, which is required to prevent suppliers wanting to

submit infinite bids when there is some probability that no other firms enter. Therefore we assume that

the DoT would reject bids that were too high; specifically we assume that the DoT uses a reserve price

equal to 1.5 times the engineer’s estimate of the cost of the project, even though the DoTs actual policy

for rejecting bids is not public information.22 We choose this relatively high price so that the number

of auctions that we have to drop because the DoT accepted bids above this assumed reserve price is

very small (2 in OK, 4 in TX).23 In our data, we also observe that the DoTs reject 28 winning bids that

are below this reserve price. However, many of these auctions have winning bids that are well within

the range that we see the DoTs accepting; for example, the average rejected winning bid is 0.96 times

the engineer’s estimate, which is close to the average accepted winning bid in the data, and only 5 of

the rejected winning bids are above 1.2 times the engineer’s estimate. We assume that these must have

been rejected for reasons other than the level of the bid, and so we also exclude these auctions from our

estimation sample. In Section 5, we consider whether changing the assumed reserve price could alter our

conclusions about how well the ERA and an FPAFE perform.

4. ESTIMATION

In this section, we describe how we estimate the model and detail the additional parametric assumptions

we make on the specification of the model in order to take it to the data. Our estimation approach is

based on matching a set of moments predicted by our model, which we calculate using simulations and

importance sampling, to a set of moments observed in our data (e.g., the proportion of auctions where 5

suppliers enter). Li and Zhang (2010) provide an earlier example of the estimation of a first-price auction

21The De Silva, Dunne, Kankanamge, and Kosmopoulou (2008) data does contain an estimate of capacity utilization and
bidder distance from the project site, but for the auctions that we look at these supplier-specific variables have almost no
power when trying to predict which supplier wins the auction. For example, in a linear probability model with auction
fixed effects, where the dependent variable is a dummy for the winning bidder, these variables are both individually and
jointly insignificant and the within-auction R2 is only 0.0005.

22An alternative approach (e.g., Li and Zheng (2009)) is to assume that the government acts as an additional bidder if only
one firm enters.

23If our assumption about the reserve price is correct we might still expect to see a few bids submitted above the reserve
price if a supplier decides to enter and finds out that it has a cost that is greater than the reserve price.
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model with non-selective entry using a moment-based approach.24

4.1. Model Setup and Specification

We estimate a fully parametric version of the FPAFE model from Section 2. We normalize the cost

parameters by the engineer’s estimate of costs, so that a supplier cost of 0.9 means 90% of the engineer’s

estimate, and an entry cost of 0.03 means that it costs 3% of the engineer’s estimate for the entire project

to enter the auction.25 Allowing for the a subscript to denote a particular auction, we assume that costs

in an auction a are drawn from a truncated lognormal distribution, FCa(·), with location parameter µCa

and scale parameter σCa. We truncate costs to the interval [0, 4.75], but, as the average winning bid is

0.94, this truncation has essentially no effect on the distribution of costs for plausible parameters. We

assume Si = Ci · exp (εi), where εi ∼ N(0, σ2
εa) and εi independent across suppliers. However, rather than

estimating the values of σ2
εa, we estimate αa where αa ≡ σ2

εa/ (σ2
εa + σ2

Ca).
26

As is implicit in the notation, we allow for parametric, auction-specific observed and unobserved

heterogeneity in the structural parameters θa ≡ {µCa, σCa, αa, Ka}. Previous research (e.g. Krasnokutskaya

(2011) and Bajari, Hong, and Ryan (2010)) has found both types of heterogeneity in the means of the cost

distribution for road construction contracts, and it is plausible that the variance of these distributions

and the level of entry costs are also heterogeneous. Note, however, that we assume that within an auction

bidders are symmetric in that they draw their project costs and signal noise from the same distributions

and that they have the same cost of entering the auction. The parameters for auction a are drawn from

independent truncated normal distributions with means that depend on observed covariates Xa. Letting

TRN(µ, σ2, c, c) denote a normal distribution with mean µ and variance σ2 and truncation points [c, c],

24Specifically Li and Zhang (2010) use an indirect inference method where they match parameters with those from an
auxiliary model. Li (2010) provides additional information on this type of approach.

25It is natural to assume that larger projects will require more due diligence and may also require the bidders to post
larger bonds that guarantee that they will complete the work. Of course, the imposed linearity of the entry cost with the
engineer’s estimate is an assumption.

26Estimating the distribution of αa means that we are directly estimating how the degree of selection differs across auctions.
Understanding this variation is less straightforward when estimating separate distributions of σεa and σCa.
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we assume that

µCa ∼ TRN
(
XaβµC , ω

2
µC
, cµC , cµC

)
σCa ∼ TRN

(
XaβσC , ω

2
σC
, cσC , cσC

)
αa ∼ TRN

(
Xaβα, ω

2
α, cα, cα

)
Ka ∼ TRN

(
XaβK , ω

2
K , cK , cK

)
.

(5)

In our setting, Xa is a vector consisting of a constant, the unemployment rate in the county where the

project is located in the month that the auction is held (in percentage points), and a dummy variable

equal to 1 for auctions in Texas. We denote the coefficients for these covariates as β0,×, β1,×, and β2,×,

respectively, where × can be µC , σC , α, or K. We only allow unemployment to affect the location

parameter of the cost distribution, setting β1,σC = β1,α = β1,K ≡ 0. The Texas dummy coefficient could

capture differences in the procurement process across the states, which might affect entry costs or how

much suppliers know about their costs, as well as the costs of completing the project.

To make our estimation approach work, we assume that we, the researchers, know the truncation

points.27 For the cost parameters we choose very wide bounds that should have little effect on the parameter

distributions for plausible parameters. For example, we truncate Ka at 0.04% and 16% of the engineer’s

estimate, where the industry literature (cited in our discussion of the results below) indicates that values in

the range 1–2% are likely. The parameters to be estimated are Γ ≡
{
βµC , βσC , βα, βK , ω

2
µC
, ω2

σC
, ω2

α, ω
2
K

}
.

4.2. Importance Sampling

We estimate the model using a simulated method-of-moments estimator and we use importance sampling

to approximate the moments predicted by a given set of parameters (Ackerberg (2009)). The motivation

behind using importance sampling is that it would be too costly to re-solve a large number of FPAFE

models each time one of the parameters changes. Instead, with importance sampling, we can solve a very

large number of games once and then only reweight these outcomes as we change the parameters.

To explain the way that we use importance sampling, let ye = f(Xa, θa) denote an expected outcome of

an auction, such as an indicator for whether the winning bid lies between 0.8 and 0.9 times the engineer’s

estimate. Calculating ye in our setting is expensive because we have to solve the FPAFE and then simulate

outcomes. The density of θ, given Xa and Γ is φ(θ|Xa,Γ). The expected value of the outcome given Xa

27As noted by Ackerberg (2009), we would not be able to use importance sampling as part of our estimation approach if the
truncation points depended on the parameters that we are estimating.
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and Γ, which we can label E(ye|Xa,Γ), is

E(ye|Xa,Γ) =

∫
f(Xa, θa)φ(θa|Xa,Γ) dθa.

As this integral does not generally have an analytic form, one could approximate it for a given value of

Γ using simulation by drawing S samples of θ from the distribution φ(θ|Xa,Γ) and computing f(Xa, θas)

for each draw θas so that

E(ye|Xa,Γ) ≈ 1

S

S∑
s=1

f(Xa, θas).

However, this calculation would require solving a new set of S auctions whenever one of the parameters in

Γ changes. The importance sampling methodology exploits the fact that

∫
f(Xa, θa)φ(θa|Xa,Γ) dθ =

∫
f(Xa, θa)

φ(θa|Xa,Γ)

ψ(θa|Xa)
ψ(θa|Xa) dθ,

where ψ(θa|Xa) is an importance sampling density that has the same support as φ(θa|Xa,Γ), but does

not depend on unknown parameters. In this case we can calculate f(Xa, θas)
28 for a large number of

draws taken from ψ(θa|Xa), and then calculate an approximation to E(ye|Xa,Γ), where we only have to

re-compute the weights φ(θa|Xa,Γ)
ψ(θa|Xa)

when Γ changes, i.e.,

E(ye|Xa,Γ) ≈ 1

S

S∑
s=1

f(Xa, θas)
φ(θas|Xa,Γ)

ψ(θas|Xa)
. (6)

To estimate the parameters, we group the auctions observed in the data into 32 groups, based on

the interaction of the number of plan-holders (N = 4, . . . , 11), the state (OK or TX), and whether the

unemployment rate in the county is above or below the median level for the state in the month that

the auction was held. For each of these groups, we create moments that measure the difference between

average observed outcomes (ya) and expected outcomes (E(ye|Xa,Γ)) for the auctions in the group. The

outcomes consist of indicator variables for the number of firms submitting bids, indicators for whether the

winning bid lies in one of 15 discrete bids (we divide the interval [0, 1.5] into 15 equally sized bins) and

the proportion of all suppliers’ bids that lie in each of these bins (as some suppliers do not enter, the sum

28For each solved auction (i.e., for a given draw of θas) we use a single simulation as an unbiased estimator of f(Xa, θas).
We could, of course, use more draws to increase efficiency.
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of the proportions across the bins for a given group will be less than 1).

We estimate Γ by minimizing the squared sum, across groups and moments, of these differences, which

is a consistent method of moments procedure where the different moments and the different groups receive

equal weighting. We use ψ(θa|Xa) ≡ φ(θa|Xa, Γ̃), where Γ̃ is given in Table 2 and φ(·) denotes the truncated

normal model given in (5), as our importance sampling density. For each group of auctions, we take

NS draws of θ from this distribution and solve the associated FPAFE model, calculating ye = f(Xa, θa)

using simulation, where NS is equal to 100 times the number of auctions in the group. We choose 50 of

these simulated auctions for each of our auctions to calculate E(ye|Xa,Γ) using equation (6), as part of

the estimation procedure. In Appendix C we provide some Monte Carlo evidence that an importance

sampling-based estimator can perform well for this model even using a smaller number of draws (as few

as five) for each auction. As is usual when using importance sampling, accuracy is improved by using

an importance sampling density which is close to the true density. In practice, we chose the starting

parameters reported in Table 2 based on a large number of initial runs, using more diffuse importance

sampling densities, which indicated that these parameters values would be close to the parameters that

we would estimate in both states.

We calculate standard errors using a bootstrap procedure. For a given bootstrap replication, we

re-draw auctions from each of our 32 groups with replacement. For each of these auctions, we choose a

new set of 50 simulated auctions, from our large sample of NS for that group, to use in the importance

sampling calculation. In this way, the reported standard errors should account for the fact that our

estimates are dependent on the particular set of importance sampling draws that we use to calculate the

moments.

[Table 2 about here.]

4.3. Identification

Gentry and Li (2014) formally study non-parametric identification in a broad class of selective entry

auction models where potential bidders first simultaneously decide whether to enter the model based on

signals about their values and then compete in a standard auction, such as a first-price auction. With

no unobserved heterogeneity, they show that exogenous sources of variation in the equilibrium level

of entry can identify the model. When the sources of variation in entry are sufficiently rich (e.g., a
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continuous variable that shifts entry costs or a continuously varying reserve price with suitable support),

one obtains point identification, whereas when there is only discrete variation (e.g., in the number of

potential entrants), one obtains partial identification, although they show that the resulting bounds are

often informative.

[Figure 2 about here.]

One intuition for why the model is identified with no unobserved heterogeneity comes from the fact

that when there are few potential entrants or entry costs are very low, all potential bidders should choose

to enter with high probability. In this case, we have exogenous entry and more standard results for the

identification of value or costs distributions in auction models will hold (Athey and Haile (2002)). The

average level of entry costs and the degree of selection (equivalently, the informativeness of suppliers’

signals) will then be identified from how the amount of entry and the distribution of bids change as the

number of potential entrants rises. Both entry costs and the degree of selection (parameterized by our α)

affect all of the outcomes that we can observe in the data (the distribution of the number of entrants, the

distribution of bids and the distribution of the winning bid). This can be seen in the two rows of Figure 2

which show how these distributions change as we change α from 0.1 (a high degree of selection) to 0.5 to

0.9 (a low degree of selection) and K from 0.005 to 0.01 to 0.02. We draw these figures holding the other

parameters fixed at their mean estimated values for auctions in Oklahoma with an unemployment rate of

3%, and we assume that there are seven potential entrants.29

As α increases, there is more entry on average (potential suppliers place less weight on their signals

when forming their posteriors so that suppliers with high (bad) signals are more willing to enter). However,

suppliers with very low costs become less likely to enter (it is more likely that they receive a bad signal),

and those that do enter tend to face less competition from other low cost entrants so that their markups

tend to increase. This tends to shift the distribution of winning bids slightly to the right. The distribution

of all bids also shifts slightly to the right, as more high cost suppliers tend to enter. As entry costs increase,

fewer firms enter but, because of selection, the firms that do enter tend to have lower costs. On its own

this would tend to shift the distribution of the bids to the left. However, because they expect to face less

competition, entering suppliers will tend to submit higher markups. The increase in markups tends to

29Specifically, we set the location of the value distribution equal to −0.0963, the scale parameter equal to 0.0705, α (when
we vary K) equal to 0.4979 and K (when we vary α) equal to 0.0147. The winning bid distribution is drawn conditioning
on at least one potential bidder entering.



Regulating bidder participation in auctions 23

shift the distribution of bids, as well as the distribution of winning bids, to the right, and, in this case, we

can see that this effect actually tends to dominate. As we shall see in Section 5 below, the markups that

suppliers with moderately high costs submit in an FPAFE play an important role in our counterfactual

comparison with an ERA.

Gentry and Li (2014) show that their identification results extend to a case where there is unobserved

heterogeneity that affects both the distribution of values/costs and the level of entry costs, as long as

there is still some observed exogenous source of variation in the equilibrium level of entry. Our model,

where we allow for independent sources of unobserved heterogeneity to affect the distribution of costs,

entry costs, and the degree of selection is not included in the class of models that they consider and our

parametric assumptions are likely to be important. To provide some additional transparency into how the

moments that we use in estimation identify the parameters of our model, we follow a recent paper by

Gentzkow and Shapiro (2013). They suggest a method for illustrating how sensitive (locally) estimated

parameters are to particular groups of moments that are defined by a structural model.

[Figure 3 about here.]

The eight rows of Figure 3 show the absolute values of Gentzkow and Shapiro’s scaled sensitivity

parameters Λ for moments based on N = 7 potential suppliers and low unemployment in Oklahoma,

and the parameter estimates that will be presented in Section 5. Gentzkow and Shapiro define their

sensitivity parameter as Λ = ΣθγΣ
−1
γγ where θ are the parameters, γ are the moments and Σ represents the

variance-covariance matrix of the stacked vector of the parameters and the moments evaluated at the

estimated parameters. This scaling means that we can interpret the vertical axis values as telling us how

much a one standard deviation increase in a given moment would change the parameter relative to its

asymptotic standard deviation.30 Figure 3(a) shows the scaled sensitivity parameters for the constant

(β0,×) parameters, and Figure 3(b) shows them for the standard deviation (ω×) parameters. In each panel,

we show the scaled sensitivity parameters for each of the moments. The first column considers the entry

moments, with each bar corresponding to the moment that measures the probability of seeing a particular

number of entrants. The second column considers the bid distribution, and each bar corresponds to a

moment that measures the probability that a supplier’s bid lies in the corresponding bin (e.g., 0.7–0.8,

30When interpreting the values on the y-axis it is important to remember that the combination of N = 7, OK, and low
unemployment is only one of the 32 N -state-unemployment level combinations that we use in estimation. The patterns
are broadly similar but not identical for the other groups.
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0.8–0.9, etc.). The final column considers the distribution of the winning bid. Figure 3 also overlays the

simulated values of the associated moments, at the estimated parameters, to put the horizontal axis into

perspective; these moments are scaled so that they fit on the figures and the value of the moment should

not be read from the vertical axis. All distributions are conditional on at least one entrant, since this is

what we observe in the data.

The sensitivity parameters show two intuitive patterns. First, the parameters tend to be most sensitive

to the moments that capture the most observations in the data (for example, 4 suppliers enter, rather

than 1 or 7 suppliers). Second, all of the parameters are somewhat sensitive to all of the moments,

reflecting how, as explained above, a parameter such as the level of entry costs will affect not only the

cost distribution of the suppliers that enter and how much entrants markup their bids. That said, the

figures suggest that for the four parameters related to α and K, the entry moments are particularly

important in the sense that their sensitivity parameters are larger. On the other hand, for ωµC and ωσC ,

the moments describing the distributions of either all bids or winning bids play a relatively greater role.

This is intuitive, as, for example, increasing both the number of auctions where suppliers tend to have

high costs and the number of auctions where they tend to have low costs, which is what happens as ωµC

increases, should tend to spread out the distribution of the winning bid without necessarily affecting the

average amount of entry. Of course, one could take these results further to try to identify more optimal

moments for estimation (for example, interactions of the amount of entry and the winning bid), but we

view this type of extension as a topic for further research.

5. RESULTS

In this section we present the estimation results and our counterfactual analysis of the impact of switching

from the observed FPAFE format to an ERA format.

5.1. Parameter Estimates

The left-hand columns of Table 3 present the parameter estimates. To interpret the location and scale

parameters together, the right-hand columns report the average across the auctions in each state of (going

down the rows) the mean of the cost distribution, the standard deviation of the cost distribution, the

value of α, and the entry cost. The mean of the cost distributions are similar in the two states, between
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91% and 92% of the engineer’s estimate. As the average winning bids are higher than this, it suggests

that the markups may be quite substantial. We will return to why this happens, and how the ERA can

help to reduce markups, in discussing our counterfactual results.

[Table 3 about here.]

Mean entry costs are 1.5% of the engineer’s estimate of the cost of the project in Oklahoma and 1.9%

in Texas. While in many industries it is hard to know what entry costs are really reasonable, in this

setting we are able to compare them with estimates from manuals that are used in the industry. Halpin

(2005) estimates that the cost of researching and preparing bids is around 0.25% to 2% of total project

costs. Park and Chapin (1992) estimate that these costs are typically about 1% of the total bid. Our

estimates therefore appear quite reasonable.

Our estimates of entry costs are also lower than those that have been estimated based on models

with no selection. For example, based on highway paving contracts in California, Krasnokutskaya and

Seim (2011) estimate mean entry costs to be approximately 3% of the engineer’s estimate, while Bajari,

Hong, and Ryan (2010) estimate them to be 4.5% of the engineer’s estimate. There are some intuitions

for why allowing for selection will tend to lower estimated entry costs. In any model, the level of the

entry cost will be identified from the fact that the marginal entrant must be indifferent between getting

some expected surplus if it enters and not paying the entry cost. Holding the entry probability of other

suppliers and the distribution of costs fixed, the expected surplus of the marginal entrant, and therefore

the estimated entry cost, will tend to be lower with selection for two reasons. First, with selection, the

other suppliers who choose to enter will tend to have lower costs than if their costs were randomly drawn,

reducing the marginal entrant’s surplus. Second, as pointed out by one of our referees, because a bidder’s

surplus is usually convex in its own type, the marginal entrant’s expected surplus will tend to be lower

when it is conditioning on an informative signal than when it has no signal.

The estimates of α suggest that entry is partially selective in this setting, with a mean α of around

0.50 in Oklahoma and 0.61 in Texas; these mean values of α correspond to the scale parameter σε of

the error distribution being approximately σC in Oklahoma and 1.3 times σC in Texas. The degree of

selection is therefore in the range where our example suggests that it is possible that the FPAFE may be

more efficient than an ERA, even though entry into FPAFEs is clearly volatile in our empirical setting.
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5.2. Regulating Bidder Entry with an Entry Rights Auction

In this subsection, we use our parameter estimates to quantify how procurement costs and efficiencies

would change if the DoTs switched from using FPAFEs to using ERAs. Throughout what follows the

procurement cost refers to the net amount that the procurer expects to pay to get the project completed.

In an FPAFE this is just the expected winning bid, or c0 if there is no winner. In the ERA it is the

expected winning second-round bid (or c0) plus the sum of entry costs less the expected sum of first-round

bids. Social costs refer to the expected sum of entry costs plus the cost of the supplier completing the

project (or c0), and a mechanism is more efficient if and only if it has lower social costs. We assume that

the cost of completing a project outside the auction is 1.5 times the engineer’s estimate and, unless we

state otherwise, this is used as the reserve price in the FPAFE and the second stage of the ERA.

In presenting the results we assume the DoTs would choose the number of entrants in the ERA to

minimize the procurement cost (n∗cost), but we will comment below on how the results are very similar

if we assume instead that the number of entrants is chosen to minimize social costs (n∗eff). The choice

of n∗cost balances several competing effects. In equilibrium, the procurer pays the full entry cost of an

additional entrant, and increasing the number of entrants will reduce the amount that any supplier bids in

the first-stage auction. On the other hand, when there are more entrants, a firm with lower costs may be

selected to complete the project and bidding in the second-stage auction will tend to be more competitive.

With the exception of the additional entry cost, the size of these different effects will depend on the degree

of selection, as an additional entrant will be more likely to win when signals are less informative.

Tables 4 and 5 present the results. Table 4 compares the outcomes of interest (social costs, procurement

costs, and the profits for an individual supplier), while Table 5 shows that the average cost of the winner,

the average winning bid and the average amount of entry under each mechanism. For the ERA it also

shows the average total expenditure on entry costs and the average revenue from first-stage bids. In both

tables, we use a range of different parameter values. The baseline case (top row) corresponds to the mean

parameters for auctions in Oklahoma (unemployment rate 4.14%) and approximately the mean number of

potential suppliers in that state (7). In the remaining rows we change the number of potential suppliers

up and down by approximately one standard deviation and each parameter, in turn, to be equal to either

the 10th or the 90th percentiles of its distribution. The parameter that is changed from the baseline is

listed in italics.
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[Table 4 about here.]

[Table 5 about here.]

For all of the parameters listed, we predict that an ERA would both be more efficient and lower

procurement costs. For the baseline parameters, both social costs and procurement costs are 2.4% lower

under the ERA. The magnitudes are broadly similar across the parameters, except when entry costs are

low (Low K ) when both the absolute and the proportional differences are small. Aggregating across all of

the auctions in both states, by taking a draw of the parameters for each of the auctions in our sample, we

predict that using ERAs would lower social costs by $7.78 million (2.49%) and lower procurement costs by

$8.03 million (2.50%). For 3.5% of these draws, we predict that the FPAFE would be more efficient, but

in all of these cases entry costs are very low, α has values between 0.39 and 0.77, the efficiency advantage

of the FPAFE is small, and we also predict that the ERA would lower procurement costs, although the

procurement cost differences are small in these cases.

While improvements of around $8 million may seem fairly small, it is important to remember that

the sample we are using (contracts involving bridge work in Oklahoma and a small section of Texas)

are a very small fraction of highway contracts let by US DoTs in the years that we study: in 2007, the

public sector spent $146 billion to build, operate, and maintain highways in the US with three-quarters of

this amount spent by state and local governments (Congressional Budget Office (2011)). Moreover, the

proportional effects that we are finding are large relative to those produced by auction design changes

that are often considered. For example, for the baseline parameters setting a strategic reserve to minimize

procurement costs in the FPAFE would only lower procurement costs by 0.03%, whereas we predict that

an ERA would lower procurement costs by 2.4%.31

Interestingly, the ERA also reduces procurement costs by more than adding additional potential

suppliers, which is often viewed as providing an upper bound on what an optimal design change can

achieve.32 This can be seen in Table 4 where adding two more potential suppliers in an FPAFE to the

31We calculate the optimal reserve price by computing procurement costs on a fine grid of reserve prices with 0.01 spacing,
using 500,000 simulations to calculate expected costs in each case. Efficiency in the FPAFE falls when a reserve price
other than 1.5 (the value of c0) is used. We have also found that an optimal reserve price in the second stage of the ERA
can only improve its performance by a trivial amount.

32Bulow and Klemperer (1996) show that in an IPV model with a fixed number of symmetric bidders, an additional bidder
is more valuable to the seller than being able to implement an optimal auction design. This theoretical result does not
hold with endogenous entry, but its logic is often used to motivate the importance of trying to generate additional interest
in the assets being auctioned (e.g., Klemperer (2002)).
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baseline case (changing it to the High N case) lowers procurement costs by 0.6% of the engineer’s estimate,

compared to a 2.4% reduction from switching to an ERA.

Table 5 shows that in most cases the ERA is more efficient because there is both less entry and

the average cost of the winner is lower. The fact that it can have both of these advantages reflects the

uncoordinated nature of entry in the FPAFE: even though more firms may enter an FPAFE on average,

there may be instances where no firms, or only one firm, enter(s) and at least one additional entrant,

who will always be in the ERA as n∗cost = 2 for these parameters, might decrease the expected cost of

completing the project substantially.33 However, most of the ERA’s efficiency advantage comes from lower

entry costs (for example, this accounts for 91% of the reduction in social costs in the base case). This

fact helps to explain why the one case in Table 4 where the social costs are almost identical under the

two mechanisms is where entry costs are very low (Low K, where K equals just 0.2% of the engineer’s

estimate). In this case, the additional entry into the FPAFE lowers the expected cost of completing the

project, while increasing entry costs by a relatively small amount. However, even in this Low K case, the

ERA is still more efficient.

A natural question is how well the ERA that we consider does relative to a mechanism that was

designed to maximize efficiency. As already noted, one weakness of our ERA is that the number of

selected entrants does not depend on suppliers’ signals. Another weakness, relative to a sequential search

procedure, is that the procurer cannot get bids from more firms if the ones for whom it initially chooses

to pay the entry cost turn out to have high costs. Based on our results so far, it is unclear whether these

weaknesses are important or not. To investigate this further, we can compare social costs under our ERA

and under two more efficient but hypothetical alternatives.34 In the first alternative, which we can call

the “signal-dependent ERA” (S-D ERA), we allow the procurer to choose the number of entrants with

knowledge of suppliers’ signals but without using any information on the costs of the selected entrants. In

the second alternative, which we can call the “sequential search procedure” (SSP), we consider a procurer

who knows the suppliers’ signals and then approaches suppliers sequentially, in ascending order of their

33For the baseline parameters, there is no entrant into the FPAFE in 1% of simulated auctions, in which case the procurement
cost is 1.5. This would only happen if both of the selected firms had costs above 1.5 in the ERA and this happens with
almost zero probability, and never in our simulations. If we condition our comparison on cases where at least one firm
enters the FPAFE, so that we ignore simulations where the outcome of the FPAFE is particularly inefficient, the expected
winner’s cost is very similar for the ERA and the FPAFE, but the overall differences in social costs, procurement costs
and bidder profits are almost identical to those shown in Table 4.

34The alternatives are hypothetical in the sense that we ignore the fact that it might be difficult or very expensive for the
procurer to get suppliers to report their signals or costs truthfully.
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signals. The procurer asks an additional supplier to enter if, based on its signal and the lowest cost to

complete the project of the suppliers that have entered already, the procurer expects that its entry will

reduce the cost of completing the contract by enough to offset the additional entry cost.

For the baseline parameters, we find that our ERA performs very well compared to these hypothetical

alternatives. Social costs for the FPAFE, ERA, S-D ERA, and SSP are 0.886, 0.865, 0.863 and 0.857,

respectively. The ERA with fixed n therefore achieves 91% and 72% of the efficiency gains of switching

from the FPAFE to the S-D ERA and SSP respectively, while maintaining the attractive elements of

simultaneous bidding and being quite straightforward to implement. Qualitatively, these comparisons also

hold for the other parameters in Table 4: with the exception of the Low K case, where all mechanisms

have very similar social costs, the fixed n ERA achieves at least 78% of the gains that would result from

switching from the FPAFE to the S-D ERA, and at least 60% of the gain from switching from the FPAFE

to the SSP.

As can be seen in Table 4, the benefits of the increased efficiency of the ERA often accrue entirely to

the procurer, with the profits of the average supplier tending to fall slightly (the percent changes in the

supplier’s profits are non-trivial because supplier profits are quite small under either mechanism), while

procurement costs tend to fall by slightly more than the gain in efficiency. Aggregating over the whole

sample, total supplier profits fall by $242,000 (2.82%) under the ERA. An exception is when entry costs

are high (High K ), as the bidders also benefit under the ERA, but even in this case the procurer benefits

more than the bidders do.

To understand why procurement costs fall, recall that in an FPAFE the procurer only pays the winning

bid whereas in an ERA it pays the winning bid and the entry costs of all of the suppliers admitted to the

second stage, but also receives the first-stage bids of all of the suppliers. Table 5 shows that in general

first-stage revenues and the entry costs roughly offset from the procurer’s perspective so that the fall in

procurement costs comes primarily from the fact that winning bids tend to be significantly lower in the

second stage of the ERA than in the FPAFE.

Winning bids are lower because the winner’s markup tends to be lower in the ERA, not because the

winner’s cost is lower. Figure 4 plots the distribution of the winner’s cost and the procurement cost for

both mechanisms at the baseline parameters. The winner cost distributions are very similar in shape for

the two mechanisms, but the distribution of procurement costs for the FPAFE has a more pronounced
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right tail which is driven by the fact that winners with relatively high costs have high markups in the

FPAFE.35

[Figure 4 about here.]

The difference in markups for the baseline parameters can be seen more clearly in Figure 5, which

compares the FPAFE bid function and the average of the bid functions from the second stage of the ERA

with n∗cost = 2.36 The diagrams include the pdfs of the cost distribution of a typical entrant into each

mechanism to indicate which parts of the bid curve are the most empirically relevant (Figure 4 shows the

pdf for the winning bidder). The markups in the ERA are slightly larger than in the FPAFE for low-cost

bidders, but they are smaller for higher costs, which the majority of bidders, and even a large share of

winning bidders, have. This leads to an average markup for the winning bidder in the FPAFE of 9.4%

(ignoring cases where there is no sale), whereas the average markup for the winning bidder in the second

stage of the ERA is only 6.8%.

Markups are lower in the ERA even though for the baseline parameters a bidder should expect to face

2.9 rival bidders in the FPAFE and only one rival bidder in the second stage of the ERA with n∗cost = 2.

This reflects how the lack of coordination in entry affects bidding incentives. In the FPAFE, a bidder

with a high cost knows that he is most likely to win when no other firms enter, in which case he should be

submitting a bid at the reserve price; even though it is unlikely that no other firms enter, the possibility

leads him to submit a high bid in equilibrium.37 On the other hand, in an ERA with n∗cost = 2 a bidder

knows that he can only win if he submits a lower bid than his competitor. Therefore, as a bidder’s cost

increases he will tend to bid more aggressively (i.e., with a lower markup), as can be seen in Figure 5

where the average ERA markup is monotonically decreasing in the bidder’s cost for all costs below 1.2.38

35The left end of the procurement cost distributions in Figure 4(b) are also of note. In an FPAFE there is a single bid
function for given parameter values (θa) because entrants do not know how many other planholders are bidding. This bid
function maps costs to the interval [b, r], and the sharp cutoff in the kernel density for the FPAFE corresponds to b. On
the other hand, bid functions in the ERA depend on the realization of s, and this causes b to vary depending on signals
even when the parameters of the auction are fixed. As a result, there is no sharp cutoff in the density for the ERA.

36The bid function in the second stage of the ERA depends on the value of the highest losing bid in the first stage. Here the
average bid function in the ERA is defined by β(c) ≡

∫
β(c; s)fS(s) ds, where fS(·) is the density of the (n+ 1)st lowest

signal.
37That high-cost bidders bid close to the reserve may suggest that the level of the reserve plays an important role in

determining why average winning markups in the FPAFE are so large. However, Figure 4 shows that the distribution of
the winner’s cost is usually not in the region where bids are close to the reserve even if it is often in the range where
markups are high. For the baseline parameters, reducing the reserve price to 1.1 only reduces the average winner’s markup
to 8.3% (compared to 9.4% when the reserve is 1.5), and increasing it to 4.75 (the maximum of the support of the cost
distribution) only increases it to 10.9%.

38Above 1.2, the markup increases reflecting the shape of the upper tail of the cost distribution. However, it is very rare for
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[Figure 5 about here.]

We can also compare the FPAFE and ERA assuming that the number of selected firms in the ERA

is chosen to maximize efficiency (n∗eff). Up to integer constraints, n∗eff balances the cost of an additional

entrant against the possible gain that will come from lowering the cost of completing the project. Given

our estimates, it turns out that using n∗eff or n∗cost does not change the results very much because, given

the integer constraint, n∗eff and n∗cost are usually the same. This is the case for all of the parameters in

Tables 4 and 5. When we draw parameters for all of the auctions in our data, there are some cases with

low entry costs where the optimal ns are higher (for example, in 12% of cases n∗cost is greater than 2 and

it takes on values as high as 6). In 17% of cases we find that n∗eff > n∗cost. However, although this is a

significant proportion of cases, we find that using n∗eff rather than n∗cost only reduces social costs slightly,

by less than $0.1 million in aggregate (recall than the advantage of the ERA with n∗cost over the FPAFE is

$7.8 million). In none of our experiments have we found a case where n∗eff < n∗cost. The intuition here is

that allowing an additional entrant reduces the bids that firms make in the first stage of the ERA, and a

procurer that seeks to minimize procurement costs therefore has an incentive to exert market power by

reducing the number of entry slots. This incentive appears to typically outweigh the incentive to reduce

second-stage markups by increasing competition. This is sensible given that, even with n = 2, markups in

the second stage of the ERA tend to be small.

Given the sizable gains of using an ERA that we estimate above, a potential puzzle is why they are not

used more often for the sort of public procurement we study here. There are several possible explanations.

First, it may be the case that the reduced supplier profits are actually harmful to the procurer in the long

run, especially when it wants to let many contracts over a number of years. In this case, it may benefit

when there are a large number of firms in the industry who are potentially interested in bidding, although,

as noted above, the benefits from increasing the number of potential suppliers in an FPAFE are quite

small in our setting. Kagel, Pevnitskaya, and Ye (2008) show that in a laboratory setting students tend

to overbid in ERAs, leading to bankruptcies. If this is true in the field as well, this might provide an

additional route by which ERAs might diminish long-run competition.

Second, in empirical settings like ours, many suppliers are relatively small companies that face liquidity

constraints, and these may be tightened by having to make binding bids into ERAs.39 A system that

the winner in the second stage of an ERA to have a cost above 1.2, so this has little effect on procurement costs.
39Following the same logic, liquidity constraints or risk aversion might tend to reduce first-stage bids, increasing procurement
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favors bigger companies may be undesirable, as one of the goals of public procurement is often to favor

smaller or minority-owned businesses (e.g., Krasnokutskaya and Seim (2011), Athey, Coey, and Levin

(2013)). On the other hand, to the extent that suppliers are also hurt by uncoordinated entry when entry

is costly, one could argue that these same concerns could also provide motivation for regulating entry.

Third, designing an ERA appropriately, in particular choosing n, may require the procurer to have

more information, for example about the distribution of costs or the entry cost, than running a FPAFE.

In our empirical setting, when we take a draw of the parameters for each of the auctions in our sample,

n = 2 is the procurer-optimal choice for 88% of these draws, and it is always the best choice unless K is

small.40 Therefore in general, adopting a policy that two suppliers will be selected should be effective.

Fourth, Quint and Hendricks (2013) suggest that ERA may provide sellers with perverse incentives to

try to sell off contracts that, once they undertake research, bidders will find to be worthless. In some

settings this may be an important consideration, but it may be less of a concern when a state agency is

letting a large number of contracts and so should want to maintain a reputation for integrity.

Finally, it may of course be that some of the standard assumptions used to model procurement

auctions, which we have maintained here, such independent private values, simultaneous entry decisions

and independent signals (e.g., Athey, Levin, and Seira (2011), Krasnokutskaya and Seim (2011) or Li and

Zheng (2011)) are incorrect and affect the comparison of the different designs. For example, if bidder

signals are correlated or entry decisions are made sequentially, entry into the FPAFE may be less volatile,

mitigating some of the gains to using the ERA. Alternatively, it may be that our assumption that firms

act competitively in both mechanisms is not correct: if firms are more able to collude in an ERA, then

this might offset the reductions in procurement costs that our model predicts.

6. CONCLUSION

In procurement settings, where it is expensive for potential suppliers to learn their costs of completing a

project, unregulated entry can lead to volatile amounts of supplier participation. If suppliers have either

very little information or almost perfect information about their costs prior to entering, then fixing the

number of entrants, and choosing them through some type of entry rights auction procedure, will tend to

costs.
40Exactly how small K needs to be to make having more entrants optimal depends on the other parameters, but particularly

the level of α. As α increases, it becomes more desirable to select more entrants.
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raise efficiency. However, when suppliers are partially informed about their costs, fixing the number of

entrants in advance can be inefficient because it ignores the fact that suppliers’ private information can

determine how valuable additional entry would be.

We compare the performance of a standard first-price auction with free entry and an entry rights

mechanism in the empirical setting of highway construction projects involving bridge work in Oklahoma

and Texas where we find suppliers’ information to be partially informative and entry costs to be significant.

For the vast majority of projects in our sample we predict that using an entry rights auction procedure

would significantly increase efficiency and reduce procurement costs, and that using ERAs would have

much larger effects on procurement costs than alternative procedures such as setting an optimal reserve

price in a standard auction or even increasing the number of potential bidders. This reflects the fact that

an entry rights procedure can both economize on entry costs by coordinating entry, but also encourage

even high-cost suppliers to bid aggressively by ensuring that they will face competition.
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A. NUMERICAL METHODS TO SOLVE THE FIRST-PRICE AUCTION

In this Appendix we provide some additional details on how we solve the FPAFE model developed in

Section 2.

The choice of grid {xi}Ni=1 has a minor effect on the solution to the programming problem. Hubbard

and Paarsch (2009) use an N -point Gauss-Lobatto grid on [b, r],41 but we have found in our experiments

that an evenly spaced grid is often more efficient. Throughout the paper, we use N = 500 grid points and

P = 25 polynomials in the expansion; these choices solve the optimization problem reliably and efficiently.

Bid functions are monotonic in the cost of the bidder, so we follow Hubbard and Paarsch (2009)

and impose that β∗−1(xi) ≥ β∗−1(xi−1) for 2 ≤ i ≤ N when solving the problem in (4). Furthermore,

we impose the rationality constraint that an agent never bids less than his cost: β∗−1(xi) ≤ xi for all i.

Finally, we replace the constraint in equation (3) by the condition that the two sides cannot differ by

more than 0.1% of K. The integral in equation (3) is replaced by an approximation using the trapezoidal

rule on the N -point grid defined previously.

While we need to calculate bid functions to use in our estimation procedure, we are able to verify

the accuracy of our solutions by exploiting the fact that a second price auction, which is easier to solve

(Roberts and Sweeting (2013b) use this format to analyze timber auction data), should give the same

equilibrium entry thresholds and the same expected procurement cost as a first-price auction with the

same parameters. In the many examples that we have looked at, both the entry thresholds and the

expected revenues typically agree to several decimal places.

B. DETAILS OF SAMPLE CONSTRUCTION

De Silva, Dunne, Kankanamge, and Kosmopoulou (2008) study a range of different types of highway

procurement auctions from January 1998 through August 2003. However, we only focus on auctions after

March 2000 due to an important change in policy in Oklahoma: prior to March 2000 they did not disclose

the engineer’s estimate to bidders. Throughout this paper, we restrict our attention to auctions for new

projects (not re-auctions of failed sales) involving bridge-work with between 4 and 11 planholders. From

the remaining set of bridge construction contracts let during this period (483 in OK and 177 in TX), we

41A Gauss-Lobatto grid on [−1, 1] is defined to be the points yk = cos [kπ/(N − 1)] for k ∈ {0, 1, . . . , N − 1}. To define a
grid on other intervals, we simply scale these points linearly.
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also employ some additional selection rules removing auctions where (i) there was no winner or the DoT

rejected all bids (drops 50 in OK, 1 in TX); (ii) the engineer’s estimate was less than $100,000 or more

than $5 million (drops 121 in OK, 15 in TX); (iii) the data is incomplete in the sense that it records

that the number of recorded planholders differs from the number of suppliers that are listed (drops 1 in

OK); and (iv) the winning bid was extremely high or extremely low. Specifically we drop auctions where

the winning bid was less than 70% of the engineer’s estimate, which drops 3 auctions in Texas and 47

auctions in Oklahoma. While these auctions have similar observable characteristics to the rest of the

sample, 16 of these Oklahoma auctions were won by two companies that only won 4 of the remaining

auctions in the sample, suggesting that they may have been somewhat unusual. We also drop 2 auctions

in Oklahoma and 4 in Texas with winning bids greater than 150% of the engineer’s estimate, as we assume

in estimation that the DoTs set a reserve price at this level even though no reserve price was officially

announced for these auctions. After these selection rules, we have a sample of 262 auctions in Oklahoma

and 154 in Texas.

C. MONTE CARLO STUDIES

In this Appendix we describe some Monte Carlo experiments designed to test the performance of a

simulated method of moments estimator where we use importance sampling to approximate the moments.

We are particularly interested in how many importance sampling draws per auction are required for

accurate estimates (in our actual estimation we use 50). In all of our experiments we create data using

the specification in (5). We draw the number of potential suppliers N uniformly at random from the

set {4, 6, 8}. We set the vector of observed characteristics for auction a to be Xa ≡ (1, xa) where xa is

a random draw from the set {0, 0.2, 0.4, 0.6, 0.8, 1}. The parameters in the specification are assumed to

be βµC = (0, 0.65)′, βσC = (0.05, 0)′, βα = (0.5, 0)′, βK = (0.04, 0.05)′, ωµC = 0.05, ωσC = 0.02, ωα = 0.05,

and ωK = 0.015. We denote this “true” parameter vector as Γ0. The truncation points are taken to be

cµC = −0.4, cµC = 1, cσC = 0.005, cσC = 0.995, cα = 0.1, cα = 0.9, cK = 0.0001, and cK = 0.16.42 We

truncate the cost distribution to [0, 4.75], where the probability that a cost draw will be above the upper

support is almost always negligible for our draws of the parameters, and we set the reserve price equal

to 4.75. For any set of parameters drawn from this distribution, we can solve for the equilibrium bid

42These truncation points are chosen to ensure that we can solve the FPAFE model accurately.
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functions and entry decisions, and simulate outcomes.

As in our empirical application, we estimate the parameters by matching a set of moments describing

the outcomes from auctions with their expectations, calculated using importance sampling, with separate

moments for each {N, xa} combination. Specifically, we match the distribution of the number of entrants

(i.e., indicator variables for whether one, two, three, etc. firms enter), the distribution of winning bids

(using indicator variables for whether the winning bid is in a particular bin, where we divide the interval

[0.4, 2.65] into bins of width 0.075), the distribution of all bids (we divide the interval [0.4, 4.2] into bins of

width 0.1) and the number of suppliers that enter but do not submit bids because they have valuations

greater than the reserve. We estimate the parameters by minimizing the squared sum of the differences

between the observed and predicted moments, where each moment is weighted equally.

We report the results from three experiments. In each experiment we use 500 auctions as data, but we

vary the importance sampling density and the number of simulated draws we use for each auction. Table 6

shows the mean and the standard deviation of each parameter when we run each experiment 100 times.

In the first experiment (A), we use the true distribution of the parameters as the importance sampling

density, which is optimal but obviously infeasible in an empirical application where the goal is to estimate

the true parameters, and use five simulations for each auction.43 In the second experiment (B), we make

the importance sampling density more diffuse, by setting ωµC = 0.1, ωσC = 0.04, ωα = 0.1, and ωK = 0.03,

while other parameters remain the same. We continue to use 5 simulations per auction.44 In the final

experiment (C), we use the same importance sampling density as in (B) but we use 30 draws per auction.

In all of our experiments we use the true parameters to begin our search but we have verified that using a

wide-range of starting values does not change our estimates because the objective function is generally

very well behaved. The results of these experiments are shown in columns (A)–(C) of Table 6, respectively.

[Table 6 about here.]

In all three experiments we recover the coefficients accurately, and, when we use a more diffuse

importance sampling density and 30 draws (C), we recover the parameters almost as well as when we

use the true distribution of the parameters (A). There is some evidence that we tend to overestimate the

43Note rather than solving a fresh set of 2,500 auctions each time we perform a separate run of the experiment, we solve
25,000 auctions drawn from the distrubution up front, and then draw, with replacement, from this pool when creating our
data and importance sampling draws for each run.

44In this case, we created solved 75,000 auctions and draw from this pool for each run.
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variance ω parameters in (B) when we use the diffuse density and only 5 draws, but even in this case, the

magnitude of any bias appears to be quite small.

Based on these results, in our empirical application we choose to use 50 draws for each auction. We

also choose the importance sampling density based on a large number of initial runs, using quite diffuse

importance sampling densities. This indicated that the parameters of the importance sampling density that

we actually use (see Table 2) were likely to be close to the parameters that we would end up estimating.
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Figure 1: Performance of an ERA (with n = 1, 2, or 3) and an FPAFE. We assume N = 4, FC(c) ∼
LN(−0.09, 0.2), K = 0.02, r = c0 = 0.85, and Si = Ci · exp (εi). α ≡ σ2

ε/ (σ2
ε + σ2

C). In the top panel
the y-axis shows the percentage reduction in social costs from using an ERA rather than an FPAFE.
Outcomes are calculated using 500,000 simulations.
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Figure 2: Simulated entry, bid, and winning bid distributions for a representative auction for various
values of α and K. The top row plots these distributions as α moves from 0.1 to 0.5 to 0.9. The bottom
row plots them as K moves from 0.005 to 0.01 to 0.02. We set the location of the value distribution equal
to −0.0963, the scale parameter equal to 0.0705, α (when we vary K) equal to 0.4979 and K (when we
vary α) equal to 0.0147. Densities are plotted based on 100,000 simulations of each auction.
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Figure 3: Absolute values of the scaled sensitivity parameter from Gentzkow and Shapiro (2013) for
Oklahoma auctions with low unemployment and 7 potential suppliers. Each row corresponds to a different
parameter (β0,× in (a) and ω× in (b)), and each column corresponds to a different distribution. The scaled
sensitivity parameters for each moment (i.e., each bin of the distribution) are represented by the gray
bars and the value of the scaled sensitivity parameter can be read from the vertical axis. The solid lines
show the relative value of the different moments evaluated at the different parameters.
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Figure 5: Comparing the bid function for a FPAFE (heavy solid line) with the average bid function in an
ERA with n = 2 (heavy dashed line) for the baseline parameters (µC = −0.0963, σC = 0.0705, α = 0.4979,
K = 0.0147, N = 7, and a reserve price r = 1.5). The dotted line is the 45◦ line, for comparison. The
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TABLES

Variable Mean Std. Dev. 25th-tile 50th-tile 75th-tile

O
K

#
ob

s.
=

26
2 Potential Suppliers 6.882 1.997 5 7 8

Number of Entrants (Bidders) 4.344 1.570 3 4 5
Unemployment 4.136 0.971 3.2 4.1 4.6
Engineer’s Estimate 491,120 543,662 226,338 320,755 523,139
Winning Bid 451,800 520,945 207,146 288,317 471,151
Relative Winning Bid 0.917 0.133 0.826 0.888 0.980

T
X

#
ob

s.
=

15
4 Potential Suppliers 7.909 2.027 6 8 10

Number of Entrants (Bidders) 4.844 1.657 4 5 6
Unemployment 5.641 1.214 4.4 5.6 6.5
Engineer’s Estimate 1,409,158 1,185,331 550,537 967,817 1,977,169
Winning Bid 1,366,487 1,177,504 530,084 892,737 1,847,180
Relative Winning Bid 0.976 0.134 0.892 0.965 1.038

A
L

L
#

ob
s.

=
41

6 Potential Suppliers 7.262 2.067 6 7 9
Number of Entrants (Bidders) 4.529 1.619 3 4 6
Unemployment 4.693 1.291 3.8 4.4 5.7
Engineer’s Estimate 830,971 949,131 258,485 446,273 914,745
Winning Bid 790,410 936,689 240,553 406,155 887,277
Relative Winning Bid 0.939 0.136 0.844 0.914 1.006

Table 1: Summary statistics for our sample of auctions, by state. Winning Bid and Engineer’s Estimate
are in dollars, and the Relative Winning Bid is the Winning Bid divided by the Engineer’s Estimate.

β0 β1 β2 ω c c
Constant Unemployment Texas Std. Dev. Lower Trunc. Upper Trunc.

µC −0.07 −0.005 0 0.012 −0.4 1.0
σC 0.05 0 0 0.025 0.0095 0.995
α 0.5 0 0 0.25 0.1 0.9
K 0.015 0 0 0.01 10−4 0.16

Table 2: Importance sampling density parameters (Γ̃) for estimation. The parameter Γ̃ specifies the
distribution, as given by the functional form in (5).
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β0 β1 β2 ω OK Mean TX Mean
Constant Unemployment Texas Std. Dev.

µC −0.0868
(0.0324)

−0.0023
(0.0064)

0.0154
(0.0132)

0.0142
(0.0091)

91.1%
(0.84%)

92.1%
(1.89%)

σC 0.0687
(0.0196)

−0.0117
(0.0213)

0.0304
(0.0132)

6.45%
(0.97%)

5.61%
(0.87%)

α 0.4979
(0.0972)

0.1115
(0.0943)

0.1284
(0.0764)

0.4979
(0.0770)

0.6055
(0.0752)

K −0.0018
(0.0406)

0.0105
(0.0191)

0.0189
(0.0109)

1.47%
(0.26%)

1.88%
(0.28%)

Table 3: Parameter estimates. Standard errors are in parentheses and are calculated using a non-parametric
bootstrap described in the text. The state averages are (going down the rows) the average of costs,
the mean standard deviation of the cost distribution, the mean α and the mean entry cost, relative to
engineer’s estimate, for auctions in each state.
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Experiment

Parameter Variable True Value A B C

Location Parameter (µC) Constant 0 0.0000
(0.0100)

0.0015
(0.0186)

−0.0043
(0.0170)

xa 0.65 0.6507
(0.0174)

0.6533
(0.0282)

0.6602
(0.0247)

ω 0.05 0.0488
(0.0044)

0.0575
(0.0073)

0.0504
(0.0059)

Scale Parameter (σC) Constant 0.05 0.0494
(0.0074)

0.0463
(0.0152)

0.0416
(0.0126)

xa 0 −0.0002
(0.0113)

0.0085
(0.0204)

0.0195
(0.0194)

ω 0.02 0.0192
(0.0035)

0.0295
(0.0094)

0.0225
(0.0077)

Degree of Selection (α) Constant 0.5 0.4994
(0.0205)

0.4985
(0.0354)

0.4984
(0.0231)

xa 0 0.0000
(0.0308)

−0.0102
(0.0607)

−0.0130
(0.0571)

ω 0.05 0.0479
(0.0078)

0.0803
(0.0190)

0.0561
(0.0164)

Entry Cost (K) Constant 0.04 0.0388
(0.0047)

0.0361
(0.0118)

0.0387
(0.0085)

xa 0.05 0.0516
(0.0074)

0.0559
(0.0173)

0.0529
(0.0121)

ω 0.015 0.0143
(0.0025)

0.0209
(0.0063)

0.0145
(0.0038)

Table 6: Results of Monte Carlo experiments. Each column reports the mean and standard deviation of
the parameter estimates from 100 runs, where there are 500 auctions used as data in each run. In column
A the importance sampling density is the true distribution and we use 5 simulations per auction in the
data. In columns B and C we use a more diffuse importance sampling density (see text) and either 5 (B)
or 30 (C) simulations per auction.


