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Abstract

Many important economic problems require measures of both physical and R&D capital.
Except for some recent studies, there have been relatively few contributions in the literature
that provide econometric estimates for the depreciation rates of physical and R&D capital.
One reason for the relative paucity of such econometric studies may be that if the depreciation
rates are viewed as unknown parameters, or as a functions of unknown parameters, then the
corresponding stocks of physical and R&D capital are also unobserved, resulting in a formida-
ble estimation problem. In the past, econometric estimates of the depreciation rates of physical
and R&D capital were typically obtained from self-programmed estimation algorithms. In
this note, an approach is introduced that permits the econometric estimation of constant and
variable rates of depreciation of physical and R&D capital using standard econometric
packages. © 1997 Elsevier Science B.V.
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1. Introduction!

Many important economic problems require measures of capital. For example,
physical capital plays a pivotal role in studies on production and cost, and in studies
on the sources of productivity and output growth. In addition, knowledge capital
approximated by R&D capital has been recognized as an important contributor to
productivity growth. Furthermore, for policy purposes it is important to be able to
distinguish between net and replacement investment in these types of capital. Crucial
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to an analysis of the contributions of physical and R&D capital is the measurement
of the stocks of physical and R&D capital, which, in turn, typically requires measur-
ing their depreciation rates. The conventional procedure for computing estimates of
the stocks of physical and R&D capital is the perpetual inventory method; see, for
example, Hulten (1990) for a recent review. While the perpetual inventory method
permits the incorporation of detailed information/assumptions (concerning the mean
useful life of assets, the retirement distribution centered on that life, and on efficiency
patterns), these assumptions, and hence the implied estimates of the depreciation
rates, are typically not subjected to rigorous econometric testing. Recently, however,
there have been several studies that provide econometric estimates of the depreciation
rates of the stocks of physical and/or R&D capital goods; see, for example, Epstein
and Denny (1980), Kokkelenberg (1984), Kollintzas and Choi (1985), Bischoff and
Kokkelenberg (1987), Nadiri and Prucha (1996) and Prucha and Nadiri (1996).

One reason for the relative paucity of such econometric studies may be that if the
depreciation rates are viewed as unknown parameters, or as functions of unknown
parameters, then the corresponding stocks of physical and R&D capital are also
unobserved, resulting in a formidable estimation problem. Of course we can, in
principle, always express the capital stocks as functions of the observed current and
past investments and the unknown depreciation rates, substitute those functions for
the stocks in, say, the production function or a set of factor demand equations, and
then estimate the resulting relationships. However, in addition to the resulting
complexity of the estimation problem, we then also encounter an implementation
problem if we try to use standard econometric packages for this task. Estimation
routines as programmed in standard econometric packages (such as, for example,
the LSQ procedure in TSP) typically do not permit the specification of functions
where the argument list, say, increases with time. However, as discussed in more
detail below, this is exactly the case if stocks are generated recursively from some
initial stock in the usual way. Therefore, all of the above-cited studies that report
econometric estimates of depreciation rates have not used standard econometric
packages, but found it necessary to program their own estimation routines, which
is time consuming and requires specialized skills (or to settle for an approach that
does not generate a fully consistent capital stock series). In the following we now
show how a reformulation of the estimation problem, using dummy variables,
permits the application of standard econometric packages. The approach discussed
below will cover a variety of applications including not only constant but also
variable depreciation rates, including situations where the depreciation rate of one
capital good depends on the stock of some other captial good. While, on the one
hand, the observations made below are simple, it still seems that, on the other hand,
they were not evident in the past.

2. An illustration of the problem

In the following we give a simple example that illustrates the practical difficulties
in econometrically estimating capital depreciation rates. Suppose a researcher would
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like to estimate the following production function:
Y;:F(L”KI,RI, 0)’ tzl,n-aT; (1)

where Y, and L, denote, respectively, output and labor input in period ¢, where K,
and R, denote stocks of two types of capital, e.g. physical and R&D capital, at
the end of period r, and where T denotes the sample size. With 6 we denote the
vector of unknown model parameters. For simplicity, assume for the moment that
only the depreciation rate of K, is unknown and hence K, is unobserved, but that
R, is observed. Assume further, for the moment, that the depreciation rate of K,
say 0%, is constant. The capital stock K, then accumulates according to the
equation:

K =If +(1-6")K,_, (2)

where IX denotes gross investment. Solving Eq. (2) recursively yields:

t—1
K=k (I, ..., IT, Ko, 1, 6%) =} I i(1-0%)" + Ko(1—0%)". (3)

i=0

Substitution of this expression into the production function Eq. (1) gives:
Y! =F(Lla kl(ltKa ey Ifa KOa ta 5K)a Rta 9)=Gr(Lt9 If(, LERF] ]{(a KO, —Rta ts 6’(: 6)'
(4)

Note that L,,...,L; and I,,...,1; are observed and thus, in principle, we can estimate
the production function parameters @ and the depreciation rate 6 jointly from
Eq. (4) by some standard estimation methods ror nonlinear models.> However, as
remarked above, there is a practical difficulty if we would like to apply a standard
econometric package such as, for example, TSP. The argument list of k,(-), and
hence of the function G(-), depends on 7. However, as remarked above, standard
econometric packages will typically not permit the specification of a function where
the argument list changes with f; they can hence not be employed directly to
estimate Eq. (4).

3. A dummy variable approach

In the following we now show how, for a fairly wide class of models of capital
accumulation, we can ‘artificially’ re-write the recursive solution for the capital stock
such that the argument list does not depend on z. We first consider the case where

2For a survey of estimation methods for dynamic nonlinear models see, e.g. Pétscher and Prucha
(1991a,b). We note that if an estimate of the initial stock K, is not available, we may also treat the initial
stock as an unknown parameter.
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only K, is unobserved and accumulates according to the equation:
K, =If+K°, K =f(Z,0,0)+alZ, 0, 0)K,_,, (5)

where K? is the capital stock left over at the end of period ¢ from the initial stock
K,_,, and where f(-) and a(-) are real valued functions that depend (possibly) on
some vector of observed variables Z, and (possibly) on the parameter vectors 6 and
a.® The parameter vector o was included to allow for parameters that are not included
in 6. Solving Eq. (5) recursively for K, yields:*

t—1 i—1 t—1
K,zkt(llx,....lx, Ko,Z,,...,Zl,O, O()=Z (ItK,i‘*"]r,,i) H a,,j+K0 I_I a,,j,
j=0 i=0

i=0

(6)

where we use the abbreviations f,=f(Z,, 0, «) and a,=a(Z,, 0, a).

The motivation for the specification in Eq. (5) is that it contains various models
that have appeared in the literature as special cases:® by setting f(Z,, 6, «)=0 and
a(Z,, 0, a)=u, Eq. (5) covers the case of a constant depreciation rate with 6¥=1—x,
which has, for example, been considered in Nadiri and Prucha (1996). By setting
f(Z,,0,)=0and a(Z,, 0, x)=1—Z,x we obtain a model where the depreciation rate
depends linearly on Z, Suppose Z,=(1, ¢)’, then the depreciation rate is a linear
function of ¢, or if Z,=(1, CU,), where CU, denotes a measure of capacity utilization,
then we obtain the specification considered by Bischoff and Kokkelenberg (1987).
The models considered in Epstein and Denny (1980), Kollintzas and Choi (1985)
and Prucha and Nadiri (1996) are also readily seen to be special cases of Eq. (5) with
a(Z,, 0, «)=x and where f(Z,, 8, a) represents some function of prices and outputs.

We now define the following dummy variable:

We furthermore assign arbitrary values to Z, for ¢ <1 such that f; and g, remain well
defined. Thus, we can rewrite Eq. (6) as:®

Kt:k(lrk* teee I:;*T-FlaKO’ Zt’ rers ZIAT+1’DH cees Dt7T+13 09 a)
Tr-1 i—1

T-1
=Y USi+f-0D i [] @+ Ko [] ale50. (7
i=0 j=0 j=0

3 The depreciation rate of capital is then given by 6f =1—K?/K, ,, and will, in general, be variable
over time.

4 In the following expression we adopted the convention that I1;ya,_;=1.

* The dimensionality of « varies in the subsequent eamples, but will be obvious from the context.

% In the following expression we have used implicitly x®=1 for any real number x.
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We note that the number of arguments of k(-) no longer depends on ¢.” Thus, the
expression in Eq. (7) can be programmed in standard econometric packages and then
substituted into some other equation, such as, for example, Eq. (1), for purposes of
estimation. If a,=aq, then the product expressions in Eq. (7) can be simplified to
IiZ4a,—;=a' and N[ ' al:55 =4'. Of course, if R, is also unobserved, and it accumu-
lates analogously to Eq. (5), and there is no interaction between K, and R, in the
accumulation equations, then the same approach can be applied for R,.

We next consider the case where both X, and R, are unobserved, and where the
accumulation equation for K, depends both on K,_; and R,_;. In particular, we
consider the case where K, and R, accumulate according to the following equations:

K, =If+K, K =f(Z,,0,0)+aK,_{+cR,_;, (8a)
R, =It+R!, R}=g(Z,,0,0)+bR,_,. (8b)

The function g(-) is defined analogously to f( - ), and a, b and ¢ represent scalars that
may be elements of « or . The above accumulation equations again cover various
models of interest. They contain, for example, the set of accumulation equations
considered in Prucha and Nadiri (1996) as a special case.® It can be checked that the
recursive solution for K, and R, is now given by:

t—1

K, = Z [([tx—i +-dd + TR +g-0)
i=0

(ax_b:)c:|+K0ax Ro(a —b)c’ (93)

(a—-b) (a-b)
r—1

R, = Z (TE i +g,- )b+ RY, (9b)
i=0

where we use the abbreviations g,=g(Z,, 0, «). Of course, the above expression is
only well defined for a#b; however, (@' —b')/(a—b)=Z._ta' ' 7*b°. The latter

expression is also appropriate for a= b, but more complex to ir_nplement. The solution
in Egs. (9a) and (9b) is best found by rewriting Egs. (8a) and (8b) in matrix notation
and by observing that the following diagonalization holds:

A_|:a c]_ AO-! [a —bc/(a—b):| A_|:a O:|
Lo 57¥ =|, b ’ Lo )

7 Of course, alternatively, we could write K, =XI_ k. D} with Df=1 for ¢t=s and zero otherwise, and
where k, is defined in Eq. (6). However, the resulting expression for K, would then typically be too
complex to be practically implementable.

8 We could have further generalized the specification by allowing a, & and ¢ to vary over time and/or for
K,_, to also appear in the expression for R?. However, it seems that then the algebraic expressions for
the recusive solution will, in general, become too complex to be practically implementable. An alternative,
but more complex approach for the case of a single capital good with a constant depreciation rate is
discussed in Prucha (1995).
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and thus A'=QA'Q'. Analogously to before, using the dummy variable D,, we can
rewrite Egs. (9a) and (9b) as:

T-1 -
a Z li(lf(i+ﬁi)Dtiai+(1fzi+gzi)Dzf(—a——b—)—cjl
o (a—b)

(@ —b')c

+Koad" + Ry ———,
0 *ab)

(10a)

T-1
R, = Z (I8 48D, b+ Ryb'. (10b)
i=0
Again, in this formulation, the size of the argument lists on the right hand side of
Egs. (10a) and (10b) no longer depends on ¢, and hence the expressions can be
programmed in standard econometric packages.

Of course, the above outlined dummy variable approach is not limited to two
capital goods, but can also be applied to several capital goods, given their accumula-
tion equations are of the form Eq. (5) and/or Egs. (8a) and (8b). To test the feasibil-
ity of the dummy variable approach we applied the approach to re-estimate both the
model in Nadiri and Prucha (1996) and that in Prucha and Nadiri (1996) using TSP.
Originally the results reported in those papers were obtained via a self-programmed
FORTRAN estimation program. In both cases we were able to duplicate the pre-
viously obtained results.

We also performed various speed comparisons between the self-programmed
FORTRAN estimation program and the dummy variable approach using TSP.® We
found that, on average, estimation runs based on the implementation of the dummy
variable approach in TSP were four times faster than corresponding estimation runs
that were based on the self-programmed FORTRAN estimation program. As an
illustration, the results from the following experiment were typical: we re-estimated
model 3 in Prucha and Nadiri (1996) by full information maximum likelihood using
both approaches. (Model 3 allows for a variable depreciation rate and is the most
general model considered in that paper.) In both cases we used the full information
maximum likelihood parameter estimates reported in Prucha and Nadiri (1996) as
starting values for the model parameters, except that we used a value of 1.0 rather
than the reported estimate of 1.19 for the scale parameter p. The self-programmed
FORTRAN estimation program took 135 seconds to converge back to the maximum
of the likelihood function. In contrast, the dummy variable approach using TSP

? All speed comparisons were executed on an IBM PC 350 computer with a 133 Mhz Pentium processor,
32 Mb of memory, and OS;2 Warp as the operating system. The self-programmed FORTRAN estimation
program utilizes the numerical optimization subroutine VA10AD from the Harwell program library. The
version of the TSP program used was TSP 4.3 for OS/2. In both cases the user does not have to provide
expressions for the derivatives of the objective function—which would be, in light of the complexity of
the model, an enormously cumbersome task. As a technical point, we note that the VAT0AD subroutine
computes those derivatives by numerical differentiation. In contrast, the FIML routine in TSP-—in addi-
tion to providing a much more user friendly environment—first calculates analytic derivatives and then
evaluates those derivatives numerically.
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converged in 30 seconds. Obviously, in applications we can typically not expect to
start the estimation routine from such ‘ideal’ starting values as for this experiment.
In fact, actual estimation runs that lead to the results reported in Prucha and Nadiri
(1996) often took several hours until convergence was achieved. From this perspec-
tive the reported savings in computing time seem important.

References

Bischoff, C.W., Kokkelenberg, E.C., 1987. Capacity utilization and depreciation in use. Applied
Economics 19, 995-1007.

Epstein, L.G., Denny, M., 1980. Endogenous capital utilization in a short-run production model: theory
and empirical application. Journal of Econometrics 12, 189-207.

Hulten, C.R., 1990. The measurement of capital. In: Berndt, E.R, Triplett, J.E. (Eds), Fifty Years of
Economic Measurement. University of Chicago Press, Chicago, pp. 119-153.

Kollintzas, T., Choi, J.-B., 1985. A linear rational expectations equilibrium model of aggregate investment
with endogenous capital utilization and maintenance. mimeo.

Kokkelenberg, E.C., 1984. The specification and estimation of interrelated factor demands under uncer-
tainty. Journal of Economic Dynamics and Control 7, 181-207.

Nadiri, M.I., Prucha, LR., 1996. Estimation of the depreciation rate of physical and R&D capital in the
US total manufacturing sector. Economic Inquiry 34, 43-56.

Potscher, B.M., Prucha, L.R., 1991a. Basic structure of the asymptotic theory in dynamic nonlinear
econometric models, part I: consistency and approximation concepts. Econometric Reviews 10,
125-216.

Potscher, B.M., Prucha, LR., 1991b. Basic structure of the asymptotic theory in dynamic nonlinear
econometric models, part II: asymptotic normality. Econometric Reviews 10, 253-325.

Prucha, LR, 1995. On the estimation of a constant rate of depreciation. Empirical Economics 20, 299-302.

Prucha, I.R., Nadiri, .M., 1996. Endogenous capital utilization and productivity measurement in dynamic
factor demand models: theory and application to the US electrical machinery industry. Journal of
Econometrics 71, 343-379.



