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Plastics are a grave, growing, and under-recognised danger to human and planetary health. Plastics cause disease and 
death from infancy to old age and are responsible for health-related economic losses exceeding US$1·5 trillion 
annually. These impacts fall disproportionately upon low-income and at-risk populations. The principal driver of this 
crisis is accelerating growth in plastic production—from 2 megatonnes (Mt) in 1950, to 475 Mt in 2022 that is 
projected to be 1200 Mt by 2060. Plastic pollution has also worsened, and 8000 Mt of plastic waste now pollute the 
planet. Less than 10% of plastic is recycled. Yet, continued worsening of plastics’ harms is not inevitable. Similar to air 
pollution and lead, plastics’ harms can be mitigated cost-effectively by evidence-based, transparently tracked, 
effectively implemented, and adequately financed laws and policies. To address plastics’ harms globally, UN member 
states unanimously resolved in 2022 to develop a comprehensive, legally binding instrument on plastic pollution, 
namely the Global Plastics Treaty covering the full lifecycle of plastic. Coincident with the expected finalisation of this 
treaty, we are launching an independent, indicator-based global monitoring system: the Lancet Countdown on health 
and plastics. This Countdown will identify, track, and regularly report on a suite of geographically and temporally 
representative indicators that monitor progress toward reducing plastic exposures and mitigating plastics’ harms to 
human and planetary health.

Introduction
Plastics are the defining material of our age.1 Plastics 
are complex, manufactured chemical materials 
comprising a polymer matrix and multiple additional 
chemicals.2 More than 98% of plastics are made from 
fossil carbon—gas, oil, and coal.3–5 Plastics are flexible, 
durable, convenient, and perceived to be cheap. Plastics 
are ubiquitous in modern societies, and have supported 
advances in many fields, including medicine, 
engineering, electronics, and aerospace. It is 
increasingly clear, however, that plastics pose grave, 
growing, and underappreciated dangers to human and 
planetary health.6 Moreover, plastics are not as 
inexpensive as they appear and are responsible for 
massive hidden economic costs borne by governments 
and societies.7

Early warnings of the ecological dangers posed by 
plastics8 became reality in the 1960s and 1970s with 

reports of plastic waste obstructing the gastrointestinal 
tracts of seabirds, entangling sea turtles, and killing 
marine mammals.9 These dangers were followed by the 
discovery of abundant plastic particles in the Sargasso 
Sea10 and the recognition that microplastic particles are 
ubiquitous in surface waters and ocean sediments, with 
microplastics and plastic chemicals detected in marine 
and terrestrial species worldwide.11–15

The potential for plastics to harm human health was 
recognised in the 1970s with the observation of four cases 
of hepatic angiosarcoma among polyvinyl chloride 
(PVC) polymerisation workers in Kentucky, USA, 
occupationally exposed to vinyl chloride monomer.16 
Additional harms to health are seen given the high 
incidence of injuries, illnesses, and deaths among 
workers who extract carbon feedstocks for plastic 
production by fracking, oil drilling, and coal mining. 
Elevated rates of stillbirths, premature births, asthma, 
and leukaemia in fenceline communities adjacent to 
fracking wells and plastic production facilities show that 
plastics’ harms extend beyond the workplace and affect 
people of all ages.17 National biomonitoring surveys 
support these findings and documents the presence of 
multiple widely used plastic chemicals, including 
bisphenols, phthalates, brominated flame retardants, 
and perfluorinated and polyfluorinated substances 
(PFAS) in the bodies of nearly all people examined, 
including newborn infants and pregnant women.18,19 
Microplastic and nanoplastic particles (MNPs) are 
increasingly reported in human biological specimens, 
including blood, breastmilk, liver, kidney, colon, 
placenta, lung, spleen, brain, and heart in populations 
worldwide.20 Also, brominated flame retardants are 
widely encountered in house dust.21 A 2020 consensus 
statement warned of the health threat of multiple plastic 

Search strategy and selection criteria

To identify newly reported information on the health impacts 
of plastics, we used PubMed to identify articles published in 
English between Sept 30, 2020, and Jan 24, 2025. Our 
two search questions were: “What are the effects of plastics 
and plastic chemicals on health-related outcomes?”, and 
“What are the underlying pathways or mechanisms through 
which these effects occur?”. Our search terms were: “plastics”, 
“plastic-associated chemicals”, “plastic waste”, and “health-
related outcomes”. Two authors (MT and JR) independently 
screened the titles and abstracts of the identified and 
deduplicated records (n=2887) using our pre-defined scope 
and objectives. Additional references were included based on 
the authors’ expert knowledge of the relevant literature.
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chemicals in food contact materials.22 Reviewing these 
data, the Minderoo–Monaco Commission on plastics 
and human health concluded in 2023 that plastics 
endanger human and planetary health at every stage of 
their lifecycle—in feedstock extraction, primary 
production, product fabrication, transport, use, 
recycling, and following disposal into the environment.23

Plastics’ harms to human and planetary health are 
worsening,24 driven mainly by continuing annual 
increases in the production of new plastics. Global plastic 
output has grown more than 250-fold—from less than 
2 megatonnes (Mt) in 1950, to 475 Mt in 2022,25–27 with the 
most rapid increases seen in the production of single-use 
plastics. Consequently, plastic waste generation has 
increased in parallel. Without intervention, it is projected 
that global plastic production will nearly triple by 2060 
(figure 1).29

The need for intervention
Continued worsening of plastics-associated harms is not 
inevitable. Similar to ambient air pollution, lead, 
mercury, climate change, and chlorofluorocarbons, 
plastics’ harms can be successfully and cost-effectively 
mitigated with evidence-based laws and policies that are 
supported by enabling measures (eg, transparency, 
regulation, and monitoring) and facilitated by effective 
implementation measures (eg, fair enforcement and 
adequate financing; panel 1).

In response to plastics’ increasingly visible harms, 
governments have begun to act at the subnational, 
national, and in the case of the EU, the supranational 
level. These interventions are varied, and generally target 
specific harms, products, or plastic uses, and so, are 
necessarily fragmented. Examples of these interventions 
include banning specific single-use plastics;40 removing or 
restricting harmful chemicals in plastics;19,41,42 setting state-
wide reduction targets for plastic packaging;43 incentivising 
reuse;43 and monitoring for microplastics in drinking 
water.44,45 

To curb plastics’ harms globally, the UN Environment 
Assembly (UNEA) unanimously resolved in March, 2022, 
to develop an international legally binding instrument on 
plastic pollution—the Global Plastics Treaty.46 
Development and implementation of this treaty creates a 
unique opportunity to reduce plastics’ harms throughout 
the plastic lifecycle and to safeguard human and planetary 
health.

During negotiations, a diverse group of UN member 
states, including the members of the High Ambition 
Coalition to End Plastic Pollution, have supported the 
protection of human health as a treaty objective. At the 
time of writing, more than 100 UN member states have 
supported setting global targets for reducing the 
production of primary plastic polymers to sustainable 
levels,47 with even more calling for the phasing out of the 
most harmful plastic products and plastic chemicals.48–50

WHO, which is engaging in the negotiations process as 
an observer, has put forth three guiding principles: first, 
that attainment of the highest standard of human and 
environmental health should be a core objective of the 
Global Plastics Treaty; second, that the known and predicted 
health risks associated with plastic polymers, chemicals 
and additives, and MNPs should be addressed across all 
stages of the plastics lifecycle; and third, that ensuring 
access to safe and effective health products that are of good 
quality and affordable to all is key.51 Furthermore, health-
focused stakeholders have argued that the health-care 
sector, with its considerable use of plastics, should not be 
exempt from the Global Plastics Treaty.52

The Lancet Countdown on health and plastics
Coincident with the expected finalisation of the Global 
Plastics Treaty, we are launching a health-focused, 
indicator-based, global monitoring system on plastics—
the Lancet Countdown on health and plastics. The goal of 
this Countdown, which will be guided and informed by 
the Lancet Countdown on health and climate change, is to 
provide a credible, independent global monitoring system 

Figure 1: Global trends in plastic production, plastic waste generation, and plastic use—total and by sector, 2000–2100
(A) Annual plastic production. (B) Annual plastic waste generation. (C) Plastics in current use (stock). Adapted from Stegmann and colleagues.28
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Panel 1: Lessons learned from other global health threats

Successes achieved in the control of other environmental health 
threats offer lessons for the control of the plastic crisis. Clean air 
legislation has reduced ambient air pollution in multiple 
countries, thus improving air quality and preventing millions of 
premature deaths.30 Lead has now been removed from 
automotive petrol in every nation, resulting in sharp reductions 
in children’s blood lead levels and increases in cognitive 
function among children, and contributing to decreased risks of 
hypertension, heart disease, and stroke in adults.31 The Montreal 
Protocol on Substances that Deplete the Ozone Layer has 
considerably reduced emissions of ozone-depleting 
chlorofluorocarbons and their alternatives, leading to the 
recovery of the stratospheric ozone layer and helping to prevent 
deaths from malignant melanoma.32,33 The Minamata 
Convention on Mercury is coordinating a global phase-out of 
mercury to protect infants and children from developmental 
neurotoxicity.34

These interventions have proven highly cost-effective. For 
example, each dollar invested in air pollution control in the USA 
since 1970 is estimated to have yielded an economic benefit of 
US$30 by reducing health-care costs and increasing the economic 
productivity of a healthier, longer-lived population.30 The removal 

of lead from petrol has benefitted the health of entire nations by 
increasing intelligence, human capital, and economic 
productivity. In the USA, lead removal is estimated to have added 
$200 billion to the economy in each annual birth cohort since 
1980—an aggregate benefit of more than $8 trillion in the past 
four decades.31

Two key lessons emerge from these interventions. First, health 
matters. The recognition that an environmental threat 
damages human health, especially children’s health, is far more 
probable to catalyse public engagement and drive meaningful 
change across every level of society than a conversation that 
focuses solely on the environment. Second, data matter. Data 
are needed to identify the sources of a health threat, measure 
the extent and severity of exposure across populations, 
quantify health effects, track time trends and geographic 
patterns, assess the effectiveness of interventions, and guide 
course corrections. Data play a key role also in countering 
disinformation and attempts at greenwashing, such as the false 
claims by the plastic industry that all plastics can be recycled,35–37 
or that plastic waste can safely be burned for energy and to 
generate plastic credits in industries, such as in cement 
production.38,39
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Figure 2: The potential impacts of plastics on health across the plastic lifecycle
MNP=microplastic and nanoplastic particle.
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that will track progress toward reducing plastic exposures 
and mitigating plastics’ harms to human and planetary 
health as the Global Plastics Treaty comes into force. This 
Countdown will identify, track, and regularly report on a 
suite of scientifically meaningful and geographically and 
temporally representative indicators that document the 
impacts of plastics and plastic chemicals on human and 
planetary health across all stages of the plastic lifecycle.

This Countdown will track global trends and patterns in 
plastic production, consumption, and waste generation, 
and will monitor exposures to plastic-associated pollution, 
plastic chemicals, and MNPs. The Countdown will track 
and quantify plastics-associated harms to human and 
planetary health and the health-related economic costs that 
result from those harms. The Countdown will document 
plastics’ impacts on at-risk populations and will track and 
report on governmental policy responses, non-
governmental interventions and innovations, and 
impediments to the resolution of the global plastics crisis. 
Furthermore, the Countdown will highlight the health 
benefits of interventions, and the opportunities lost 
because of inaction, which will provide data that can 
inform decision making at all levels for the benefit of 
public health.

A particular aim of this Countdown will be to move 
consideration of plastics’ health impacts to centre stage of 
the conversation on plastics—to emphasise that the plastics 
crisis is more than an environmental problem and also is a 
serious and worsening threat to human and planetary 
health. The Countdown’s origins, structure, and plans for 
its future development are described in this Health Policy.

Plastics’ harms to human and planetary health
To underscore the need for the Lancet Countdown on 
health and plastics, which will independently track 
progress as the Plastics Treaty comes into force, we present 
here a brief overview of plastics’ harms to human and 
planetary health across the plastic lifecycle, with particular 
emphasis on new information that has emerged since 
publication in 2023 of the report of the Minderoo–Monaco 
Commission on plastics and human health.23

Building on that previous work, the Lancet Countdown 
on health and plastics has developed a pathway diagram 
summarising plastics’ impacts on health (figure 2). Most 
of these established harms are mediated by exposure to 
plastic chemicals while others might be due to MNPs. 
Additional health effects are the consequence of industrial 
and occupational hazards and of pollutant and greenhouse 
gases (GHGs) released to the environment in carbon 
feedstock extraction, plastic production and fabrication, 
and waste disposal (figure 2). The UN Office of the High 
Commissioner on Human Rights has emphasised that 
sustainable solutions for worsening plastics-associated 
harms will require justice-focused policies that advance 
human rights.53 The Minderoo–Monaco Commission 
found that plastics harm human and planetary health at 
every stage of the plastic lifecycle (panel 2). 

Plastic production
Global annual plastic production has increased from 2 Mt 
in 1950, to 475 Mt in 2022.29 Cumulative production of 
primary (or virgin) plastic since 1950 exceeds 10 gigatonnes 
(Gt). Half of all plastic ever made has been produced 
since 2010 (figure 1).55 In the absence of intervention, 
global annual output is projected to rise to between 749 Mt56 
and 976 Mt by 2050,29 and to 1·2 Gt by 2060.29

Panel 2: Summary of key findings from the Minderoo–Monaco Commission

The Minderoo–Monaco Commission on plastics and human health presented a 
comprehensive assessment of plastics-associated harms to human and ecosystem 
health.23 Key findings were the following:

•	 Current patterns of plastic production, use, and disposal cause disease, disability, and 
death at every stage of the plastic lifecycle.

•	 Infants and young children are highly susceptible to plastics-associated harms. Early-
life exposures to plastics and plastic chemicals are linked to increased risks of 
miscarriage, prematurity, stillbirth, low birthweight and birth defects of the 
reproductive organs, neurodevelopmental impairment, impaired lung growth, and 
childhood cancer. Early-life exposures to plastic chemicals can contribute to reduced 
human fertility and increased risks of non-communicable diseases, such as cancer, 
diabetes, and cardiovascular disease in adult life.

•	 Plastic production is highly energy-intensive, releases more than 2 gigatonnes of CO2 

equivalent and other climate-forcing greenhouse gases to the atmosphere each year, 
and harms health by accelerating climate change.

•	 Increasing plastic production is the main driver of worsening harms to human and 
planetary health.

•	 Because less than 10% of plastic is recycled and plastic waste can persist in the 
environment for decades, an estimated 8 billion tonnes of plastic waste or 80% of all 
plastic ever made, now pollute the planet.25

•	 The ocean is the ultimate destination for much plastic waste, and each year, an 
estimated 10–12 million tonnes of plastic enter the ocean. Many plastics appear to 
resist breakdown in the ocean and could persist for decades.

•	 Microplastic and nanoplastic particles (MNPs), which result from the breakdown of larger 
plastic materials, are an emerging threat to health. While the health impacts of MNPs are 
still incompletely understood, increasing numbers of studies report the presence of 
microplastics in multiple human tissues and are beginning to link MNPs to disease.

•	 Plastic is expensive. It is responsible for health-related economic losses that include 
health-care costs (eg, costs of physician services, hospitalisation, and medications) and 
productivity losses (eg, lost economic output or earnings resulting from disease, 
disability, or premature death). In 2015, the health-related costs of plastic production 
amounted to almost US$600 billion globally—more than the gross domestic product of 
New Zealand or Finland.23 Chemicals in plastics, such as PBDE (flame retardant), 
bisphenol (BPA; monomer), and di(2-ethylhexyl)phthalate (DEHP; plasticiser) are 
responsible for additional health-related economic costs. In the USA alone, the annual 
costs of diseases caused by PBDE, BPA, and DEHP exceed $675 billion.

•	 These estimates undercount the full costs of plastics-related health damages because 
they examine only a few countries and only a subset of plastic chemicals. The costs are 
externalised by fossil fuel and plastic manufacturing industries and borne by 
governments and taxpayers.

•	 Current patterns of plastic production, use, and disposal are unsustainable and socially 
and environmentally unjust. Plastics-associated harms disproportionately damage 
disempowered and marginalised populations.54 Addressing these inequities will 
require a multifaceted approach that centres on justice and incorporates equity and 
inclusivity into all levels of policy and decision making.



Health Policy

www.thelancet.com   Vol 406   September 6, 20251048

A key driver of recent acceleration in plastic output is a 
pivot by the fossil fuel corporations and nations that are the 
major plastic producers of plastic and petrochemicals in 
response to declining demand for fossil energy.24,57 For 
example, the Saudi Arabian Oil Company plans to channel 
about one third of its oil production to plastics and 
petrochemicals by 2030, and Shell has recently opened a 
new cracking plant in western Pennsylvania, USA, that will 
transform fracked gas from Appalachia into plastic pellets.57

China is the largest producer of primary plastics 
(208 Mt), outproducing both North America (71 Mt) and 
Europe (66 Mt) in 2020.56 Plastic use per capita is, however, 
higher in North America (195 kg/year) and Europe 
(187 kg/year) than in China (138 kg/year).56 Disposable, 
single-use plastics, especially packaging materials, are the 
most rapidly growing segment of plastic production.58 
Single-use items account for an estimated 35–40% of 
current plastic output and contribute disproportionately to 
plastic waste, accounting an estimated 65% of discarded 
plastics.59 Municipal solid waste data indicate that plastic 
consumption levels in many countries could be higher 
than reported in official sources.60

Plastic production and climate change
Plastic production is energy intensive. In 2018, the 
International Energy Agency estimated that 
14% of primary oil use and 8% of primary natural gas use 
went into petrochemical manufacturing, with about half 
of that going into plastic production.3,61,62 Predictions 
indicate that with projected future increases in plastic 
production, as much as 20% of all fossil fuels could be 
used in plastics manufacturing by 2050.61,63,64

In 2020, plastic production was responsible for the 
release of 2·45 Gt CO2 equivalent (CO2e) of GHGs,56,65 
accounting for roughly 5% of industrial GHG emissions 
globally. An estimated 44% of these emissions came from 
coal, 40% from petroleum, and 8% from natural gas.3 
These amounts vary by region, reflecting differences in 
fossil carbon feedstock mix. Thus, in Asia, coal is the 
predominant source of GHG emissions in plastic 
production, whereas in North America, gas and oil are 
more considerable.

Business-as-usual projections that assume a 4·0% annual 
growth rate in plastic production and no interventions, 
estimate that plastic-associated GHG emissions could 
approximately triple by 2050 to reach 6·78 Gt CO2e per 
year.65 Interventions such as decarbonisation of the 
electricity grid65 and other climate mitigation policies56 
could limit these projected increases. In the face of these 
business-as-usual projections, there is increasing pressure 
to curb continued unchecked increases in fossil fuel-based 
plastic production,66 and to break entrenched and 
accelerating plastic-driven lock-in to climate change.65,67,68

Governmental subsidies for plastic production
Governments of many countries provide support for the 
production of primary plastic polymers and their 

monomers through various mechanisms. Subsidies are 
conferred chiefly through the underpricing of 
hydrocarbon feedstocks (primarily alkanes such as ethane 
and propane, and alkane mixes such as naphtha), and of 
the energy used to produce monomers (ethylene, 
propylene, etc) and polymers (polyethylene, poly
propylene, etc), but also via grants, tax breaks, and 
below-market lending. Globally, the subsidies conferred 
through price subsidies for feedstocks and energy are 
estimated to have been US$43 billion in 2024, and are 
projected to increase to US $78 billion by 2050 under a 
business-as-usual scenario.69

Health effects of plastic production
Workers who produce plastic are exposed to a wide range 
of toxic chemicals, including carcinogens, such as 
benzene, 1,3-butadiene, formaldehyde, vinyl chloride, 
and hazardous airborne dusts, which can lead to disease 
and premature death. Furthermore, workers are also at 
high risk of traumatic injury. The Minderoo–Monaco 
Commission conservatively estimated that approximately 
32 000 premature deaths occurred globally among plastic 
production workers in 2015, resulting in annual health-
related economic costs of $40 million.23

Beyond the workplace, plastic production causes air, 
water, and soil pollution. Airborne emissions from plastic 
production include particulate matter (PM2·5), sulphur 
dioxide, and nitrogen oxides, and other hazardous 
chemicals to which plastic workers are exposed. These 
emissions result in elevated rates of disease, disability, and 
premature death in fenceline communities adjacent to oil 
and gas wells and production facilities among people of all 
ages, including infants and children. In 2015, PM2·5 
emissions from plastics production were responsible for 
an estimated 158 000 premature deaths globally and for 
health-related economic losses of more than $200 billion.23 
More than 75% of these deaths occurred in China and 
other parts of Asia.

GHG emissions from plastic production magnify the 
health impacts caused by plastics. As reported by the 
Lancet Countdown on health and climate change, GHG 
emissions are linked to a wide array of health risks, 
including heat waves, fires, floods, droughts, crop failure, 
and vector-borne diseases.71

Plastic chemicals
More than 16 000 chemicals can be present in plastics.2 
Most of the established harms to health associated with 
plastic use are due to chemicals of concern,72 including 
chemicals intentionally used in plastic manufacture, such 
as starting substances (eg, monomers and catalysts), 
processing aids (eg, lubricants), and additives (eg, 
plasticisers, flame retardants, fillers, dyes, and 
stabilisers).73,74 Chemicals of concern also include non-
intentionally-added substances, such as impurities, 
byproducts, contaminants, and degradation and trans
formation products.2,74
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Most plastic chemicals, including additives, are not 
chemically bound to polymer matrices. Instead, they are 
physically blended into polymers and can be released 
from plastics and into the surrounding environment by 
leaching, volatilisation, and abrasion.75–77 These chemicals 
can then enter the human body via ingestion, inhalation, 
and dermal absorption.23

Human exposure to plastic chemicals is extensive. 
National biomonitoring surveys detect measurable levels 
of several hundred synthetic chemicals, including plastic 
chemicals, in people of all ages, including newborn 
infants exposed in utero, across all global regions.18,78–80 
Chemicals widely detected in these surveys include 
plastic-related bisphenols,81–83 benzophenones,82 phenolic 
antioxidants,84 phthalates,85 brominated86,87 and 
organophosphate88 flame retardants, and PFAS.80 Plastic 
goods and MNPs contribute to human exposure to these 
chemicals to differing extents in different countries, as 
many of these substances are also used in other consumer 
products and industrial applications.

Food contact materials are an important source of 
human exposure to plastic chemicals.22 Food containers,89 
drinking water bottles and sachets,90 baby food pouches,91 
tableware, and food-processing equipment can all release 
plastic chemicals directly into foods and beverages. A 
systematic review of 947 studies on plastic food contact 
materials reported that 1481 (40%) of 3696 chemicals are 
released into food or food simulants under specific 
conditions.92–94 More than 1396 plastic food contact 
chemicals have been detected in humans of all ages.95,96 
Migration of plastic chemicals into foodstuffs increases at 
higher temperatures and with longer periods of contact 
time. Fat content and acidity of foodstuffs also influence 
the extent of release, as does serving size, since the 
packaging surface-to-food volume ratio increases with 
decreasing portion sizes; this aspect is particularly 
concerning for plastic-packaged foodstuffs specifically 
marketed for infants and children.

Other sources of exposure to plastic chemicals include 
house dust;21 packaging of personal care products; 
clothing, furniture, and carpets; electronic equipment, 
such as mobile phones and computers; building 
materials; and medical tubing, fluids, and devices.23

Health impacts of plastic chemicals
Plastic chemicals present high risks to health because of 
their large production volumes, wide use, and potential for 
human exposure. A recent umbrella review of the 
synthesised human epidemiological research on the health 
impacts of plastic chemicals examined almost 1000 meta-
analyses from 52 systematic reviews, representing data 
from the equivalent of nearly 1·5 million participants.72 
Relevant data were available for five chemical classes: 
PFAS, polybrominated diphenyl ethers (PBDEs), 
polychlorinated biphenyls, ortho-phthalate esters, and 
bisphenols. While polychlorinated biphenyls are now 
regulated in many jurisdictions, global responses to 

ortho-phthalate esters and bisphenols have been 
inconsistent, and these chemical classes are still widely 
used.

This umbrella review found consistent evidence for 
multiple health effects at all stages of human life for many 
plastic chemicals. Infants in the womb and young children 
are especially at-risk.97 These effects include impaired 
reproductive potential (eg, polycystic ovary syndrome and 
endometriosis), perinatal effects (eg, miscarriage, reduced 
birthweight, and malformations of the genital organs), 
diminished cognitive function (eg, intelligence quotient 
loss), insulin resistance, hypertension and obesity in 
children, and type 2 diabetes, cardiovascular disease, 
stroke, obesity, and cancer in adults.72

Lack of information on plastic chemicals
Despite their large production volumes and widespread 
human exposure, hazard data are not publicly available 
for more than two-thirds of known plastic chemicals. 
Where hazard data are available, they are often 
incomplete.2 A recent systematic evidence map found 
that approximately 75% of the plastic chemicals examined 
have not been assessed in human health studies.98

Of the plastic chemicals for which data are available, 
approximately 75%—more than 4200 substances—have 
been found to be highly hazardous due to their toxic 
effects, persistence, bioaccumulation, and mobility.2 
Almost 1500 of these chemicals are carcinogenic, 
mutagenic, or toxic to reproduction, and more than 
1700 are toxic to specific organs, such as the liver. 
47 of these chemicals are endocrine disruptors recognised 
in the EU and more than 1800 have been shown to be 
released from plastics and have a high potential for 
human exposure.2 Meanwhile, beyond these chemicals of 
known hazard, little to no information on chemical 
composition, toxic effects, or potential hazard is available 
for most plastic products to which people are exposed, 
including chemicals commonly encountered in daily 
life.99

A lack of transparency on which chemicals are present 
in plastics, on plastic chemicals’ uses and applications, on 
their production volumes, and on their toxic effects limits 
our understanding of the full range of plastic chemicals’ 
potential harms to human and planetary health.

These knowledge gaps reflect the limitations in current 
legislation.100 Under existing laws, industry is not 
compelled to support independent toxicity testing of new 
plastic chemicals, to conduct post-market surveillance of 
chemicals, or to make testing data publicly available. 
Despite their potential for wide-scale human exposure 
and harm to health, plastic chemicals are subject to far 
less scrutiny than chemicals intended for use as 
pharmaceuticals.97

In the absence of transparent, publicly available data, 
product analytics and human biomonitoring are often 
the only tools available to identify the chemicals present 
in plastic products and to assess their contributions to 
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human exposure and disease.18,77–80,101 A problem with 
relying on these indirect indicators is that government 
agencies, academics, and civil society must carry out the 
complex and resource-intensive task of identifying, 
characterising, and assessing the health risks of 
chemicals in plastics, and can typically do so only after 
chemicals have already come to market. Given the vast 
number of plastic chemicals in commerce, the wide 
range of formulations, and the limited number of 
chemicals that have been officially evaluated and 
classified as a hazard, gathering this information is a 
formidable challenge.

Given the considerable gaps in knowledge of plastic 
chemicals, it is reasonable to conclude that the full extent 
of these chemicals’ harms to health is underestimated and 
that the burden of disease currently attributed to them is 
undercounted. Given the current post-market approach to 
plastic evaluation, and continuing examples of regrettable 
substitution,98 there could be plastic chemicals currently 
in wide use with ongoing harms to human health that 
have not yet been discovered.97

Economic costs of plastic chemicals
Disease, disability, and premature deaths resulting from 
exposures to plastic chemicals can lead to large economic 
losses, which include health-care costs and productivity 
losses. In the 2023 Minderoo–Monaco Commission 
report, Cropper and colleagues estimated the magnitude 
of these health-related costs for PBDE (flame retardant), 
bisphenol (BPA; monomer), and di(2-ethylhexyl)phthalate 
(DEHP; plasticiser) in one country, the USA.19 Their 
analysis found that the annual health-related costs 
attributable to these three chemicals are $675 billion 
(measured in 2015 US$ adjusted for purchasing power 
parity).

Cropper and colleagues have recently updated their 
estimates.19 They examined the same three plastic 
chemicals—PBDE, BPA, and DEHP—but with much 
broader geographic coverage, encompassing 38 countries 
covering one third of the world’s population. Linking 
exposures to epidemiological data, and assuming the 
reported links are causal, Cropper and colleagues estimated 
that in 2015, BPA was associated with 5·4 million cases of 
ischaemic heart disease and 346 000 cases of stroke, 
resulting in 237 000 ischaemic heart disease deaths and 
194 000 stroke deaths. DEHP was associated with 
164 000 deaths among those aged 55–64 years. Prenatal 
PBDE exposure resulted in the loss of 11·7 million IQ 
points among children born in 2015. The estimated 
economic cost of these outcomes was $1·5 trillion 
(measured in 2015 US$ adjusted for  purchasing power 
parity).19

Another study on the same chemical classes estimated 
that disease-associated costs were equivalent to 
1·22% of the US gross domestic product in 2018.102 In 
that analysis, the health costs of PFAS exposure in the US 
in 2018 were estimated to be $22 billion.102

Microplastic and nanoplastic particles
MNPs can be intentionally generated or formed from the 
breakdown of plastic products. While intentional uses of 
manufactured MNPs (eg, cosmetics) are being curtailed in 
many jurisdictions,100,103,104 the release of increasing volumes 
of plastic waste into the environment has resulted in 
environmental accumulation of MNPs and increasing 
MNP concentrations in multiple environmental media.105

Various industrial sectors contribute to MNP emissions. 
In the EU, tyres, textiles, paints, plastic pellets, detergent 
capsules, and textiles are estimated to contribute as much 
as 90–93% of MNP emissions,106 with an overall rising 
trend of 7–9% between 2016 and 2022.107 In addition, 
mechanical recycling releases considerable quantities of 
MNPs to the environment.108 Similar to the plastic products 
from which they originate, MNPs consist of a polymer 
matrix plus thousands of embedded and adsorbed 
chemicals as well as adsorbed biological materials and 
bacteria.109

Due to their persistence and transboundary 
transport,110–112 MNPs have been found in the most remote 
reaches of the planet, from the Arctic113 to deep seas,114 at 
high altitudes,115 and in soil and groundwater.116 MNPs 
have been detected in meats, fish, shellfish, fruit and 
vegetables, drinking water, and processed foods.117–122 
Food contact materials are an additional source of MNPs 
and are credibly linked to human exposure.123–130

Airborne MNPs are also ubiquitous. Outdoor sources 
include atmospheric fallout,131,132 coastal ocean spray,133 
plastic-modified roads, tyre wear on roadways, paving 
materials,134 and mechanical recycling plants.108 MNPs 
have been detected indoors in classrooms and homes.135,136 
Occupational exposure to airborne MNPs occurs in 
multiple instances, including plastic moulding, recycling, 
and synthetic textile (eg, nylon flock) manufacturing.137

Human health effects of MNPs
In the past 2–3 years, MNPs have been increasingly 
reported in human tissues and body fluids in the general 
population,138 including blood, breastmilk, liver, kidney, 
colon, placenta, lung, spleen, brain, heart, great vessels, 
meconium, and feces.20 These findings suggest that 
MNPs might be able to cross key biological barriers, 
including the gastrointestinal lining, the alveolar–
endothelial interface, the blood–brain barrier, and the 
placenta. These findings require further validation, as 
measuring MNPs in biological samples in the size range 
smaller than 1–10 µm—those that most plausibly cross 
biological barriers and enter organs and tissues—
remains challenging, as does excluding potential 
contamination.139

Potential mechanisms of MNP toxicity include the 
disruption of the structure and function of cells and 
tissues due to the physical presence of MNPs, the toxic 
properties of the polymer matrix, the toxic properties of 
released plastic chemicals, and transport of environmental 
chemicals and pathogens into cells via MNPs.23 MNP 
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characteristics, including size, shape, polymer, and 
chemical composition, have each been reported to be 
relevant to cellular effects in vitro.23 Understanding and 
quantifying human health risk in relation to these cellular 
effects will require further research on exposure pathways, 
pharmacokinetics, and possible internal exposures, and 
animal, clinical, and epidemiological research to evaluate 
dose–response relationships.

Such research is in the early stages. A recent systematic 
review investigating the digestive, respiratory, and 
reproductive effects of MNPs reports high or moderate 
quality evidence for impact across multiple outcomes, 
primarily from animal studies, with suggested links to lung 
and colon cancer.140 Human clinical and epidemiological 
research will be dependent on further developments in the 
methods for detecting and quantifying exposure,139 but early 
studies have now been published with emerging techniques. 
These studies include reports of possible links between 
MNPs and lung diseases,137 inflammatory bowel disease,141 
liver cirrhosis,142 myocardial infarction, and stroke.143

While further analytical method development in support 
of clinical and epidemiological research is urgently needed 
to more confidently evaluate health risks,139 the potential 
that MNPs could harm human health cannot be ignored. 
Given current widespread human exposure to MNPs and 
the concatenation of findings across in vitro mechanistic 
research, animal studies, and early human observational 
studies, a precautionary approach is essential.139,144,145

Plastic waste
The cumulative global generation of plastic waste 
between 1950 and 2020 was an estimated 8 Gt.55 The 
generation of plastic waste closely tracks global plastic 
production (figure 1), and half of all waste plastic has 
been generated since 2011.

Globally, less than 10% of plastic is recycled into reusable 
products, a fraction far less than the proportions of paper, 
glass, steel, and aluminium that are recycled and reused.23,25 

Two principal impediments to plastic recycling and to the 
creation of a clean and safe circular economy are the 

chemical complexity of plastics and their content of toxic 
chemicals, including legacy chemicals.37,146

There are clear regional disparities and differences by 
country in plastic waste management strategies and 
capacities, reflecting socioeconomic differences.55 The 
fraction of plastic waste estimated to be mismanaged is 
low in China (1·5%), North America (2·7%), and 
Europe (3·6%), but is reported to be much higher—an 
estimated 43·0%—in the rest of the world, as shown in 
the Global Plastics Hub. Reflecting these differences, 
release of plastic waste to the environment shows sharp 
contrasts between and also within countries (figure 3).

Plastic waste and air pollution
An estimated 57% (95% CI 48·3–56·3 Mt) of waste plastic 
is open-burned, while 43% is either placed in landfills or 
dumped into the environment.147 Open burning of plastic 
waste typically lacks pollution and emission controls and is 
responsible for the release of an estimated 52·1 Mt (95% CI 
48·3–56·3 Mt) of pollutants into the atmosphere annually. 
These atmospheric pollutants are a major source of air 
pollution in low-income and middle-income countries.60,148

The air pollution released from the open burning of 
waste plastic contains multiple hazardous chemicals, 
which include heavy metals, carbon monoxide, hydrogen 
cyanide, and styrene, and persistent organic pollutants and 
unburnt microplastic particles.149 Combustion of chlorine-
containing plastics, notably PVC, is especially hazardous 
because unless combustion temperatures are maintained 
higher than 900oC, a condition seldom achieved in open 
burning, it can result in the generation and release of 
highly toxic polychlorinated dioxins and furans.147

Health impacts to waste pickers
Informal waste workers contribute considerably to waste 
management services in countries at every income level, 
and especially in low-income and low-middle income 
countries where they take on multiple roles that range 
from household collection, to picking waste in dumpsites, 
to shredding and pelletising plastics for recycling. Waste 

Figure 3: Macroplastic waste generation by country and by municipality for India, 2020
Adapted from Cottom and colleagues.60 Mt=megatonnes.
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workers are a highly susceptible group who typically lack 
protective equipment, health care, and negotiating 
power, and are stigmatised by society.

Waste pickers often live and work in precarious and 
dangerous conditions. They collect and process waste in 
dumpsites that are regularly on fire.150 Pickers and their 
children can live in informal settlements adjacent to 
these dumpsites and are exposed to hazards from 
operating heavy machinery, being exposed to burning 
waste, and sorting waste plastics that can be contaminated 
by multiple toxic chemicals, including pesticides, 
pharmaceuticals, and industrial chemicals.151,152 Health 
effects associated with informal waste picking include 
traumatic injuries, burns, respiratory illnesses, 
miscarriages, and cancer.23 Formal waste workers are also 
exposed to occupational hazards but have fewer 
compounding susceptibilities.

Electronic waste (e-waste) pickers are heavily exposed 
to plastic-related pollutants. A particularly dangerous 
practice is open burning of PVC-coated computer cables 
to recover copper, which releases black smoke containing 
dioxins, benzene, and airborne PM2·5.153

Plastic waste and vector-borne diseases
Plastic waste contributes to the global spread and 
amplification of vector-borne infectious diseases, such as 
dengue, Zika, and chikungunya.154,155 Aedes mosquitoes, 
which transmit many of these diseases, thrive in urban 
environments, and recent data indicate that they have 
adapted to favour laying their eggs in artificial containers, 
such as discarded plastic bottles, containers, tyres, and 
bags.156–158 Unplanned urbanisation and limited waste 
management in the context of global climate change 
might have contributed to the strong upsurge in dengue 
observed in recent decades.

Plastic waste and antimicrobial resistance
Recent data show that plastic debris and MNPs in the 
environment create unique habitats that support the 
growth of and interactions among diverse microorganisms. 
The microbial communities that colonise plastics are 
known as the plastisphere. Within this unique habitat, at 
least three key mechanisms are shown to drive the spread 
and evolution of antimicrobial resistance in the enviro
nment, particularly in aquatic and soil environments.159,160 
First, the formation of biofilms on MNPs brings different 
bacteria into close juxtaposition and promotes biofilm-
inducing quorum-sensing systems that facilitate 
cell-to-cell communication and horizontal gene transfer, 
including transfer of antibiotic resistance genes.159–162 
Second, MNPs have a considerably higher adsorptive 
capacity than natural debris, due to their large surface area 
relative to volume. MNPs thus accumulate chemical 
substances from the environment that might contribute 
to the selection or co-selection of antimicrobial resistance, 
including antibiotics, pesticides, biocides, heavy metals, 
and other xenobiotics.160,163,164 Third, MNPs can serve as 

physical vectors, facilitating the movement and transport 
of antibiotic-resistant bacteria and antibiotic-resistance 
genes over long distances in aquatic environments and 
into remote, previously uncontaminated areas.160,163,164

All these factors increase risks to human and animal 
health and to food security as pathogen-resistant bacteria 
spread to plants, animals, and humans via the 
environment. Examples of resistant pathogenic bacteria 
identified in plastic-polluted waters include Escherichia coli, 
Aeromonas sp, Shigella sp, Klebsiella pneumonia, 
Pseudomonas sp, and Bacillus.164 The proliferation of 
antimicrobial-resistance genes in pathogenic and non-
pathogenic bacteria on MNPs hinders societal efforts to 
halt the global pandemic of antimicrobial resistance.

Plastic waste and ecosystems
Visible plastic debris and MNPS derived from waste 
have been detected worldwide in ocean waters for 
decades.20,165 Increasing numbers of studies now report 
the presence of MNPs in marine environments and 
marine biota in many parts of the world, and in 
freshwater lakes and biota.166,167 MNPs are found in arctic 
sea ice113 and in the Antarctic.168 Although the amounts of 
waste plastic entering the ocean annually and their 
distribution within the water column are difficult to 
establish on a global scale,169 it is estimated that in 2020 
11 Mt of plastic entered the oceans35 with a cumulative 
total of 139 Mt in aquatic environments.24

In aquatic ecosystems, MNPs considerably affect both 
animal and plant health. MNPs alter the behaviour and 
physiology of animals, impair their swimming abilities, 
and make them more susceptible to predators.170 MNPs 
cause injury and death in important plant species, such as 
mangroves, seagrasses, and salt marshes.171 These plants 
are crucial to ecosystem health as they provide habitat and 
food for various organisms, stabilise coastlines, and aid 
nutrient cycling and CO2 uptake. MNPs have been shown 
to reduce photosynthesis in terrestrial and aquatic plants, 
thus threatening food security and hindering CO2 
sequestration.172 Additionally, MNPs cause oxidative stress 
in plants, disrupting physiological, metabolic, and 
reproductive processes, including seed germination and 
absorption and translocation of nutrients, affecting plant 
growth and proliferation.173

In terrestrial ecosystems, improperly discarded plastic 
waste contaminates soil, harming its microbiome, 
reducing soil health and fertility, and affecting essential 
ecosystem functions, such as nutrient cycling and water 
filtration.174–176 Similar to marine mammals, wildlife and 
livestock can be harmed by plastic waste. Additionally, 
waste plastic that washes into waterways can clog 
drainage systems and increase the risk of flooding.

The environmental degradation caused by plastics 
disrupts food webs, nutrient cycling, and entire 
ecosystems,171,177 leading to a decline in biodiversity. All 
these effects contravene the Kunming–Montreal Global 
Biodiversity Framework, which clearly lays down the 
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principle to reduce plastic pollution to preserve coastal 
and marine biodiversity.178

By degrading ecosystems, plastic waste and MNPs harm 
human health as they disrupt provisioning, supporting, 
regulating, and cultural ecosystem services crucial for 
health, wellbeing, and sustainability of human societies.179,180 
These services include providing fish and seafood, crops, 
fresh water for drinking and irrigation, and raw materials, 
such as seaweed, timber, and salt, while supporting the 
nutrient cycle and regulating water and air quality.

Plastic pollution in natural environments reduces 
recreational opportunities, diminishes aesthetic and 
economic value, and degrades beautiful places of spiritual 
and cultural importance. All these harms fall most heavily 
on poor and at-risk populations and in Small Island 
Developing States, communities already severely and 
disproportionately impacted by climate change.

Besides affecting ecosystem services, MNPs and plastic 
chemicals accumulated from trophic cascades can directly 
expose humans by vectoring plastic particles and plastic 
chemicals.181 For example, plastic waste ingestion can lead 
to intestinal obstruction in livestock, causing severe health 
issues and even death. Livestock are also exposed to MNPs 
and plastic chemicals, with possible effects on human 
health via consumption of meat, eggs, and dairy products.182 
Furthermore, plastic waste in informal and formal 
dumpsites can create distinct ecosystems that attract 
scavenger animals, such as rats and seagulls183 that can 
serve as reservoirs or hosts for zoonotic pathogens. These 
habitat changes can have cascading ecological effects, 
further disrupting the balance of natural ecosystems and 
potentially affecting human and animal health.

Plastic waste and climate change
New data indicate that interactions between climate 
change and plastics extend beyond GHG emissions. For 
example, plastics deteriorate more rapidly at higher 
ambient temperatures, thus accelerating the release into 
the environment of MNPs, plastic chemicals, and GHGs 
as the planet warms.184 MNPs also attach to marine snow, 
increasing its buoyancy and thus slowing the displacement 
of carbon from the ocean surface to its depths. MNPs in 
glacial snow and ice can decrease albedo, accelerating the 
melting of polar and mountain ice.

Climate-associated changes in hydrological and 
oceanographic patterns can alter the geographic 
distribution and population exposure to plastic waste. For 
example, MNP discharges into the Bay of Bengal from 
the Ganges River are estimated to range from 1–3 billion 
particles per day with greater numbers of particles 
released during the monsoon (wet season) compared 
with pre-monsoon, due to the increased flow rate and 
greater volume of water in the monsoon.185 Oceanic 
currents transport plastics long distances and lead to the 
massive accumulation of macroplastic and microplastic 
waste (eg, garbage patches, or gyres) in the South and 
North Atlantic, the Pacific, and the Indian Oceans.186

Wildfires, increasingly frequent and intense due to 
climate change, become much more hazardous when 
they spread into urban and peri-urban areas, as recently 
seen in Los Angeles, due to the high flammability of 
plastic construction and insulation products. When 
burnt, these materials release toxic particles and 
chemicals into the atmosphere, water, and soil, exposing 
residents, rescue workers, and those involved in clean-up 
and reconstruction.187

Policy interventions to mitigate plastics-
associated harms
Multiple analyses, including from the Organisation for 
Economic Co-operation and Development (OECD),42 
Pew,188 and the UN Environment Programme,189 find that 
comprehensive, multi-layered policies that address the 
entire plastic lifecycle, including its upstream production 
stages, would be most effective for controlling plastic 
pollution and protecting human health. The OECD 
found that multi-layered interventions are also more 
cost-effective than interventions with a purely 
downstream or a solely environmental focus.42

To date, however, most responses to the plastics crisis 
have targeted the downstream stages of the plastic 
lifecycle and have focused on environmental issues. A 
survey conducted by the World Trade Organization 
(WTO) Dialogue on Plastic Pollution found that the 
overwhelming majority of 223 interventions reported by 
WTO member states were downstream-focused and 
aimed at single-use plastics, waste management, and 
recycling.190

Few assessments have been conducted to establish 
which of the interventions to address plastic pollution to 
date are effective, why they work, and the extent to which 
they could be adapted and deployed for use in other 
settings.191,192 For the most part, these evaluations have 
focused only on some specific interventions, such as 
plastic bag bans or taxes, and they have employed limited 
analytical measures that do not take into account the 
systemic interactions. Moreover, these studies do not 
show whether such policies reduce the risks to human or 
planetary health associated with plastics.

Launching the Lancet Countdown on health and 
plastics
Coincident with the expected finalisation of the Global 
Plastics Treaty, we are launching a health-focused, 
indicator-based, global monitoring system on plastics—
the Lancet Countdown on health and plastics. The goal of 
this Countdown is to provide a credible, independent 
global monitoring system that will track progress toward 
reducing plastic exposures and mitigating plastics-
associated harms to human and planetary health.

Countdown origins
A consortium involving Boston College, Heidelberg 
University, the Centre Scientifique de Monaco, and the 
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Minderoo Foundation came together in 2024, and 
initiated discussions with the editors of The Lancet. A 
series of exploratory online meetings culminated in a 
2 day, in-person meeting in Monaco in October, 2024. 
This meeting was attended by 23 experts from different 
regions and by those representing multiple disciplines, 
and Lancet editors. The outcome of the meeting was a 
decision to launch the Lancet Countdown on health and 
plastics that builds on and carries forward the work of the 
Minderoo–Monaco Commission on plastics and human 
health.23

The Lancet Countdown on health and plastics will be 
guided by the approach of the Lancet Countdown on 
health and climate change. With its publications in the 
past decade, the Health and Climate Change 
Countdown has played a crucial role in moving 
consideration of the health impacts of climate change 
to the mainstream of the climate conversation.71 The 
Countdown has played a key role in the decision to 
incorporate an explicit focus on human health into the 
annual climate negotiations, starting with the UN 
Climate Change Conference 28.193

Indicator selection
In the first meeting of experts (October, 2024), 
participants collaboratively developed a preliminary 
framework for indicator selection. Following structured 
deliberation and consensus-based voting, four primary 
indicator domains were identified (figure 4). The first 
three of these domains are, production and emissions, 
exposures, and health impacts. These domains follow a 
classic source–exposure–effects model and provide a 
framework for tracking the impacts of plastics on human 
health across every stage of the plastic lifecycle. The 
fourth domain, interventions and engagement, will 
track societal responses to the plastics crisis and will 
encompass both top-down policy interventions and 
bottom-up public responses from international to 
individual levels. Depending on data availability and 
feasibility, selected indicators in these four domains will 
be developed as the Countdown evolves.

Production and emissions
This domain will develop indicators that monitor 
polymer production by polymer type and, where possible, 
by country. The domain will also develop indicators to 
track production of plastic chemicals. Furthermore, the 
volume of plastic waste generated by country will be 
tracked. Also, the domain will track particulate and 
hazardous air pollutants and pollutants released into 
water and soil at all stages of the plastic lifecycle, 
including in production, fabrication, recycling, 
landfilling, incineration, and open burning. Last, plastic-
associated GHG emissions by country will be tracked.

Exposures
Exposures will develop and track indicators that monitor 
environmental and biological concentrations of plastics, 
plastic chemicals, plastic-related waste products and 
pollutants, and MNPs. Ecological indicators tracked in 
this domain could include MNP levels in seawater, 
freshwater, glaciers, and sea ice.113 Additional possible 
ecological targets are MNP levels in soil, food crops, 
livestock, freshwater fish, and saltwater fish. Human 
exposure indicators tracked in this domain could include 
levels of plastic chemicals and MNPs in food packaging, 
personal care items, household goods, building 
materials, and other consumer products and in 
environmental media (eg, air, food, and drinking water). 
Additionally, this domain could track internal human 
exposures to plastic chemicals using data on blood and 
urine levels of plastic chemicals obtained from 
epidemiological studies and national biomonitoring 
surveys.18 For tracking human internal MNP exposure, 
potential indicators are expected to be structural, 
monitoring methodological progress towards 
characterisation and quantification of human internal 
exposure.

Health impacts
Health impacts will track effects on human health that 
are or have the potential to be influenced by plastics 
throughout the full plastic lifecycle. These health effects 

Figure 4: Conceptual domains in the Lancet Countdown on health and plastics
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could include those that are (or potentially are) 
influenced by plastic chemicals, MNPs, plastic-related 
pollutants, and plastic-related GHG emissions in general 
populations, workers, fenceline community residents, 
waste pickers, and other at-risk populations. Health 
outcomes to be tracked could include stillbirths, low 
birthweights, and malformation of the reproductive 
organs in infants; asthma, obesity, type 2 diabetes, and 
cancers in children; and cardiovascular disease, obesity, 
lipid abnormalities, diabetes, pulmonary disease, 
decreased fertility and fecundity, and various cancers in 
adults. This domain will track the health-related 
economic impacts of plastics. Furthermore, there will be 
tracking of human health effects that could potentially 
be mediated by the impacts of plastics on planetary 
ecosystems (eg, as a driver of climate change), a vector 
for spread of harmful bacterial pathogens, and a provider 
of breeding sites for disease-carrying mosquitoes.194

Interventions and engagement
This domain will track interventions across the plastic 
lifecycle that have the potential to reduce plastic-related 
exposures and reduce the harms to human and planetary 
health resulting from those exposures. Activities that 
enable and support these interventions will also be 
tracked. 

Interventions to be tracked could include governmental 
efforts at all levels to reduce plastic production, restrict 
use of single-use plastics, restrict the use of chemicals of 
concern in plastics, improve management of legacy 
plastics, improve occupational health protection for 
plastic workers, reduce leakage of plastics to the 
environment, move towards potentially safer alternatives 
and substitutes for fossil-fuel-based plastics, and reduce 
or eliminate exposure pathways that harm human health. 

Efforts to reduce plastic use in the health care sector 
are of particular concern to this Countdown, and 
indicators tracking such reduction will be included in 
this domain.

Enabling measures to be tracked could include 
education and outreach campaigns, financial mechanisms, 
efforts to strengthen value chains as countries transition 
to circular economy models, and data collection and 
monitoring. Potential indicators include media hits, 
research funding, research outputs, and survey data on 
public awareness of plastics and health. 

Interventions and engagements can be initiated, 
developed, or implemented by single actors or by 
combinations of public and private actors at various 
scales—international, regional, national, subnational and 
local. Actors could include intergovernmental organisations, 
national and subnational governments and authorities, 
private actors (eg, corporations, financial institutions, and 
small-and medium-enterprises), civil society organisations, 
formal or informal workers collectives and labour unions, 
research and academic institutions, media, community 
organisations, foundations, and individuals.

Indicator development
As in the Lancet Climate Countdown, indicators within 
each domain will be chosen using an open, transparent, 
science-based, multidisciplinary approach that includes 
review and synthesis of existing evidence, primary and 
secondary data collection, and analysis. The work of 
developing and reporting on indicators will be performed 
by working groups dedicated to each domain, each led by 
two co-leads who are experts in that domain. External 
collaborators will have the opportunity to contribute to 
the Countdown by submitting white papers on proposed 
indicators for review. Key considerations in indicator 
selection will include whether the indicator is 
meaningful, understandable, interpretable, and timely; 
scientifically credible, reproducible, quantifiable, and 
based on validated methods; feasible and updatable, 
including data that are available or can be acquired; 
temporally and geographically representative; and 
socially representative, encompassing a range of social 
groups and allowing assessment of health and 
environmental inequities. Indicator selection will 
consider balance across the domains and inter-
relatedness, including the capacity to measure systemic 
factors and impacts. The Countdown will aim to make 
indicators available for public use at the country scale.

Governance and operational leadership
The Lancet Countdown on health and plastics will be led 
by a steering committee and guided by an advisory board. 
The steering committee includes the two Countdown 
co-chairs, who are responsible for the delivery of the 
Countdown, and the co-leads of each working group. The 
co-chairs and steering committee will be supported by a 
dedicated project manager, and an independent 
consultant tasked with organising stakeholder and focus 
group consultations to ensure that selected indicators are 
relevant, inclusive, and effective.

The broader Countdown membership includes expert 
contributors across multiple disciplines relevant to 
plastics and health, including public health, medicine, 
environmental science, toxicology, chemistry, law, policy, 
and economics. As the initiative grows, we will continue 
to ensure that its composition reflects a broad range of 
knowledge and maintains a strong commitment to 
diversity, equity, and inclusion, with particular attention 
to regional and gender balance.

Translation of science to policy
The Lancet Countdown on health and plastics will actively 
engage policy makers, industry leaders, academic 
researchers, civil society stakeholders, and the public in 
the dissemination, communication, and translation of its 
research findings and scientific output. This collaborative 
approach ensures that the Countdown’s indicators and 
recommendations are both scientifically robust and 
relevant and actionable. By fostering dialogue among 
diverse actors and communicating reliable data, the 
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Countdown will seek to amplify its reach and catalyse 
evidence-based interventions.

Engagement activities can include policy briefings, 
stakeholder workshops, and targeted campaigns tailored 
to specific regions and audiences. These efforts aim to 
bridge the gap between research and real-world 
applications, enabling informed decision making and 
driving systemic change. The pathways to impact are 
depicted in figure 5, highlighting how knowledge and 
indicator generation can create actionable information for 
evidence-based policy frameworks and decision making.

Conclusion
The world is in a plastics crisis. This crisis has worsened 
alongside the other planetary threats of our time and is 
contributing to climate change, pollution, and 
biodiversity loss. Long unseen and unaddressed, the 
magnitude of the plastics crisis is now widely recognised, 
and its implications for both human and planetary health 
are increasingly clear.

An estimated 8000 Mt of plastic waste pollute the 
environment.25 MNPs and multiple plastic chemicals 
are found in the most remote reaches of the planet112–114 
and in the bodies of marine and terrestrial species 
worldwide, including humans.18 The 2023 analysis by 

Figure 5: Schematic representation of impact pathways for the Lancet Countdown on health and plastics based on the theory of change
On the left side, the problem analysis outlines the growing threat of plastic production and pollution, highlighting gaps in monitoring, the need for strengthening 
the science–policy interface, limited industry accountability, and insufficient regulatory interventions for health protection across the plastic lifecycle. On the right 
side, the impact pathway envisions a series of outcomes starting with improved data on health risks from plastics, which will enable stakeholders and decision makers 
to apply health-focused indicators to leverage effective actions. Figure adapted from the Dutch Research Council.195 FCA=food contact articles. MNP=microplastic and 
nanoplastic particle.

Widespread plastic production and usage is a major 
and growing global threat to human health

Reduced exposures, health risks, plastic production, 
and use

Problem analysis Impact pathway

Negative impacts on human health due to exposure 
to MNPs, FCAs, and plastic chemicals exist but are 
not monitored

Stakeholders and decision makers apply indicators 
for informed actions

Knowledge gaps, insufficient international 
regulation, and the absence of accountability

Improved and objective monitoring leads to practical 
insights and policy and intervention support

The Lancet Countdown on health and plastics will advance evidence on the negative 
impacts of plastic on human health and the health opportunities associated with action on 
plastic, and generate reliable and representative indicators for monitoring and assessment

Plastics have direct and indirect 
impacts on health

Insufficient exchange between 
researchers and stakeholders

Mitigation is inefficient in 
addressing health

Policies and interventions with a 
focus on health are effective

Stakeholders are interested

Improved data on health risks from 
plastics

Problem and causes Assumptions Output, outcomes, and impact Accountability mechanism proposed

the Minderoo–Monaco Commission on plastics and 
health found that plastics harm human health at every 
stage of the plastic lifecycle, that these health-related 
damages result in massive economic losses that are 
borne by society, and that plastics-associated harms fall 
disproportionately on low-income people and at-risk 
populations (panel 2).23

Three factors are responsible for worsening of the 
plastic crisis. The first and most fundamental is that 
global plastic production is accelerating.57 Current 
increases in production are projected to continue, and in 
the absence of intervention, global plastic output is on 
track to nearly triple by 2060.24 Inadequate recovery and 
recycling, coupled with a lack of operationalised 
circularity, is a second driver. Despite decades of effort, 
less than 10% of plastics are recycled, and thus 
90% are either burned, landfilled, or accumulate in the 
environment.60 Unlike paper, glass, steel, and 
aluminium, chemically complex plastics cannot be 
readily recycled. It is now clear that the world cannot 
recycle its way out of the plastic pollution crisis. The 
persistence of plastics is a third key driver. Most plastics 
do not biodegrade in the environment, nor do they break 
down into their constituent elements; instead, they 
fragment into ever smaller particles (eg, MNPs) that can 
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persist for decades in salt and fresh water, on land, and 
in living organisms. Polymers, such as PVC and some 
plastic chemicals (eg, PFAS) that are based on carbon–
halogen bonds, are especially durable. The consequence 
is that at least 80% by the weight of all plastic ever made 
is still present in the environment (figure 1). For much 
of this plastic, its ultimate repository is the ocean.180

The plastic crisis is not inevitable. Although there is 
much we still do not know about plastics’ harms to 
human health and the global environment, and more 
research is certainly needed, we have enough data now to 
know that these harms are already considerable, and 
there is enough information on trends in plastic 
production to recognise that in the absence of 
intervention, they will get worse.

Control of the plastics crisis will require continuing 
research coupled with the science-driven interventions—
laws, policies, monitoring, enforcement, incentives, and 
innovations—that have successfully and cost-effectively 
controlled other forms of pollution and catalysed systems 
change.30,32,34

The purpose of this Lancet Countdown on health and 
plastics is to be an independent, indicator-based, health-
focused global monitoring system that tracks and 
regularly reports on progress toward reducing plastic 
exposures and mitigating plastics-associated harms to 
human and planetary health as the Global Plastics 
Treaty comes into force and as regional, national, and 
subnational interventions are implemented.

By making plastics-related impacts on human and 
planetary health visible, this Countdown will bring health 
to the centre of the plastics conversation. Our hope is that 
the reports generated by the Countdown provide robust 
data and insights to inform evidence-based policy making 
on plastics at all levels—international, regional, national, 
sub-national, and local—for the benefit of public health.
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