Fear of Losing in a Clock Auction
Peter Cramton, Emel Filiz-Ozbay,
Erkut Y. Ozbay, and Pacharasut Sujarittanonta’
23 April 2012
Abstract

We examine bidding behavior in a clock auction in which price is
set by the lowest-accepted bid and provisional winners are
reported each round (the LABpw auction). This format was used
in the India 3G spectrum auction. In the standard theory, the
auction performs poorly. In particular it yields lower revenues
and is less efficient than the more standard clock auction with
exit bids and highest-rejected-bid pricing (the HRB auction).
However, the LABpw auction performs well in the lab, achieving
higher revenues than the HRB auction. We show how fear of
losing provides one motivation for the overbidding that causes

higher revenues in the LABpw auction.
JEL D44, C78, L96.
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1 Introduction

In 2010, the India government conducted an auction for its 3G spectrum. It

was one of the first spectrum auctions to apply lowest-accepted bid as a pricing
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rule in a clock auction. Lowest-accepted bid pricing has been used predominantly
in simultaneous ascending spectrum auctions such as Canada AWS, US AWS-1,
US 700 MHz and Germany 4G auctions. The clock auction is usually
implemented with highest-rejected bid pricing. In practice, a discrete clock is used
in order to simplify the communication process and mitigate tacit collusion
(Ausubel and Cramton 2004). The combination of a clock auction with lowest-

accepted bid pricing is the focus of this paper.

In the India 3G auction, the lowest-accepted bid pricing rule was used in
conjunction with a provisional winner designation. We call this auction lowest-
accepted bid with provisional winner (the LABpw auction). In theory, the
LABpw auction yields an inefficient allocation and lower expected revenue than
the efficient auction, which lets the highest-rejected bid set the price (Cramton
and Sujarittanonta 2010). Nevertheless, the India 3G spectrum auction was
regarded as a great success in terms of revenue. The auction generated $11 billion
in revenue whereas the India government expected to get merely $7.5 billion

(Kinetz 2010).

The India 3G auction outcome provides some evidence to question the
theoretical finding of lower revenue. But only a single empirical outcome is
inadequate to draw any conclusions about the revenue properties of the LABpw
auction. The purpose of this paper is to provide experimental evidence about the

properties of the LABpw auction.

We study revenue, efficiency and bidding behavior of the LABpw auction in
the lab. In our experiment, we find that the LABpw auction yields higher revenue
than the theoretical prediction, consistent with the apparent revenue observation
from the India 3G spectrum auction. The experimental design enables us to
compare the LABpw auction to the efficient auction data from another experiment

(Cramton et al. 2011). We find that the LABpw auction generates greater revenue



but lower efficiency than the efficient auction. As standard theory fails to explain
the revenue of the LABpw auction, we then propose a fear of losing model that is

consistent with our experimental finding.

In Section 2, we outline a theoretical model of the LABpw auction. Section 3
provides the experimental method. We summarize the experimental result and
compare the LABpw auction to the efficient auction in Section 4 and 5,
respectively. We present a modified model of LABpw that can explain the

experimental outcome in Section 6.

2 Model of the LABpw auction

There is one indivisible good for sale to two risk neutral bidders.” Bidder i’s
private value for the good is v; where each v; is independently drawn from
uniform distribution on the interval [50,100]. Bidder i’s payoff if she wins the
good at a price p is v; — p. Otherwise, it is equal to 0. The seller values the good at
0.

Before the auction starts, the seller announces six bid levels, P =
(50,60,70,80,90,100) where 50 is the reserve price. The clock price starts at 60
and increases every round to the next bid level until the auction ends. In every
round, bidders decide whether to stay in at the current clock price or to exit. Once
a bidder exits, she cannot bid again. At the beginning of each round, one of the
active bidders—bidders who stayed in at the previous clock price—is randomly
selected as the provisional winner of that round. Both bidders are active at the

reserve price by default. If both bidders stay in, the auction proceeds to the next

> For N>2, the main theoretical result is still true: HRB is efficient but LABpw is
inefficient. The strategy of provisional losers in LABpw are also unaffected by the
number of bidders. The closed form solution of LABpw (see Proposition 1) is history
dependent. Although it is possible to calculate the strategies, it will add unnecessary
notation.



round. If only one bidder exits and the other stays in, the bidder who stayed in
wins the good and pays the current clock price. If both bidders exit, the
provisional winner of that round wins the good and pays the previous clock price.
If both bidders stay in round 5, the good is randomly awarded to one of the
bidders.’

We set the price increments and the number of rounds close to those in actual
auctions. We have a maximum of five rounds in our model, and the price
increments are 10% to 20% of the current price in each round. For example in
diamond auctions for large stones, typically there are 4-6 rounds and increments
are 10%-20% of the price range. In 3G auction in India, if there is one bidder
more than the number of spectrum slots, the price increment was 5% of the
current price and if there are two bidders more than the available slots, then the

current price was raised by 10%.

Proposition 1. In a perfect Bayesian equilibrium of the LABpw auction, the
provisional loser stays in provided her value is not yet reached; the provisional
winner exits at a level below her value (see Table 1 for the precise strategy of the

bidders given the parameters used in the model).

Table 1. Provisional Winner’s Equilibrium Strategy for the LABpw auction

Round History+ Critical Valuationi
1 (W) 74
2 (W, W) 84
(L, W) 70

* Ausubel et al. (2011) experimentally studies a similar discrete clock in common value
settings.



3 (W,W,W) and (W,L,W) 94
(L,W,W) 90.8
(L,L,W) 80
4 (W,L,L,W), (L,W,L,W) and 90
(L,L,L,W)
Otherwise 100
5 Any 100

"History vector denotes whether the bidder is a provisional winner (W) or not (L) in
from the first round up to the current round;
*Critical Valuation is the threshold such that the bidder stays in if her value is above

the corresponding threshold.

The intuition of the characterization is as follows: If the provisional loser
stays out, she will lose the auction. Therefore, it is a weakly dominant strategy for
her to stay in if the price is less than her value. On the other hand, the provisional
winner faces a rather difficult decision. Since the pricing rule is to pay the price
level she stayed in, as in first price sealed bid auction, the distribution of the other
bidder plays a role. Depending on the history, the provisional winner will update
the belief on the distribution of the other bidder’s signal and she decides whether
to stay in if the expected value of staying in is higher than staying out. For
example, the provisional winner (with a value of v) at P=80 with history of (W,
W, W, W) updates that the other bidder’s value is in [80,100] and at P=90, the
other bidder stays in only if her value is more than 90. Hence, if the provisional
winner at P=80 stays out, she wins if the value of the other bidder is in [80,90],
the probability of this event is 4. Therefore, her expected payoff from staying out
is ¥2(v-80). On the other hand if she stays in then she wins when the other bidder’s
value is in [80,90] and when the other bidder’s value is [90,100] and she becomes



the provisional winner at P=90 (since all bidders with a value less than 100 must
stay out at P=100). Therefore, her expected payoff from staying in is 3/4(v-90).

Hence for any value, it is optimal to stay out.

Proposition 2. The outcome is inefficient and does not maximize seller revenue.

There are two sources of inefficiency in the LABpw auction. First, there is no
precise value information to determine who has the higher value among the two
bidders who exit in the same round. For example, consider bidders 1 and 2 whose
values are 53 and 59, respectively. Assume that bidder 1 is the provisional winner
in round 1. According to Table 1, both will exit in the first round. Bidder 1 whose
value is less than bidder 2 wins and the outcome is inefficient. If there were finer
bid levels (e.g. 50,55,60,...,100), bidder 2 would have stayed in at 55 and won.
Second, the provisional winner designation ex ante creates differential bid
shading—provisional winners shade bids while provisional losers with the same
value bid their values. For example, a bidder with value of 65 will drop out if she
is a provisional winner and stay in otherwise. Since in our setting there is no
conflict between efficiency and revenue maximization—the efficient auction

maximizes revenues—the LABpw auction does not maximize seller revenue.

3 Experimental method

The experiments were run at the Experimental Economics Lab at the
University of Maryland. All participants were undergraduate students at the
University of Maryland. The experiment involved two sessions with 16 and 14
subjects. No subject participated in more than one session. Participants were
seated in isolated booths. Each session lasted about 80 minutes. Bidder
instructions are in the Appendix. To test the subjects’ understanding of the

instructions, they had to answer a sequence of multiple choice questions. The



auctions did not begin until each subject answered all of the multiple choice

questions correctly.

In each session, each subject participated in 21 auctions. The first auction
was a practice auction. Each auction had two randomly matched bidders. Bidders
were randomly rematched after each auction. All bidding was anonymous. Bids
were entered via computer. The experiment is programmed in z-Tree (Fishbacher
2007). At the conclusion of each auction, the bidder learned whether she won and

the price paid by the winning bidder.

The parameters that were studied in the previous section were used in the
experiment. Hence, in each LABpw auction, each bidder received a private value
from uniform distribution from [50,100], independently and there were six bid
levels with price increments of 10. The entire history of provisional winners was

shown on the bidding screen for the auction.

The winner in each auction earned her value minus the price paid in
Experimental Currency Units (ECU). At the end of the experiment, total earnings
were converted to US Dollars, at the conversion rate of 10 ECU = 1 US Dollar.
Subjects also received a $5 show-up fee. Cash payments were made at the

conclusion of the experiment. The average subject payment was $23.96.

4 Experimental results

The experiment consists of 300 auctions. Figure 1 shows a histogram of
difference between actual and theoretical revenues. A large number of auctions
generate higher revenue than expected. The actual average revenue from the
experiment is 69.33 per auction while the theory predicts 65.87 per auction given
the value draws used in the experiment. With Wilcoxon-Mann-Whitney test, the
actual revenue is significantly different than the theoretical revenue (z=4.17, p <

0.01). LABpw pricing rule is similar to first-price auction rule since in both



formats the highest bid that clears the market is the price. The experimental
literature robustly finds higher bids in a first-price auction compared to the risk-
neutral Nash equilibrium prediction (see Cox, et al. 1982, 1988, and Kagel and
Levin 1993 as the seminal papers; Kagel and Levin 1995, 2008 for detailed

surveys).*

The number of auctions with an inefficient outcome is the same as the
theoretical prediction—44 out of 300 auctions are inefficient—although
inefficient outcomes in the experiment and theory take place in different
instances. Wilcoxon-Mann-Whitney test cannot reject the hypothesis that there is
a significant difference between actual and theoretical efficiencies (z = 0.00, p =

1.00).

Figure 1. Difference between actual and theoretical revenues
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* Risk aversion offers one explanation, but this has proven inadequate (see Kagel 1995).
Several papers explain the overbidding phenomena with behavioral motives (for
example, Delgado et al. 2008; Engelbrecht-Wiggans and Katok 2007; Filiz-Ozbay and
Ozbay 2007, Filiz-Ozbay and Ozbay 2010; Lange and Ratan 2010).



A total of 367 exit decisions are observed. A histogram of differences
between actual and theoretical exit rounds is shown in Figure 2. In 91
observations, subjects stayed in for too long while in 33 observations they
underbid. Note that Figure 2 does not include active bidders whose exit decisions
have not yet been observed. However, we can conclusively say that 49 out of 233
active bidders have stayed in for too long. This tendency to exit late leads to the

actual revenue being higher than predicted.

Figure 2. Difference between actual and theoretical exit rounds
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Difference between actual and theoretical exit rounds

Next, we look at bidding behavior of subjects when being selected as
provisional winner and loser. We observed 1,294 bid decisions, 647 decisions for
provisional winners and losers each. Each bid decision can be categorized into
three groups: underbid, optimal and overbid. A decision is optimal if it is the same
as the theoretical prediction. A decision is underbid if a subject exits when the
theory expects her to bid. A decision is overbid if a subject bids when the theory
expects her to exit. Figure 3 shows frequencies of each type of bid decisions.

Most overbidding is done by provisional winners. In other words, most



provisional winners shade their bids less than theoretical prediction while most

provisional losers bid straightforwardly as predicted.

Figure 3. Bid decisions of provisional winners and losers
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Each subject participates in 20 auctions plus one trial auction. To see the
learning effect, we group decisions of four consecutive auctions. Figure 4a and 4b
show the percentage of non-optimal bid decisions of provisional winners and
losers. For provisional winners, we see a slight downward trend in the percentage
of overbidding but there is no obvious evidence of a learning effect. For
provisional losers, the percentage of overbidding decreases sharply after the

fourth auction and continue to decline afterward.

The slower learning of provisional winners is not surprising. A provisional
winner’s decision is more complicated than a provisional loser’s because of the
history dependence. A provisional winner needs to take into account the entire
history of provisional winners to make the inference of the opponent’s value

while a provisional loser does not need to make any inference.
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Figure 4a. Percentage of non-optimal bid decisions of provisional winners
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Figure 4b. Percentage of non-optimal bid decisions of provisional losers
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S Comparison between LABpw and an efficient auction

Our theoretical findings on LABpw suggested that an auctioneer who aims to
maximize revenue or efficiency in allocation should not use this format. However,
the LABpw auction, both in the field and in our experiment, appears to generate
high revenue. In this section we will compare LABpw to an ascending clock
auction in which bidders bid an exit bid when they drop out and the price is set by

the highest rejected bid (HRB auction).

In HRB auction, price levels are commonly known as in LABpw. The clock
price starts at the initial level and increases one level as long as there is excess
demand at the current price. If a bidder exits at a particular price level, she
specifies an exit bid—a price between the previous price and current clock price
at which she wants to exit. The bidder who submits the highest bid or exit bid

wins the good and pays the losing bid (the highest rejected bid) to the auctioneer.

In contrast to the LABpw auction, HRB auction allows bidder to choose exit
bids from a continuous space rather than restricting the bid to a set of permissible
bid levels. Bidders can fully express their values. Moreover, the pricing rule is
equivalent to Vickrey pricing—the winner pays the social opportunity cost. The
dominant strategy equilibrium bidding strategy is to bid one’s value, and thus the

outcome is efficient.

Next, we compare our findings to those in our earlier paper (Cramton, et al.
2011) which experimentally tested the HRB auction with identical parameters as

the experiment presented here.

Table 2 compares outcomes from LABpw and HRB auctions. 92% and
85.3% of HRB and LABpw auctions, respectively, yield the efficient allocation.
With Wilcoxon-Mann-Whitney test, the LABpw auction’s frequency of efficiency
is significantly different from the HRB auction (z=2.57, p = 0.01).

12



According to Table 2, treatment LABpw yields higher revenues (price paid
by the winner) than HRB in average. The values in Table 2 are the average value
draws of the bidders in two treatments. In order to take into account the random
value draws, we will use the seller's share of the theoretical gains from trade (the
ratio of the actual final price and the value of the bidder who is predicted to be the
winner by the theory) as the proxy for the revenues. This measures how much the
seller gained from the value that would have been generated if the bidder
predicted by the theory won. With Wilcoxon-Mann-Whitney test, LABpw and
HRB generate significantly different seller shares (z=3.52, p <0.01).

Table 2. Comparison among outcomes of treatment LABpw and HRB

Variable LABpw HRB

Value 74.87 75.55
(0.61) (0.59)
Frequency of efficient allocation 85.3% 92.0%
(2.05) (1.55)

Revenue per auction 69.3 67.3
(0.65) (0.70)
Seller’s share of theoretical gains from 85.3% 80.8%
trade (0.77) (0.72)

Standard errors are given in the parentheses.

13



Figure 5. Actual and theoretical seller shares of gains from trade
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Figure 5 compares actual, and theoretical seller’s share of the gains from
trade per auction. Theoretical seller’s share is the equilibrium seller’s share given
the realization of valuations. The actual seller’s share of HRB is slightly higher
than the theoretical one, but actual seller’s share of LAB and LABpw are
significantly higher than the theoretical prediction.

6 Theory with fear of losing

Bid shading in LABpw may lead to a situation where a bidder finds herself
losing at an affordable price. For example, consider a provisional winner at price
level $70, with a valuation of $84. If she exits at $70 and her opponent stays in at
$70, the provisional winner loses at an affordable level. However, it is not clear
how the outcome would have changed if she had stayed in since she cannot infer
the price at which her opponent would exit. Regardless, she can at most imagine

some events in which she would be better off if she did not exit at $70. One of

14



those events is that at a price level of $70 both bidders stay in and at a price level
of $80 her opponent exits. In such an event, the provisional winner would make
positive profit. A bidder who fears losing and experiencing such situations as in
the example above will shade her bid less than a bidder focused solely on profit

maximization. LABpw may achieve higher revenues if bidders fear losing.

This type of regret, loser regret, has been shown to explain overbidding in
first-price sealed-bid auctions (Filiz-Ozbay and Ozbay 2007, Engelbrecht-
Wiggans and Katok 2008 °). Filiz-Ozbay and Ozbay (2007) provide experimental
evidence that subjects anticipate loser regret and reflect this to their bids. The
source of loser regret in first-price auctions is defined to be the difference
between the bidder’s value and the winning bid whenever the winning bid is
affordable. In contrast to the first-price auction, in dynamic auctions it may be
unclear for a losing bidder how the outcome would change if she bid differently.
Therefore, ex-post a losing bidder may only regret in expectation. Készegi and
Rabin (2006) provide a model of reference-dependent preferences and loss
aversion where the reference point can be stochastic (see also Sugden 2003). In
our setting, the outcome of alternative actions of a bidder may serve as the
stochastic reference point,® and hence the loser regret in expectation as a source of
fear of losing can be incorporated into dynamic auctions with the model of

Kdszegi and Rabin (2006).

As in K6szegi and Rabin (2006), we define the utility of a bidder when the

auction outcome is ¢ and the reference outcome is r as

u(c | r) =m(c)—amax{0,m(r)—m(c)}

® Also, Filiz-Ozbay and Ozbay (2010) study regret in third price auctions.
% In the first-price sealed bid auctions, the winning bid is the reference point for modeling
regret.
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where m is the consumption utility. The first term captures the monetary utility of
the outcome. It is v; — p if bidder i/ wins at price p and zero otherwise. The second
term compares the actual monetary utility with the reference monetary utility and
if the latter is higher, the difference is a disutility. o > 0 is bidder’s fear of losing
coefficient which can be motivated by regret in our setting. Any bid history in a
dynamic auction generates the distribution (F) of consumption level and the
distribution (G) of the reference point. Hence, as in Kdszegi and Rabin (2006), the

expected utility of a bidder after any history can be represented as:
U(F|G)=[u(c|r)dG(r)dF (c) (1)

Appendix A provides an explicit reference dependent expected utility

calculation in our setup.

Filiz-Ozbay and Ozbay (2007) show that only the losers but not the winners
engage in negative emotion. Therefore, in the formulation we use, the reference
outcome for a winner will be the outcome of the auction and the utility will be

only the consumption utility.

Proposition 6. /n a perfect Bayesian equilibrium of the LABpw auction with fear
of losing, the provisional loser stays in provided her value is not yet reached; the
provisional winner exits at a level below her true value (see Table 3). The exit
level depends on the provisional winning history. Moreover, the outcome is

inefficient.

Table 3. Equilibrium Strategy for the LABpw auction with o> 0

Round History¥t Critical valuationi
0<a<l a>1
1 (W) 70+4 1« 60 + 2%

16



(W, W) 80+4 1<« 70 + 22
(L,W) 70 80 + 2((1)(05;)
(W,W.,W) 90 +4 -7 80 + 22
(WLW) | 90+4-= 0,207
(LWW) | g Helie) 80+ 20
(LLW) 80 50+ 200
4 (W, W, W,W) 100 90 + 2L
(W,W,L,W) 100 901 %
(W,.L,W,W) 100 90 + 2
(W,L,L,W) 90 90 + %
(L,W,W,W) 100 90 + 2
(L,W,L,W) 90 00+ M
(L.L,W,W) 100 90 +(E_3;
(L,L,.L,W) 90 90 + %
S Any 100 100

"History vector denotes whether the bidder is a provisional winner (W) or not (L)

in all the rounds up to the current round;

*Critical Valuation denotes the threshold such that the bidder stays in if her value

is above the corresponding threshold.

Remark: Revenue is strictly increasing in a. LABpw revenues are greater than

HRB revenues for sufficiently large a.
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Figure 3 shows how revenue of LABpw depends on the fear of losing
coefficient o in our setup with six bid levels. One may also note on the figure that
for our parameters and value draws used in the experiment, the revenue the
standard theory predicts for HRB format is 66.67. It is easy to show that the
equilibrium strategy in HRB is unaffected when we modify the utility as reference
dependent utility. Therefore, the expected revenue for HRB is always 66.67
independent of a. However, for small a, LABpw is expected to generate lower

revenue than HRB but this is not true for a greater than 0.66.

Figure 3. Revenue of LABpw as a function of a
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7 Conclusion

Based on the standard theory, the LABpw auction would appear to be a poor
choice. It is dominated by the HRB auction in both revenues and efficiency.
Despite this poor theoretical performance, the India government chose the
LABpw auction for the India 3G auction. Revenue maximization was an
important goal of the regulator in this choice. Our analysis of the LABpw auction
in the experimental lab suggests that India’s choice may not have been a bad one.

We find that the LABpw auction yields higher revenues than the HRB auction.

One explanation for the high revenues is fear of losing. The LABpw auction,
like a first-price auction, exposes bidders to the possibility that they may lose at a
profitable price. Bidders can reduce this possibility by bidding more aggressively.

This overbidding results in higher revenues.

19



References

Ausubel, Lawrence M. and Peter Cramton (2004), “Auctioning Many
Divisible Goods,” Journal of the European Economic Association, 2,
480-493, April-May.

Ausubel, Lawrence M., Peter Cramton, Emel Filiz-Ozbay, Nathaniel
Higgins, Erkut Y. Ozbay, and Andrew Stocking (2011), “Common
Value Auctions with Liquidity Needs: An Experimental Test of a
Troubled Assets Reverse Auction”, Working Paper, University of
Maryland.

Cox, James C., Bruce Roberson, and Vernon L. Smith (1982), “Theory
and Behavior of Single Object Auctions.” Research in Experimental
Economics. 2: 1-43.

Cox, James C., Smith, Vernon L., and James Walker (1988), “Theory and
Individual Behavior of First-Price Auctions,” Journal of Risk and
Uncertainty, 1: 61-99.

Cramton, Peter, Emel Filiz-Ozbay, Erkut Ozbay, and Pacharasut
Sujarittanonta, “Discrete Clock Auctions: An Experimental Study,”
Experimental Economics, 15, forthcoming, 2012.

Cramton, Peter and Pacharasut Sujarittanonta (2010), “Pricing Rule in a
Clock Auction,” Decision Analysis, 7, 40-57, 2010.

Delgado, Mauricio R., Andrew Schotter, Erkut Y. Ozbay, Elizabeth A.
Phelps (2008), “Understanding Overbidding: Using the Neural
Circuitry of Reward to Design Economic Auctions,” Science, 321,
1849-1852.

Engelbrecht-Wiggans, Richard and Elena Katok (2008), “Regret and
Feedback Information in First-Price Sealed-Bid Auctions,”
Management Science, 54, 808-819.

Filiz-Ozbay, Emel and Erkut Y. Ozbay (2007), “Auctions with
Anticipated Regret: Theory and Experiment,” American Economic
Review, 97,1407-1418.

Filiz-Ozbay, Emel and Erkut Y. Ozbay (2010), “Anticipated Loser Regret in
Third Price Auctions,” Economics Letters, 107(2), 217-219.

Fischbacher, Urs (2007), “z-Tree: Zurich Toolbox for Ready-Made
Economic Experiments,” Experimental Economics, 10(2), 171-178.

20



Kagel, John H. (1995), “Auctions: A Survey of Experimental Research,”
in Alvin E. Roth and John H. Kagel (eds.), Handbook of Experimental
Economics, Princeton University Press.

Kagel, John H. and Dan Levin (1993), “Independent Private Value
Auctions: Bidder Behaviour in First-, Second-, and Third-Price
Auctions with Varying Numbers of Bidders.” Economic Journal, 103:
868-79.

Kagel, John H. and Dan Levin (2008), “Auctions: A Survey of
Experimental Research, 1995-2008,” in Alvin E. Roth and John H.
Kagel (eds.), Handbook of Experimental Economics, Vol. 2, Princeton
University Press.

Kinetz, Erika (2010), “India’s 3G Spectrum Auction Raises $14.6
Billion.” The Associated Press, May 20, 2010.

Kdszegi, Botond and Matthew Rabin (2006), “A Model of Reference-
Dependent Preferences,” Quarterly Journal of Economics, 121, 1133-
1166.

Lange, Andreas and Anmol Ratan (2010), “Multi-Dimensional Reference-
Dependent Preferences in Sealed-Bid Auctions: How (Most)
Laboratory Experiments Differ from the Field,” Games and Economic
Behavior, 68(2):634-645.

21



Appendix A:

Let g, € {0,1} denote the bid of bidder i in round ¢ where 0 means

“exiting” and 1 means “staying in” the auction.
Lowest-accepted-bid with provisional winners

We use the same approach for equilibrium characterization as

Cramton and Sujarittanonta (2009). Let IT1, ., (v,,H,,«) be the bidder i’s
expected utility if the auction continues to round 7+1 where H,, is a vector

of bidder /s ranking history from round one to round «. Let v, (H,,a) be a

critical valuation such that a bidder with valuation in [\9, (Hit,a),IOO]

bids in round ¢ given a ranking history H, and a fear of losing coefficient
o . An equilibrium bidding strategy is specified by critical valuations

X, (Hit,a) for all rounds #=1,...5 and for all possible ranking histories
in Table 4. Since there are two bidders, the opponent’s ranking history is a
complement of bidder i’s ranking history. In the LABpw auction, when
bidder i with v, considers staying in in round ¢, Equation (1) becomes

7Ty (vi’Hit’a) :(Vi _P)

t

w—i_ni t+1(vi’Hit’a)
1-7,(H,,a) ’

it?

1-F
1-7,(H,,a)

where the first term is the expected payoff if the opponent exits in round ¢,
and the second term is the expected payoff if the opponent stays in in

round ¢.

When bidder i with v,considers staying out in round ¢, Equation (1)

becomes
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P-v.(H,,«a 1-F
T, (vl.,H”,a)=(v[—Pl_l) lt_‘;t((H rOl))—()grnaX{O,H[’Hl (V[’H”’a>_1_‘3 (Ht a)}
] it?

it t

where the first term is the expected payoff if the opponent exits in round ¢,
and the second term is the expected disutility if the opponent stays in in
round ¢. For example, consider bidder i, the provisional winner at price
level $70, with a valuation of $84 exiting at $70. If her opponent stays in
at $70 or at $80 and if bidder i loses at $80, bidder i will lose at an
affordable level. Her expected payoff will be the source of the disutility.
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Appendix B:

Experiment Instructions for LABpw

Welcome to the auction experiment. In this experiment, you will
participate in auctions as a bidder. The precise rules and procedures that

govern the operation of these auctions will be explained to you below.

Various research foundations have provided funds for this research.
The instructions are simple, and if you follow them carefully and make
good decisions you can finish the experiment with a considerable amount
of money, which will be paid to you in cash at the end. The experiment

will last about 80 minutes.

The type of currency used in this experiment is Experimental Currency
Units (ECU). Participants completing the session do not risk losing any
money. At the end of the experiment all your earnings will be converted to
US Dollars. The conversion rate is 10 ECU = 1 US Dollar. You will be
paid in cash when you finish the experiment. The more ECU you earn, the
more US Dollars you earn. If you participate in this experiment until the

session is over, then you will be paid an additional 5 US Dollars.

Auction Rules and Calculation of Earnings

You will be participating in 20 auctions. At the beginning of the first
auction, you will be randomly matched with another participant in this
room; every auction, you will be randomly re-matched with a different
participant. In each auction you will be bidding against the participant

with whom you are matched.

In a given auction, there is a fictitious good that is sold. When the first

auction starts, you will observe your valuation of the fictitious good. Your
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valuation is a number between 50 and 100 and it is randomly selected
from the [50,100] interval with equal probability and rounded to the
nearest cent. The other bidder participating in this auction also receives his
or her independent valuation for the fictitious good and his or her
valuation is also randomly selected from [50,100] interval. Each bidder

will know only his or her own valuation.

The price for the fictitious good will start at 50 and will gradually
increase to 60, 70, 80, 90, and 100. At price level 50, both you and your
opponent are in the auction. Then the computer will randomly determine
one of you as a provisional winner. Each bidder has 50% chance of being
a provisional winner. Next, the computer will ask you if you would like to
stay in the auction when the price increases to 60. There are four possible

things that can happen:

e You stay IN, your opponent stays OUT: Then you win the
fictitious good and pay 60.

e You stay OUT, your opponent stays IN: Then your opponent wins
the fictitious good and pays 60.

e You stay OUT, your opponent stays OUT: Then the provisional

winner wins the fictitious good and pays 50.

e You stay IN, your opponent stays IN: Then the price moves to the

next level which is 70.

If both you and your opponent stay in the auction for price level 60,
then the computer will randomly determine a new provisional winner and
ask if you would like to stay in the auction when the price increases to 70.

Again there are four possible things that can happen:
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e You stay IN, your opponent stays OUT: Then you win the
fictitious good and pay 70.

e You stay OUT, your opponent stays IN: Then your opponent wins
the fictitious good and pays 70.

e You stay OUT, your opponent stays OUT: Then the provisional

winner wins the fictitious good and pays 60.

e You stay IN, your opponent stays IN: Then the price moves to the

next level which is 80.

If both you and your opponent stay in the auction for price level 70,
then the computer will randomly determine a new provisional winner and

ask if you would like to stay in the auction when price increases to 80.

The same procedure will repeat for price levels 90 and 100. If both of
you are still in the auction when the price level is 100, then the computer
will randomly assign the fictitious good to one of the bidders with equal

chance, and the winner will pay 100.

Please note that the price level only increases if both bidders stay in
the auction. Each time the price level increases a new provisional winner
is randomly determined by the computer and each bidder has equal chance
of being the provisional winner at that price level. The provisional winner
wins the fictitious good at the previous price level if both bidders stay
OUT at the current price level. Otherwise, if one bidder stays in and the
other bidder stays out in the current round, then the bidder who is IN wins
the good at the current price, regardless of the provisional winner

designation.
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When one bidder wins the good, the auction is over. If you are the
winner at a given price, then you earn the difference between your
valuation and the price. For example, let us say you have a valuation of
82.55 for the fictitious good in the current auction and you win the good at

a price of 60. Then your earning from this round is
Earning = 82.55 — 60 = 22.55 ECU

When the first auction is completed, the second auction will start. At
the beginning of the second auction, you will be randomly matched with
another participant in this room and play with that person in this auction.
First, the computer will show you your new valuation for the good for this
auction. It is again a randomly selected number from [50,100] interval.
Your opponent will also observe his or her own valuation of the good for

this auction privately. The same auction rules as in the first auction will
apply.

There are 20 auctions in total. The computer will sum up your earnings
in ECU in all auctions and convert this amount to US Dollars by dividing

by 10. We will pay you this amount in cash at the end of the experiment in

person.

In order to make sure that you understand the rules of the auction, we
have a test period before the real session starts. In this test period, you will
see some multiple choice questions about the auction rules. Please answer
those questions to the best of your knowledge. You may look at the hard
copy of the instructions while answering them. Once you answer all the
questions correctly, one practice auction will be conducted for which no
payment will be made. Then the experiment will start with 20 real

auctions.
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Please ask if you have any questions.

Questions for the test period (asked to the subjects during the test period

by the computer)

1) The price level just moved from 60 to 70 and the computer determined
you as the provisional winner for the current price. The computer asks
you if you would like to stay in for price level 70. You said that you
are IN and your opponent said that he or she is OUT. Then what would

be the outcome of the auction?
a) Your opponent would win the good and pay 70.
b) You would win the good and pay 70.
¢) You would win the good and pay 60.
d) Nobody would win the good and the price would move to 80.

Answer: (b)

2) The price level just moved from 60 to 70 and the computer determined
your opponent as the provisional winner for the current price. The
computer asks you if you would like to stay in for price level 70. You
said that you are OUT and your opponent said that he or she is OUT.

Then what would be the outcome of the auction?
a) You would win the good and pay 70.
b) Your opponent would win the good and pay 70.
¢) You would win the good and pay 60.
d) Your opponent would win the good and pay 60.

Answer: (d)
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3) Your valuation of the good is 91 for the current auction. The price
level just moved from 70 to 80 and the computer determined you as
the provisional winner for the current price. The computer asks you if
you would like to stay in for price level 80. You said that you are OUT
and your opponent said that he or she is OUT. Then what would be

your and your opponent’s earnings for this auction?

a) You would win the good and pay 70. You would earn 21 and

your opponent would earn 0.

b) Your opponent would win the good and pay 70. You would
earn 0 and you cannot know your opponent’s earning without

knowing his or her valuation.

¢) You would win the good and pay 80. You would earn 11 and

your opponent would earn 0.

d) Your opponent would win the good and pay 80. You would

earn 0 and your opponent would earn 15.

Answer: (a)
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