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Abstract

We study the determinants of capital income inequality in a general equilibrium port-
folio choice model with endogenous information acquisition. The key elements of the
model are heterogeneity in investor sophistication and in asset riskiness. The model
implies capital income inequality that increases with aggregate information technology,
given initial heterogeneity in sophistication. The main mechanism in the model works
through endogenous investor participation in assets with different risk. Across assets,
the pattern of expansion of sophisticated investors and retrenchment of unsophisti-
cated investors, unique to our model, is consistent with asset ownership dynamics for
the U.S. Quantitatively, the model generates a path for capital income inequality that
matches the evolution of inequality in U.S. data.
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The rise in wealth and income inequality worldwide has been one of the most hotly discussed

topics in academic and policy circles.1 A significant step towards understanding the pat-

terns in the data is the vast literature on wage inequality and the polarization of the U.S.

labor market.2 Less understood thus far has been inequality in capital income generated in

financial markets. An important component of total income, capital income is by far the

most unequally distributed part of household income in the United States, and it exhibits a

strong upward trend in polarization.3

A growing literature in economics and finance analyzes household behavior in financial

markets and especially its impact on capital income.4 Some of the robust general trends are

a growing non-participation in risky investments and a decline in trading activity. Anecdotal

evidence suggests that an ever present and growing disparity in investor sophistication, or

access to investment technologies, might be partly responsible for these trends. An early

articulation of this argument is Arrow (1987) and recently Piketty (2014). However, micro-

founded, quantitative treatments of such mechanisms are missing.

We propose such a micro-founded, general equilibrium theory of portfolio choice that can

go a long way in explaining the recent growth in capital income inequality, qualitatively and

quantitatively. The friction in our model is heterogeneity in investor sophistication modeled

as investors’ ability to obtain and process information about their investments.

To explore the consequences of this friction for the dynamics of capital income inequality,

we link initial sophistication to initial wealth. Intuitively, when information about financial

assets is costly to process, individuals with different access to financial resources also differ in

terms of their access to information about their financial investments. We take this point as

a guiding principle in mapping investors in our model into two different wealth groups in the

1For a summary, see Piketty and Saez (2003); Atkinson, Piketty, and Saez (2011). A comprehensive
discussion is also in the 2013 Summer issue of the Journal Economic Perspectives and Piketty (2014).

2Representative contributions to this line of research include Katz and Autor (1999); Acemoglu (1999);
Autor, Katz, and Kearney (2006, 2008); and Autor and Dorn (2013).

3In the U.S. Survey of Consumer Finances, approximately 34% of households participate in financial
markets. Capital income accounts for approximately 14% of this group’s total income, ranging from 35% to
less than 1%. Between 1989 and 2013, the ratio of capital incomes for the top 10% of the financial wealth
distribution relative to the bottom 50% increased from 61 to 129.

4Most recently represented by Calvet, Campbell, and Sodini (2007) and Chien, Cole, and Lustig (2011).
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Survey of Consumer Finances. Specifically, in the population of households who participate

in financial markets, we use the average financial wealth of the 10% wealthiest investors

relative to that of the 50% poorest investors in 1989 as a proxy for initial relative investor

sophistication. In the presence of this initial inequality, subsequent symmetric growth in

the capacity to process information for both investor types disproportionately benefits the

wealthy, more sophisticated investors. As a result, their wealth diverges from that of less

wealthy investors, who have relatively less information. General equilibrium forces amplify

this effect, as asset prices push the unsophisticated investors to allocate their investments

away from the allocations of sophisticated investors, which results in further divergence.

This process generates a path for capital income inequality that can quantitatively match

the evolution of inequality in the data. A feedback mechanism, through which changes

in financial wealth feed into subsequent investor sophistication, generates an endogenous

evolution of capacity for each investor type that yields an even larger increase in inequality.

Formally, we build a noisy rational expectations equilibrium portfolio choice model with

endogenous information acquisition and capacity constraints, in the spirit of Van Nieuwer-

burgh and Veldkamp (2009, 2010), and Kacperczyk, Van Nieuwerburgh, and Veldkamp

(2013). We generalize this theory by allowing for meaningful heterogeneity across both

assets and investors. Our economy is populated with one riskless asset and many risky as-

sets that differ in the volatilities of their fundamental payoffs. A continuum of investors have

mean-variance preferences with a common risk aversion coefficient. Investors learn about as-

sets payoffs from optimal private signals subject to an entropy constraint on information

(Sims (2003)). Based on the observed asset characteristics, investors decide which assets to

learn about, how much information about them to process, and how much wealth to invest.

A fraction of investors are endowed with high capacity for processing information and the

remaining ones have lower, yet positive capacity. Thus, everyone in the economy has the

ability to learn about assets payoffs, but to different degrees.

Our methodological contribution is to solve for the equilibrium allocation of information

capacity across assets and investors. In our solution, both the number of assets that are

being learned about and the mass of investors learning about each asset are determined
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endogenously. In contrast, previous work assumes that all investors with positive capacity

learn about the same asset(s). Since learning about an asset affects the holdings of that asset,

the endogenous allocation of investor learning allows us derive rich asset-level predictions,

and it is critical to our test of the information mechanism. In equilibrium, learning at the

investor level exhibits specialization, preference for volatility, and strategic substitutability.

However, learning at the aggregate level exhibits diversification. In particular, we derive a

threshold for the aggregate capacity in the economy below which all investors learn only

about the most volatile asset. Above this threshold, investors expand their learning towards

lower and lower volatility assets.

We provide an analytical characterization of the model’s predictions, which we then

quantify in the parameterized model. First, in the cross-section of investors, sophisticated

investors generate relatively higher capital income due to three forces: (i) they hold larger

portfolios of risky assets on average; (ii) they tilt their portfolios towards assets with higher

average excess returns; and (iii) they better adjust their portfolios, state by state, towards

assets with higher realized excess returns. Of the three forces, the last effect is by far the

most important factor in generating capital income differences. Moreover, these forces are

amplified by the general equilibrium effect, which pushes unsophisticated investors to reduce

their exposure to assets with large sophisticated ownership, due to the impact of sophisticated

ownership on prices.

Second, symmetric growth in capacity, interpreted as a general progress in information-

processing technologies, disproportionately benefits sophisticated investors. It results in a

relative increase in asset ownership by sophisticated investors and an increase in the polariza-

tion of capital income. It also generates a robust, unique way in which investors change the

composition of their portfolios. Sophisticated investors start with large shares in the most

volatile assets, and subsequently continue to expand to lower-volatility assets. At the same

time, unsophisticated investors retrench from risky assets and hold safer assets. Growth in

aggregate capacity also leads to lower average market returns and higher asset turnover.

Overall, these results play an important role in that they cut against plausible alternative

explanations for the observed growth in inequality, such as models with heterogeneous risk
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aversion or differences in trading costs.

To evaluate the quantitative fit of our theoretical predictions to the data, we parameterize

the model using U.S. data spanning the period from 1989 to 2012. We use micro-level data

on stocks and aggregate retail and institutional portfolios, which allows us to pin down

details of the stochastic structure of assets payoffs and information environment. In our

parametrization, we set the parameters based on the first half of our sample period, and

treat the second sub-period data moments as a testing ground for the dynamic effect coming

from general (rather than investor-specific) progress in information technology.

We show that the analytical predictions from the model are qualitatively and quantita-

tively borne out in the data. First, sophisticated investors, on average, exhibit higher rates

of return that are approximately 2.8 percentage points per year higher in the model, com-

pared to a 3 percentage point difference in the data. Second, we show that in response to

symmetric growth in technology, sophisticated investors increase their ownership of equities

by first entering the most volatile stocks and subsequently moving into stocks with medium

and low volatility–a pattern we also document in the data. At the same time, sophisticated

investors’ entry into equity induces higher asset turnover, in magnitudes consistent with the

data, both in the time series and in the cross-section of stocks.

More broadly, our mechanism provides an explanation for the growing presence of sophis-

ticated, institutional investors in risky asset classes, over the last 20-30 years (Gompers and

Metrick (2001)). Our mechanism also fits well with a puzzling phenomenon of the last two

decades of a growing retrenchment of retail investors from trading and stock market own-

ership in general (Stambaugh (2014)),5 even though direct transaction costs, if anything,

have fallen significantly. We document such avoidance of risky assets both for direct stock

ownership and ownership of intermediated products, such as actively managed equity mutual

funds: Direct equity ownership has been falling steadily over the last 30 years, while flows

into equity mutual funds coming from less sophisticated, retail investors began their decline

5We view the Stambaugh (2014) study as complementary to ours. It aims to explain the decreasing
profit margins and activeness of active equity mutual funds using exogenously specified decline in individual
investors’ stock market participation. In contrast, our study endogenizes such decreasing participation as
part of the mechanism which explains income inequality.
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and turned negative starting from the early 2000s.

Our paper spans three strands of literature: household finance, rational inattention, and

income inequality. While some of our contributions are specific to each individual stream, a

unique feature of our work is that we integrate the streams into one unified framework.

Within the household finance literature, the main ideas that we develop build upon an

empirical literature on limited capital market participation, growing institutional ownership,

household trading decisions, and investor sophistication6. While the majority of the studies

attribute limited participation rates to differences in market participation costs7 or prefer-

ences, we relate investment decisions to differential access to information across investors.

With respect to the literature on endogenous information choice, our work is broadly

related to Sims (1998, 2003). More germane to our application are the models of costly

information of Van Nieuwerburgh and Veldkamp (2009, 2010), Mondria (2010), and Kacper-

czyk, Van Nieuwerburgh, and Veldkamp (2013), from which we depart by exploring the role

of asset and investor heterogeneity both analytically and quantitatively. Allowing for such

non-trivial heterogeneity produces very different implications for portfolio decisions, asset

prices, and the evolution of inequality over time.

The literature on income inequality dates back to the seminal work by Kuznets (1953)

and has been subsequently advanced by the work of Piketty (2003), Piketty and Saez (2003),

Alvaredo, Atkinson, Piketty, and Saez (2013), Autor, Katz, and Kearney (2006), and Atkin-

son, Piketty, and Saez (2011). In contrast to our paper, a vast majority of that literature

focuses on income earned in labor market, and does not relate inequality to heterogeneity in

the informational sophistication of investors.

The closest paper in spirit to ours is Arrow (1987), who also considers information differ-

ences as an explanation of the income gap. However, his work does not consider endogenous

information acquisition and is not a general equilibrium analysis of the economy with het-

6For studies on participation, see Mankiw and Zeldes (1991); Ameriks and Zeldes (2001); Gompers and
Metrick (2001) illustrate trends in ownership; Barber and Odean (2001), Campbell (2006), Calvet, Campbell,
and Sodini (2009b, 2009a), Guiso and Sodini (2012) analyze household trading decisions; Barber and Odean
(2000, 2009), Calvet, Campbell, and Sodini (2007), Grinblatt, Keloharju, and Linnainmaa (2012) examine
investor sophistication.

7See Gomes and Michaelides (2005), Favilukis (2013)
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erogeneously informed agents and many assets. Both of these elements are crucial for our

results, especially to establish the validity of our mechanism. Another related paper is that

of Peress (2004), who examines the role of wealth and decreasing absolute risk aversion in

investors’ acquisition of information and participation in one risky asset. While some ele-

ments of his model are common, his focus is not on capital income inequality. Moreover, we

show that heterogeneity across assets and investors is a crucial component to quantitatively

capture the evolution of capital income inequality and its underlying economic mechanism.

The rest of the paper proceeds as follows. Section 1 presents the theoretical framework.

Section 2 derives analytic predictions, which we subsequently take to the data. Section 3

presents the parametrization of the model and quantifies the information friction. Section 4

establishes our main results about the evolution of capital income inequality, and Section 5

concludes. All proofs and derivations are in the Appendix.

1 Theoretical Framework

A continuum of atomless investors of mass one, indexed by j, solve a sequence of static

portfolio choice problems, so as to maximize mean-variance utility over wealth Wj in each

period, given common risk aversion coefficient ρ > 0. The financial market consists of one

risk-free asset, with price normalized to 1 and payoff r, and n > 1 risky assets, indexed by i,

with prices pi, and independent payoffs zi = z + εi, with εi ∼ N (0, σ2
i ). The risk-free asset

has unlimited supply, and each risky asset has fixed supply, x. For each risky asset, non-

optimizing “noise traders” trade for reasons orthogonal to prices and payoffs (e.g., liquidity,

hedging, or life-cycle reasons), such that the net supply available to the (optimizing) investors

is xi = x+ νi, with νi ∼ N (0, σ2
x), independent of payoffs and across assets.8

Prior to making the portfolio decision in each period, investors can choose to obtain

information about some or all of the risky assets. Mass λ ∈ (0, 1) of investors have high

capacity for obtaining information, K1, and are labeled sophisticated, and mass 1 − λ have

low capacity, K2, and are labeled unsophisticated, with 0 < K2 < K1 <∞. Information

8For simplicity, we introduce heterogeneity only in the volatility of payoffs, although the model can easily
accommodate heterogeneity in supply and in mean payoffs.

6



is obtained in the form of endogenously designed signals on asset payoffs subject to this

capacity limit. The signal choice is modeled following the rational inattention literature

(Sims (2003)), using entropy reduction as a measure of the amount of information acquired.

1.1 Investor Optimization

Optimization occurs in two stages. In the first stage, investors solve their information

acquisition problem: they choose the distribution of signals to receive in order to maximize

expected utility, subject to their information capacity. In the second stage, given the signals

they receive, investors update their beliefs about the payoffs and choose their portfolio hold-

ings to maximize utility. We first describe the optimal portfolio choice in the second stage,

for a given signal choice. We then solve for the ex-ante optimal signal choice.

Portfolio Choice Given equilibrium prices and posterior beliefs, each investor solves

Uj = max
{qji}ni=1

Ej (Wj)−
ρ

2
Vj (Wj) (1)

s.t. Wj = r

(
W0j −

n∑
i=1

qjipi

)
+

n∑
i=1

qjizi, (2)

where Ej and Vj denote the mean and variance conditional on investor j’s information set,

and W0j is initial wealth. Optimal portfolio holdings are given by

qji =
µ̂ji − rpi
ρσ̂2

ji

, (3)

where µ̂ji and σ̂2
ji are the mean and variance of investor j’s posterior beliefs about payoff zi.

Information Acquisition Choice Each investor can choose to receive a separate signal

sji on each of the asset payoffs, zi. Given the optimal portfolio choice, ex-ante, each investor

chooses the optimal distribution of signals to maximize the ex-ante expected utility, E0j [Uj].

The choice of the vector of signals sj = (sj1, ...sjn) about the vector of payoffs z = (z1, ..., zn),

is subject to an information capacity constraint, I (z; sj) ≤ Kj, where I (z; sj) denotes the
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Shannon (1948) mutual information, quantifying the information that the vector of signals

conveys about the vector of payoffs. The capacity constraint imposes a limit on the amount

of uncertainty reduction that the signals can achieve. Since perfect information requires

infinite capacity, each investor faces some residual uncertainty about the realized payoffs.

For analytical tractability, we make the following assumption about the signal structure:

Assumption 1. The signals sji are independent across assets.

Assumption 1 implies that the total quantity of information obtained by an investor can

be expressed as a sum of the quantities of information obtained for each asset.9 The infor-

mation constraint becomes
∑n

i=1 I (zi; sji) ≤ Kj, where I (zi; sji) measures the information

conveyed by the signal sji about the payoff of asset i.

Investors decompose each payoff into a lower-entropy signal component and a residual

component that represents the information lost through this compression: zi = sji + δji. For

tractability, we introduce the following additional assumption:

Assumption 2. The signal sji is independent of the data loss δji.

Since zi is normally distributed, Assumption 2 implies that sji and δji are also nor-

mally distributed. By Cramer’s Theorem, sji ∼ N
(
z, σ2

sji

)
and δji ∼ N

(
0, σ2

δji

)
with

σ2
i = σ2

sji + σ2
δji.

10 Hence, posterior beliefs are normally distributed random variables, inde-

pendent across assets, with mean µ̂ji = sji and variance σ̂2
ji = σ2

δji. Intuitively, a perfectly

precise signal results in no information loss, such that posterior uncertainty is zero. Con-

versely, a signal that consumes no information capacity discards all information about the

realized payoff, returning only the mean payoff, z, and leaving an investor’s posterior uncer-

tainty equal to her prior uncertainty.

Using this signal structure and the resulting distribution of expected excess returns, the

9Assumption 1 is common in the literature. Allowing for potentially correlated signals requires a numer-
ical approach, and is beyond the scope of this paper.

10In general, the optimal signal structure may require correlation between the signal and the data loss,
but Assumption 2 maintains analytical tractability.
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investor’s information problem becomes choosing the variance of posterior beliefs to solve11

max
{σ̂2

ji}ni=1

n∑
i=1

Gi
σ2
i

σ̂2
ji

s.t.

n∏
i=1

σ2
i

σ̂2
ji

≤ e2Kj , (4)

where Gi represents the equilibrium utility gain from learning about asset i. This gain

represents the shadow value of investing capacity in asset i in equilibrium. It is a function of

the distribution of expected excess returns only, and hence is common across investor types

and taken as given by each investor.

Lemma 1. The solution to the maximization problem (4) is a corner: each investor allocates

her entire capacity to learning about a single asset from the set of assets with maximal utility

gains. The posterior beliefs of an investor j, learning about asset lj ∈ arg maxiGi, are

normally distributed, with mean and variance given by

µ̂ji =

sji if i = lj

z if i 6= lj

and σ̂2
ji =

e
−2Kjσ2

i if i = lj

σ2
i if i 6= lj.

(5)

Conditional on the realized payoff zi, the signal is normally distributed with mean

E (sji|zi) = z +
(
1− e−2Kj

)
εi, and variance V (sji|zi) =

(
1− e−2Kj

)
e−2Kjσ2

i .

The linear objective function and the convex constraint imply that each investor special-

izes, learning about a single asset. She always picks an asset with the highest gain Gi and

hence all assets that are learned about in equilibrium will have the same gains. Which assets

these are is endogenously determined in equilibrium, which we characterize below.

1.2 Equilibrium

Equilibrium Prices Given the solution to each investor’s portfolio and information prob-

lem, market clearing pins down equilibrium prices as linear combinations of the shocks.

11The investor’s objective omits terms that do not affect the optimization. For detailed derivations, see
the Appendix.
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Lemma 2. The price of asset i is given by pi = ai + biεi − ciνi, with

ai =
1

r

[
z − ρσ2

i x

(1 + Φi)

]
, bi =

Φi

r (1 + Φi)
, ci =

ρσ2
i

r (1 + Φi)
, (6)

where Φi ≡ m1i

(
e2K1 − 1

)
+m2i

(
e2K2 − 1

)
is a measure of the information capacity allocated

to learning about asset i in equilibrium, m1i ∈ [0, λ] is the mass of sophisticated investors who

choose to learn about asset i, and m2i ∈ [0, 1− λ] is the mass of unsophisticated investors

who choose to learn about asset i, with
∑n

i=1 m1i = λ and
∑n

i=1m2i = 1− λ.

The price of an asset reflects the asset’s payoff and effective supply shocks, with relative

importance determined by mass of investors learning about the asset through Φi, which

is a measure of the total capacity that the market allocates to learning about asset i in

equilibrium. If there is no information capacity (K1 = K2 = 0), or for assets that are not

learned about (m1i = m2i = 0), the price only reflects the noise trader shock νi. As the

capacity allocated to an asset increases, the asset’s price co-moves more strongly with the

underlying payoff (ci decreases and bi increases, though at a decreasing rate). In the limit,

as Kj → ∞, the price approaches the discounted realized payoff, zi/r, and noise traders

become irrelevant for price determination.

Equilibrium Learning Using equilibrium prices, we determine the assets that are learned

about and the mass of investors learning about each asset. Without loss of generality,

let assets be ordered such that σi > σi+1 for all i ∈ {1, ..., n− 1}. Let ξi ≡ σ2
i (σ2

x + x2)

summarize the properties of asset i. Then the gain from learning about asset i is

Gi =
1 + ρ2ξi

(1 + Φi)
2 . (7)

Lemma 3. The allocation of information capacity across assets, {Φi}ni=1, is uniquely pinned
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down by:

Gi = max
h∈{1,...,n}

Gh, ∀i ∈ {1, ..., k} , (8)

Gi < max
h∈{1,...,n}

Gh, ∀i ∈ {k + 1, ..., n} , (9)

k∑
i=1

Φi = φ, (10)

where k denotes the endogenous number of assets with strictly positive learning mass in

equilibrium, and φ ≡ λ
(
e2K1 − 1

)
+ (1− λ)

(
e2K2 − 1

)
is a measure of the total capacity for

processing information available in the economy.

In a symmetric equilibrium in which m1i = λmi and m2i = (1− λ)mi, where mi is the

total mass of investors learning about asset i, the masses {mi}ni=1 are given by

mi =
ci1
Ck

+
1

φ

(
kci1
Ck
− 1

)
, ∀i ∈ {1, ..., k} , (11)

mi = 0, ∀i ∈ {k + 1, ..., n} , (12)

where ci1 ≡
√

1+ρ2ξi
1+ρ2ξ1

≤ 1, with equality iff i = 1, and Ck ≡
∑k

i=1 ci1.

The model uniquely pins down the total capacity allocated to each asset, Φi, but it

does not separately pin down m1i and m2i. Since the asset-specific gain from learning is

the same for both types of investors, we assume that the participation of sophisticated and

unsophisticated investors in learning about a particular asset is proportional to their mass

in the population. In turn, this implies a unique set of masses {mi}ni=1, with Φi = φmi.

Lemma 3 implies the following three properties:

∂Gi

∂σ2
i

> 0,
∂Gi

∂mi

< 0,
∂Gi

∂φ
≤ 0.

Learning in the model exhibits preference for volatility (high σ2
i ) and strategic substitutabil-

ity (low mi). Furthermore, the value of learning about an asset also falls with the aggregate

amount of information in the market (φ), since higher capacity overall increases the comove-
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ment between prices and payoffs, thereby reducing expected excess returns.

For sufficiently low information capacity, all investors learn only about the most volatile

asset: for φ ∈ (0, φ1], m1 = 1 and mi = 0 for all i > 1, where

φ1 ≡

√
1 + ρ2ξ1

1 + ρ2ξ2

− 1. (13)

This threshold endogenizes single-asset learning as an optimal outcome for low enough infor-

mation capacity relative to asset dispersion. As the overall capacity in the economy increases

above this threshold, investors expand their learning towards lower volatility assets. We de-

fine the thresholds for learning as follows:

Definition 1. Let φk be such that for any φ ≤ φk, at most the first k assets are actively

traded (learned about) in equilibrium, while for φ > φk, at least the first k + 1 assets are

actively traded in equilibrium.

Lemma 3 implies that the threshold values of aggregate information capacity are mono-

tonic: 0 < φ1 < φ2 < ... < φn−1. For sufficiently high information capacity, or alternatively,

for low enough dispersion in assets volatilities, all assets are actively traded, thus endogeniz-

ing the assumption employed in models with exogenous signals.

In the presence of assets heterogeneity, even if many assets are learned about, there is

heterogeneity in the information capacity allocated to each of the actively traded assets.

Since the equilibrium gain is increasing in volatility and decreasing in mi, the mass of in-

vestors learning about each asset is increasing in volatility. In turn, this heterogeneity has

implications for holdings, returns, and turnover in the cross-section of assets. Additionally,

if we let the degree of dispersion in asset payoff volatilities vary, learning will also vary, with

periods with high dispersion being characterized by more concentrated learning, and periods

with low dispersion characterized by more diversified learning (and hence portfolios).

We next characterize learning in response to variation in the level of investor capacities.

Lemma 4. Let φ ∈ (φk−1, φk] such that k > 1 assets are actively traded, and consider an

increase in φ such that k′ ≥ k is the new equilibrium number of actively traded assets.
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(i) There exists a threshold asset ı̄ < k′, such that mi is decreasing in φ for all assets

i ∈ {1, ..., ı̄}, and increasing in φ for all assets i ∈ {ı̄ + 1, ..., k′}.

(ii) The quantity (φmi) is increasing in φ for all assets i ∈ {1, ..., k′}.

(iii) For an increase in φ generated by a symmetric growth, K ′j = (1 + γ)Kj, with γ ∈ (0, 1),

the quantity mi(e
2Kj−1), j ∈ {1, 2}, is increasing in Kj at an increasing rate, for assets

i ∈ {ı̄+ 1, ..., k′}. For assets i ∈ {1, ..., ı̄}, mi

(
e2K1 − 1

)
grows while mi

(
e2K2 − 1

)
grows by less, or even falls if capacity dispersion is large enough.

Lemma 4 shows the diversification effect. First, as the amount of aggregate capacity φ

increases, the mass of investors learning about the most volatile assets decreases as some

investors shift to learning about less volatile assets. Nevertheless, the total amount of ca-

pacity allocated to each asset (φmi) strictly increases for all assets that are actively traded.

Lastly, symmetric growth in capacity benefits the sophisticated group disproportionately:

this group allocates more capacity to each asset relative to the unsophisticated group, which

in turn generates asymmetry in investment patters. In Section 2, we use these results to

derive analytic predictions on the patterns of investment in response to changes in capacity.

2 Analytic Results

In this section, we present a set of analytic results implied by our information friction,

and we discuss how variations in the baseline framework affect these results.

2.1 Model Predictions

Heterogeneous Capacity Our first set of analytic results show that heterogeneity in

information capacity across investors drives capital income inequality in the cross-section,

through differences in average portfolio holdings and through heterogeneity in the ability to

adjust holdings to shocks. Let q1i and q2i denote the average per-capita holdings of asset i for

sophisticated and unsophisticated investors, respectively. The per-capita asset-level holdings
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of sophisticated investors are

q1i =

(
zi − rpi
ρσ2

i

)
+mi

(
e2K1 − 1

)(zi − rpi
ρσ2

i

)
, (14)

and those of the relatively unsophisticated investors are defined analogously. Per-capita

holdings are a weighted average of the quantity that would be held under the investors’ prior

beliefs and a quantity that is increasing in the realized excess return, scaled by an asset-

specific term that captures the amount of information capacity allocated to this asset by this

investor group. For actively traded assets, heterogeneity in capacities generates differences

in ownership across investor types at the asset level:

q1i − q2i = mi

(
e2K1 − e2K2

)(zi − rpi
ρσ2

i

)
. (15)

Integrating over the realizations of the state (zi, xi), the expected per-capita ownership dif-

ference, as a share of the supply of each asset, is also asset specific,

E [q1i − q2i]

x
=
(
e2K1 − e2K2

) mi

1 + φmi

, (16)

which implies that the portfolio of the unsophisticated investor is not simply a scaled down

version of the sophisticated portfolio. Rather, the portfolio weights within the class of risky

assets are also different for the two investor types.

Proposition 1 (Ownership). Let K1 > K2 and φk−1 ≤ φ < φk, such that the first k > 1

assets are actively traded in equilibrium. Then, for i ∈ {1, ..., k},

(i) E [q1i − q2i] /x > 0;

(ii) E [q1i − q2i] /x is increasing in E [zi − rpi];

(iii) q1i − q2i is increasing in zi − rpi.

The average sophisticated investor (i) holds a larger portfolio of risky assets on average,

(ii) tilts her portfolio towards assets with higher expected excess returns, and (iii) adjusts

ownership, state by state, towards assets with higher realized excess returns.
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These results imply that sophisticated investors generate relatively higher capital income,

asset by asset, both on average and state by state. Let π1i and π2i denote the capital income

per capita from trading asset i, for sophisticated and unsophisticated investors, respectively,

with π1i ≡ q1i (zi − rpi) and π2i ≡ q2i (zi − rpi). For actively traded assets, heterogeneity in

ownership generates heterogeneity in capital income across investor types at the asset level:

π1i − π2i = mi

(
e2K1 − e2K2

) (zi − rpi)2

ρσ2
i

. (17)

Integrating over the realizations of the state (zi, xi), the average capital income difference is

E [π1i − π2i] =
1

ρ
mi

(
e2K1 − e2K2

)
Gi, (18)

where Gi is the gain from learning about asset i.

Proposition 2 (Capital Income). Let K1 > K2 and φk−1 ≤ φ < φk, such that the first

k > 1 assets are actively traded in equilibrium. Then, for i ∈ {1, ..., k},

(i) π1i − π2i ≥ 0, with strict inequality in states with non-zero realized excess returns;

(ii) E [π1i − π2i] is increasing in asset volatility σi.

The average sophisticated investor realizes larger profits in states with positive excess

returns, and incurs smaller losses in states with negative excess returns, because her holdings,

q1i, co-move more strongly with the realized state, zi− rpi. Moreover, the biggest difference

in profits, on average, comes from investment in the more volatile, higher expected excess

return assets.

The differential adjustment to shocks also implies differences in trading intensity, which

provides an additional set of testable implications. Formally, we define the expected volume

of trade in asset i as Vi ≡
∫
|qji,t − qji,t−1| dj. We can decompose total volume into parts

coming from four different investor groups, by their level of sophistication and by whether
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or not they are learning about the asset:12

Vi = λmiV1i + (1− λ)miV2i + λ (1−mi)V3i + (1− λ) (1−mi)V4i,

where V1i is the expected per capita volume of sophisticated investors actively trading asset

i, whose mass in the population is λmi; the remaining terms are analogous. For each

group g, volume is proportional to the group’s cross-sectional standard deviation of holdings,

Vgi =
2σgi√
π

. Hence, the average turnover of asset i, Ti ≡ Vi/x, is given by

Ti =
2mi

ρxσi
√
π

[
λ
√
e2K1 − 1 + (1− λ)

√
e2K2 − 1

]
. (19)

Proposition 3 (Turnover). Let K1 > K2 and φk−1 ≤ φ < φk, such that the first k > 1

assets are actively traded in equilibrium. Then,

(i) For i ∈ {1, ..., k}, average turnover by investor group satisfies T1i > T2i > T3i = T4i = 0.

(ii) For h ∈ {k + 1, ..., n}, average turnover is Th = 0.

Hence, sophisticated investors generate more asset turnover, since having higher capacity

to process information enables them to take larger and more volatile positions, relative to

unsophisticated investors. Moreover, assets that are actively traded, in turn, have a higher

turnover compared with assets that are passively traded (based only on prior beliefs). In

fact, for passively traded assets, average turnover is zero.

Larger Capacity Dispersion Our second set of analytic results show that increased dis-

persion in capacities implies further polarization in holdings, which in turn leads to a growing

capital income polarization. Intuitively, greater dispersion in information capacity implies

that sophisticated investors receive relatively higher-quality signals about the fundamental

payoffs, which enables them to respond more strongly to realized state.

Proposition 4 (Capacity Dispersion). Let K1 > K2 and φk−1 ≤ φ < φk, such that

the first k > 1 assets are actively traded in equilibrium. Consider an increase in capacity

12The average volume of noise traders is zero. Among the optimizing investors, we assume that investors
do not change groups over time.
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dispersion of the form K ′1 = K1 + ∆1 > K1, K ′2 = K2 −∆2 < K2, with ∆1 and ∆2 chosen

such that the total information capacity φ remains unchanged. Then, for i ∈ {1, ..., k},

(i) Asset prices and excess returns remain unchanged.

(ii) The difference in ownership shares (q1i − q2i) /x increases.

(iii) Capital income becomes more polarized as the ratio π1i/π2i increases state by state.

Increasing the level of capacity dispersion while leaving the aggregate measure of in-

formation in the economy unchanged, does not affect equilibrium prices, since keeping φ

unchanged implies that both the number of assets learned about and the mass of investors

learning about each asset remain unchanged. Hence the adjustment reflects a pure transfer of

ownership from the relatively unsophisticated investors (who now have even lower capacity)

to the more sophisticated investors (who now have even higher capacity). This reallocation

of holdings leads to higher capital income inequality without any general equilibrium effects.

Symmetric Capacity Growth Our third and most important set of analytic results

shows that in the presence of initial heterogeneity, technological progress in the form of

symmetric growth in information capacity leads to a disproportionate increase in owner-

ship of risky assets by sophisticated investors, and to growing capital income polarization.

Symmetric growth is modeled as a common growth rate of both K1 and K2,

Proposition 5 (Symmetric Growth). Let K1 > K2 and φk−1 ≤ φ < φk, such that the

first k > 1 assets are actively traded in equilibrium. Consider an increase in φ generated by

a symmetric growth in capacities to K ′1 = (1 + γ)K1 and K ′2 = (1 + γ)K2, γ ∈ (0, 1). Let

k′ ≥ k denote the new equilibrium number of actively traded assets. Then, for i ∈ {1, ..., k′},

(i) Average asset prices increase and average excess returns decrease.

(ii) The average ownership share of sophisticated investors E [q1i] /x increases and the aver-

age ownership share of unsophisticated investors E [q2i] /x decreases.

(iii) Average capital income becomes more polarized, as the ratio E [π1i] /E [π2i] increases.

(iv) Total market turnover T ≡
∑

i Vi/nx increases.

First, higher capacity for processing information means that investors receive more ac-

curate signals about the realized payoffs. Hence, their demand for assets co-moves more
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closely with the realized state, which implies that prices contain a larger amount of infor-

mation about the fundamental shocks. As a result, the equilibrium implies lower average

returns, larger and more volatile positions, and higher market turnover.

Second, a symmetric growth in capacity that benefits both sophisticated and unsophisti-

cated investors has two effects on portfolio holdings and capital income inequality: a partial

equilibrium effect and a general equilibrium effect. Absent any equilibrium price adjust-

ment, the average holdings of risky assets and the comovement between holdings and the

realized state increase for both investor types. However, because growth in capacity benefits

investors who already have relatively high capacity, the benefits accrue more for sophisti-

cated investors. Further, in contrast to the case of increased dispersion, a symmetric change

in information capacity affects equilibrium prices. As sophisticated investors increase their

demand for risky assets, this drives up average prices, reducing the expected profits of un-

sophisticated investors, who in turn reduce their average holdings of risky securities.

2.2 The Value of Prices

In our analysis so far, we have presented the information acquisition problem in terms of a

constraint on information obtained through private signals alone, excluding the information

contained in prices. When some investors acquire information through private signals, prices

become informative about asset payoffs, because they reflect the demand of these privately

informed investors. In the literature on portfolio choice with exogenous signals, investors

are often assumed to learn about payoffs not only from their private signals, but also from

equilibrium prices, which aggregate the information of all investors in the market (e.g.,

Admati (1985)). Would investors with an endogenous signal choice have an incentive to

allocate any capacity to learning from prices? We show that if the information contained in

prices is costly to process, then prices are an inferior source of information compared with

private signals.

We consider the signal choice of an individual investor, taking the choices of all other

investors as given by the equilibrium obtained in Section 1.2. Processing information through

either prices or private signals consumes the investor’s capacity. Hence, whatever the source
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of information, the investor cannot acquire a total quantity beyond her capacity Kj.

Proposition 6 (Prices). If learning about prices consumes capacity, then the capacity-

constrained investor chooses to devote all her capacity to learning about payoffs through

private signals on asset payoffs, rather than devoting any capacity to learning from prices.

Intuitively, prices represent an indirect way of learning about asset payoffs, which are

ultimately what investors seek to learn. Our proof follows the logic of Kacperczyk, Van

Nieuwerburgh, and Veldkamp (2013), although it is derived for a different information struc-

ture and extended to include the case in which the information content of prices is not

processed perfectly.

If processing the noise trader shock also consumes capacity, then Proposition 6 implies

that investors will not allocate any capacity to learning about the supply shock, νi. Learning

about the activity of noise traders is not useful unless that information is combined with

information processed from prices. It is only the joint information on both variables that

informs investors about payoffs.

2.3 Alternative Specifications

Free prices To assess the sensitivity of our model to the assumption that prices consume

capacity, we also solve the model under the assumption that processing the information

content of prices is costless. We consider a setting in which investors can design a signal

structure that conditions the private signal choice on the price realization (just as the choice

of asset holdings conditions on the price realization). Signal acquisition is subject to a modi-

fied information constraint, I (sj; z|p) ≤ Kj, where I (sj; z|p) denotes the conditional relative

entropy, measuring the information about z conveyed by private signals given prices.13 This

change partially erodes the informational advantage of sophisticated investors. As a result,

the heterogeneity in both holdings and returns is reduced (though not eliminated). Nonethe-

less, our results pertaining to the preference for volatility in learning and the expansion of

13This formulation provides an upper bound on the information value of prices.
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learning due to aggregate capacity growth continue to hold.14

Additive constraint Changing the form of the information constraint does not affect equi-

librium outcomes qualitatively. Suppose we replaced the entropy constraint with a constraint

on the sum of the ratios of variances of prior and posterior beliefs, similar to Grossman and

Stiglitz (1980) and Van Nieuwerburgh and Veldkamp (2009):
∑n

i=1

(
σ2
i

σ̂2
ji
− 1
)
≤ Kj, while

maintaining the same signal structure. Maximization continues to imply that each investor

specializes, learning about a single asset. Moreover, investors choose to learn about the same

assets as in the baseline specification. Heterogeneity in capacities continues to generate het-

erogeneity in both holdings and returns. However, dynamically, in response to symmetric

growth in capacity, capital income inequality grows at a slower rate, since the additive con-

straint reduces the marginal benefit of additional capacity for sophisticated investors relative

to the benefit for unsophisticated investors.

Additive noise signals Previous work on information choice typically assumes an additive

noise signal structure, s̃ji = zi+ δ̃ji. In our setup, additive noise signals yield exactly the

same equilibrium outcomes as the compressed signals we employ, given the assumptions

that we have made in setting up the signal structure. However, given our use of an entropy

constraint, additive noise poses some interpretation challenges. In our specification, agents

compress the state into a simpler signal, with the residual representing information about

the state that is lost due to the processing constraint. Hence, no learning amounts to the

simplest possible signal, equal to the mean payoff in all states. As agents devote more

and more capacity to learning about the state, they lose less and less information about

the state (rather than adding less and less noise to it). Conversely, in the additive noise

framework, a lower capacity constraint amounts to adding more noise to the realized state,

and no learning amounts to adding infinite noise to the realized state. Hence, we find the

additive noise signal structure more appealing for applications in which agents receive signals

exogenously, rather than for settings in which they design the signals themselves. Finally,

14The derivations for this and the subsequent alternative specifications follow the baseline derivation in
the Appendix and are available upon request.
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although mathematically equivalent here, in general, the two formulations need not give the

same results (Matějka (2011), Stevens (2014)).

Risk Aversion Heterogeneity Capital income inequality can be also driven by differ-

ences in risk aversion among investors, in the absence of any heterogeneity in the capacity

to process information about asset payoffs. In particular, if one group of investors were

less risk averse they would hold a greater share of risky assets, and hence they would have

higher expected capital income.15 Within our mean-variance specification, a growing differ-

ence in risk aversion produces growing aggregate ownership in risky assets of less risk averse

investors, and a uniform, proportional retrenchment from risky assets of more risk averse

investors. However, it does not generate (i) differences in portfolio weights within a class

of risky assets, (ii) investor-specific rates of return on equity, or (iii) differential growth in

ownership by asset volatility.16

3 Quantifying the Information Friction

In this section, we first parameterize the model using stock-level micro data by asset class

and investor type. Then, we evaluate the quantitative power of the proposed information

friction vis-a-vis investment patterns in the data. Finally, we present results on the dynamics

of heterogeneity in returns, participation, and portfolio composition that help us identify our

economic mechanism in the data.

3.1 Parametrization

Our analytical design combines a portfolio framework with information frictions. Thus,

in order to parameterize the model it is essential that we use data with a similar level of

granularity. To this end, we use institutional portfolio holdings from a Thomson Reuters

15Such setting would also encompass situations in which investors are exposed to different levels of volatil-
ity in areas outside capital markets, like labor income.

16In a CRRA model, portfolio weights would also be identical across risky assets; hence, even in that
specification, rates of return on equity would be equalized across investor types.
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dataset, which contain a large sample of portfolios of publicly traded equity held by in-

stitutional investors, and comes from quarterly reports required by law and submitted by

institutional investors to the Securities and Exchange Commission.17

Investor Types To map the model to the data, we study portfolios of investors with

different degrees of sophistication. Sophisticated investors are defined as investment com-

panies or independent advisors (types 3 and 4) in the Thomson data set. These investors

include wealthy individuals, mutual funds, and hedge funds. Among all types, these groups

are particularly active in their information production efforts; in turn, other groups, such as

banks, insurance companies, or endowments and pensions are more passive by nature. Our

definition of unsophisticated investors is other shareholders who are not part of Thomson

data. These include individual (retail) investors.

To provide the empirical verification of the proposed investor classification, we show the

evolution of the cumulative returns of portfolios held by the two types of investors over the

period 1989-2012. We proceed in three steps. First, we obtain the market value of each stock

held by all investors of a given type. The market value of each stock is the product of the

number of combined shares held by a given investor type and the price per share of that stock,

obtained from CRSP. Since the number of shares held by unsophisticated investors is not

directly observable, we impute this value by taking the difference between the total number

of shares available for trade and the number of shares held by all institutional investors.

Second, we calculate the value shares of each stock in the aggregate portfolio by taking

the ratio of market value of each stock relative to the total value of the portfolio of each

investor type. Third, we obtain the return on the aggregate portfolio by matching each asset

share with their next month realized return and calculating the value-weighted aggregated

return. We repeat this procedure separately for sophisticated and unsophisticated investors.

Figure 1 shows the cumulative values of $1 invested by each group in January 1989, using

the aggregated monthly returns through December 2012.

17While the official requirement for reporting is that the minimum asset size exceed 100 million, such
that not all investors are in the data; in reality, the data are comprehensive, as more than 95% of all dollar
investments are reported.
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Figure 1: Cumulative Portfolio Returns by Investor Type.

Our results indicate that the portfolios of sophisticated investors systematically outper-

form those of unsophisticated investors. The value of $1 invested in January 1989 grows to

$5.32 at the end of 2012 for sophisticated investors versus $3.28 for unsophisticated investors.

Hence, our investor classification implies superior investment strategies of the investor group

we label as sophisticated.

Empirical Targets We parameterize the model by targeting statistics based on stock

market data. Table 1 presents the complete parametrization. For parsimony, we restrict

some parameters and normalize the natural candidates. In particular, we normalize the mean

payoff to z̄i = 10 and the asset supply to x̄i = 5 for all assets, we restrict the volatilities of

the noise shocks, σxi = σx for all assets, and we set the number of assets to n = 10. The

remaining parameters are the information capacities of the two investor types (K1 = 0.598

andK2 = 0.0598), the fraction of sophisticated investors in the population (λ = 0.2), the risk-

free interest rate (r = 2.5%), the risk aversion parameter (ρ = 1.12), the volatility of the noise

shock (σx = 0.41), and the volatilities of the payoffs (σi), for which we normalize the lowest

volatility, σn = 1, and assume that volatility changes linearly across assets. Specifically, we

set the slope of the volatility line to α = 0.53 and set σi = σn + α(n − i)/n, which implies

that volatilities range from σn = 1 to σ1 = 1.48.

These parameter values are chosen to jointly match key moments from stock-level micro
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Table 1: Parameter Values

Parameter Symbol Value Target

Mean payoff, supply z̄i, x̄i 10, 5 for all i Normalization

Number of assets n 10 Normalization

Risk-free rate r 2.5% 3-month T-bill − inflation = 2.5%

Risk aversion ρ 1.12 Market return = 11.9%

Vol. of noise shocks σxi 0.41 for all i Average turnover = 9.7%

Vol. of asset payoffs σi ∈ [1, 1.48] p90/p50 of idio return vol = 3.54

Information capacities, K1, K2, λ 0.598, 0.0598, 0.2 Sophisticated share = 23%

fraction sophisticated Share actively traded = 50%

Ratio of K1 to K2 = 10%

data and aggregate investor-type equity shares for the first half of our sample, 1989-2000.

We take this sub-sample as the point of departure for our dynamic comparative statics

exercises. We match the following targets: (i) the equity ownership share of sophisticated

investors of 23%; (ii) the average return on 3-month Treasury bills minus the inflation rate,

equal to 2.5%; (iii) the average annualized stock market return in excess of the risk-free

rate, equal to 11.9%; (iv) the average monthly equity turnover (defined as the total monthly

volume divided by the number of shares outstanding), equal to 9.7%; (v) the ratio of the 90th

percentile to the median of the cross-sectional idiosyncratic volatility of stock returns, equal

to 3.54; and (vi) the fraction of assets that investors learn about, which, in the absence

of empirical guidance, we arbitrarily set to 50%. This procedure leaves us with one key

parameter: the relative information capacity of sophisticated to unsophisticated investors,

K1/K2. In this section, we set this parameter to 10%, while in Section 4, we identify this

parameter using data from the Survey of Consumer Finances.

3.2 Return Differences

In this section, we evaluate the quantitative power of our information friction by con-

trasting the implied return differential with the stock-level micro evidence. We report the

results in Table 2. The parameterized model implies a 2.8 percentage point advantage in
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the average portfolio returns of the sophisticated investors (who earn an average return of

14.6%) relative to the unsophisticated investors (who earn an average return of 11.8%). This

difference is comparable to the 3.0 percentage point difference in the data for the 1989-2000

period (with average portfolio returns of 13.4% versus 10.4%). Thus, the model can generate

the empirical difference in returns, while matching other aggregate targets.

Table 2: Average Portfolio Returns: Data and Model

1989-2000

Portfolio Return Data Model

Sophisticated investors 13.4% 14.6%

Unsophisticated investors 10.4% 11.8%

Unsophisticated investors + Noise traders 11.2%

In addition to the optimizing sophisticated and unsophisticated investors, the model fea-

tures a third type of agent: noise traders, who trade for reasons unrelated to asset payoffs and

prices. The question is whether to classify them as sophisticated or unsophisticated. On the

one hand, such traders generate losses from their trading activity, and their trading strate-

gies seem inefficient. On the other hand, sophisticated investors may also occasionally face

shocks that force them to trade assets for reasons other than the price or payoff, for hedging

or liquidity reasons. For our parametrization, these considerations are not quantitatively

important. The last row of Table 2 reports the portfolio returns of a joint unsophisticated

plus noise trader portfolio. The joint portfolio generates a return that is quantitatively close

to that of the pure unsophisticated portfolio (11.2% versus 11.8%). Since noise trader de-

mand is a mean zero random variable with relatively small volatility, the allocation of noise

traders to either investor group has quantitatively small effects.

Return Decomposition As our analytical results suggest, sophisticated investors out-

perform unsophisticated investors for two reasons (summarized in Propositions 1 and 2): (i)

they are more exposed to risk because they hold a larger share of risky assets (compensation

for risk); and (ii) they have informational advantage (compensation for skill). In order to
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shed light on the relative importance of these two effects, we decompose the returns of each

investor type by computing the unconditional expectation of the return on the portfolio held

by investor type j ∈ {S, U}:

Rj = E
∑
i

ωjit(rit − r) =
∑
i

Cov(ωjit, rit) +
∑
i

EωjitE[rit − r], (20)

where rit = zit/pit is the time t return on asset i and ωjit is the portfolio weight of asset

i for investor j at time t as ωjit = qjitpit/
∑

l qjltplt. The first term of the decomposition

captures the covariance conditional on investor j information set, i.e. the investor’s reaction

to information flow via portfolio weight adjustment (skill effect); the second term captures

the average effect, unrelated to active trading.

Quantitatively, the skill effect accounts for the majority of the return differential in the

model. To show that, we compute the counterfactual return of sophisticated investors if their

skill effect were the same as that of unsophisticated investors, but their average holdings were

still the same

R̂S =
∑
i

Cov(ωUit, rit) +
∑
i

EωSitE[rit − r]. (21)

Such a portfolio would generate an annualized return of 12.4%, which implies that the

compensation for skill accounts for approximately 80% of the 2.8% return differential between

the sophisticated and the unsophisticated portfolios.

3.3 Testing the Mechanism

In this section, we generate a set of dynamic predictions of the model and compare them

to the corresponding data moments in order to provide support for our mechanism. These

are robust predictions of our mechanism and are proven analytically in Section 2. Below, we

show a good fit of these results not only qualitatively but also quantitatively.

To test our mechanism, we explore the consequences of a symmetric change in capacities

of both investor types, targeting the change in the equity ownership share of sophisticated

investors. In the data, this share grew to an average of 46% in the 2001-2012 period, from an
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average of 23% in the 1989-2000 period. We find that the progress in information capacity

required to achieve this target amounts to an annual growth of 9.7% (for 11 years, from the

middle of the first sub period to the middle of the second sub period).18 Hence, in the presence

of initial capacity dispersion, subsequent symmetric capacity growth is sufficient to generate

a disproportionate growth in sophisticated ownership, and retrenchment of unsophisticated

investors from risky assets.

Market Averages In the model, symmetric growth in information capacities implies large

changes in average market returns, cross-sectional return differentials, and turnover (Propo-

sition 5). Table 3 reports the model predictions and their empirical counterparts.

Table 3: Market Averages: Data and Model

2001-2012

Statistic Data Model

Market Returns 2.4% 3.1%
Sophisticated portfolio 2.9% 3.3%
Unsophisticated portfolio 1.6% 3.0%
Unsophisticated + Noise traders portfolio - 2.95%

Average Equity Turnover 16.0% 14.7%
Sophisticated Ownership Share (target) 46.0% 46.0%

Both the model and the data exhibit a decrease in market return and in the return

differential between sophisticated and unsophisticated portfolios. The lower market return

is a result of an increase in the quantity of information, as prices track payoffs more closely

than in the initial sample period, implying lower excess returns. The model also predicts

a sharp increase in average asset turnover, in magnitudes consistent with the data. As

with the market return, this result is a direct implication of our mechanism and is not

driven by changes in fundamental asset volatilities, which remain unchanged. Intuitively,

higher turnover is driven by more informed trading by sophisticated investors, due to their

holding a larger share of the market and receiving more precise signals about asset payoffs

18This growth results in final capacities of K1 = 1.654 and K2 = 0.1654.
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Figure 2: Cumulative Growth in Sophisticated Ownership: Model (a) and Data (b).

(Proposition 3).

Expansion of Ownership In our dynamic exercise, we target the overall increase in

sophisticated ownership. The expansion occurs in a very specific way across assets, both in

the model and in the data. In the model, investors prefer to learn about assets with high

volatility, and they initially start learning about the most volatile assets, which increases

their holdings of those assets. Further increases in capacity induce them to expand learning

to lower-volatility assets, per Lemma 3. In partial equilibrium, this process holds for both

investor types. However, in general equilibrium, as sophisticated investors expand ownership,

they take larger positions, which shrinks excess returns. Unsophisticated investors are more

responsive to lower excess returns, and retrench.

As shown in the left panel of Figure 2, the model predicts that sophisticated investors

exhibit the highest initial growth in ownership for the the highest-volatility assets, followed

by growth in ownership of the medium-volatility assets, followed by growth for the lowest-

volatility assets. This prediction is robustly borne out in the data, plotted the right panel of

Figure 2.19 We view this prediction as unique to our information-based mechanism, hence

providing an important verification test of the model.

In Figure 3, we show the change in cross-sectional asset ownership between the two sub-

19To generate this graph in the model, we increase aggregate capacity from zero to the level that matches
51% sophisticated ownership, which is the last point in the data.
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samples for sophisticated investors. We sort assets by the volatility of their returns. This

cross-sectional change in ownership underlies the average ownership targets in the model of

23% in the initial period and 46% in the later period. Both the data and the model exhibit

a hump-shaped profile of the increase; they are also very close quantitatively.

0%#

5%#

10%#

15%#

20%#

25%#

30%#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

Data# Model#

Figure 3: Absolute Change in Sophisticated Ownership by Asset Volatility Decile.

In conclusion, even though we parameterize the model to match the aggregate ownership

levels of sophisticated investors in the pre- and post-2000 periods, the model also explains

quantitatively how ownership changes across asset volatility classes, in terms of both the

timing of growth levels and the absolute magnitudes of the changes.

Cross-sectional Turnover Our model implies cross-sectional variation in asset turnover.

Intuitively, if an asset is more attractive and investors want to invest in it, then there are

more investors with precise signals about this asset’s returns, and these investors want to act

on such better information by taking larger and more volatile positions. Since sophisticated

investors receive more precise signals, and they have preference towards high-volatility assets,

we should see a positive relationship between volatility and turnover. In Table 4, we report

turnover in relation to return volatility in the model and in the data.

The first two rows compare data and the model prediction for 1989-2000 sub-sample.

Both data and model show that turnover is increasing in volatility, and they are quantita-

tively close to each other. In the next two rows, we compare data for the 2001-2012 period

to results generated from the dynamic exercise in the model in which we increase over-
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Table 4: Turnover by Asset Volatility

Volatility quintile 1 2 3 4 5 Mean

1989-2000
Data 5% 8.5% 10.5% 12.5% 11.5% 9.7%
Model 9.2% 9.3% 9.6% 10.1% 10.8% 9.7%

2001-2012
Data 11% 14.6% 17% 18.4% 19.3% 16%
Model 12.3% 13.5% 14.3% 14.6% 14.8% 14%

all capacity. The model implies an increase in average turnover and additionally matches

the cross-sectional pattern of this increase. This effect is purely driven by our information

friction, since the fundamental volatilities remain constant over time in this exercise.20

Retrenchment Across Other Asset Classes We provide auxiliary empirical support

in favor of the model’s ownership predictions by considering money flows into mutual funds.

Equity funds are more risky than non-equity funds; hence, unsophisticated investors should

be less likely to invest in the former, especially if aggregate information capacity grows.

We use mutual fund data from Morningstar, which classifies different funds into those

serving institutional investors and individuals whose investment is at least $100,000 (institu-

tional funds) and those serving individual investors with investment value less than $100,000

(retail funds). For the purpose of testing our predictions, we define sophisticated investors

as those investing in institutional funds and unsophisticated investors as those investing in

retail funds. We then calculate cumulative aggregate dollar flows into equity and non-equity

funds, separately for each investor type. The data span the years 1989-2012.

As shown in Figure 4, the cumulative flows from sophisticated investors into equity and

non-equity funds increase steadily over the entire sample period. In contrast, the flows from

unsophisticated investors display a markedly different pattern. The flows into equity funds

grow until 2000 but subsequently decrease at a significant rate of more than 3 times by 2012.

20Our model also implies a positive turnover-ownership relationship, which we further confirm in the data.
This result is consistent with the empirical findings in Chordia, Roll, and Subrahmanyam (2011).
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Figure 4: Cumulative Flows to Mutual Funds for Institutional (Sophisticated, panel a) and
Retail (Unsophisticated, panel b) investors: Equity v. Non-Equity.

Moreover, this decrease coincides with a significant increase in cumulative flows to non-equity

funds. Notably, the increase in equity fund flows by unsophisticated investors observed in

the early sample period is consistent with the steady decrease in holdings of individual equity

documented earlier. To the extent that direct equity holdings are more risky than diversified

equity portfolios, such as mutual funds, this implies that unsophisticated investors have been

systematically reallocating their wealth from riskier to safer asset classes.

Overall, these findings support the predictions of our model: Sophisticated investors have

a large exposure to risky assets and subsequently add exposure to less risky assets, whereas

unsophisticated investors leave riskier assets and increasingly move into safer assets as they

perceive greater information disadvantage.

4 Quantifying Capital Income Inequality

In this section, we use our micro-level parametrization of the stochastic environment

of the model to shed light on the main question of our paper: what drives the dynamics

of capital income inequality? We show that our parameterized model, when mapped to

household level data from the Survey of Consumer Finances (SCF), generates a path for

capital income inequality that is quantitatively close to the data. The critical force in the
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model is symmetric aggregate technological growth combined with initial heterogeneity. We

then show that the two key elements of the model, asset and investor heterogeneity, are

essential to obtaining a good quantitative fit. Capital income inequality in the model is

driven by portfolio composition–participation decisions in asset classes–rather than by pure

return differential. We conclude with robustness checks.

4.1 Evidence from the Survey of Consumer Finances

We map investors in our model into households in the SCF. The SCF has been a standard

testing ground for questions related to household finance and thus is a reliable source for our

purpose. We restrict the sample to households who participate in capital markets, namely

households with non-zero investment in stocks, bonds, or mutual funds, or with a brokerage

account (34% of the SCF sample, on average). We use income flows from realized capital

gains, dividend income, and interest income as our measure of capital income.21

A critical element for our analysis is the measurement of investor sophistication. Follow-

ing the work of Arrow (1987), Calvet, Campbell, and Sodini (2009b), and Vissing-Jorgensen

(2004), we use initial wealth levels as proxies for initial sophistication. We assume that

wealthier individuals have access to better information production or processing technolo-

gies, i.e. they have greater information capacity. For each survey year, we consider two

groups of participating households: those who are in the top decile of total wealth (sophis-

ticated investors) and those who are in the bottom 50% of total wealth (unsophisticated

investors).

Table 5 presents summary statistics for the 1989 and 2013 surveys. Capital income

and financial wealth inequalities across the two sophistication groups are large, and exhibit

substantial growth between 1989 and 2013 (Panel I). Notably, all the growth in financial

wealth inequality is concentrated exclusively within our participant group. In Panel II, we

show the financial wealth inequality for unsophisticated vs. non-participating group and for

the bottom wealth decile of participants vs. non-participants. We find no significant increase

in financial wealth inequality between non-participants and either of the participant groups.

21These correspond to variables 5706, 5708, 5710 and 5712 in the SCF.
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Non-participants have more than twice the financial wealth of the bottom participants, and

that number is stable in the data. In Figure 5, we present the time series for financial wealth

inequality in the SCF for various household groups. The source of the inequality growth is

concentrated within the participating group, and is most notable for our sophisticated vs.

unsophisticated investor classes.

Sophisticated households earn more capital income per dollar of financial wealth (Panel

III), a crude measure of their rates of return, which suggests that the composition of financial

wealth of investor groups is different. Our measure of sophistication is also correlated with

higher educational attainment and greater use of brokerage accounts (Panels IV and V).

The data also show a significant increase in access to brokerage accounts for unsophis-

ticated relative to sophisticated investors. This fact, along with evidence that transaction

costs on brokerage accounts have been trending down (French (2008)), suggests that the

costs of accessing and transacting in financial markets are an unlikely explanation for the

observed rise in capital income inequality. If anything, the improved access to financial

markets should generate lower inequality, in the absence of informational heterogeneity.

Panel VI shows the fraction of financial wealth that each class of investors allocates

to (low yield) liquid assets. Throughout the sample, sophisticated investors hold a much

smaller fraction of their financial wealth in liquid assets. In turn, unsophisticated investors

demonstrate a significant growth in the fraction of financial wealth held in liquid assets,

from 33% in 1989 to 46% in 2013. This type of portfolio composition shift is consistent with

our mechanism in Section 3.3. Panel VII reports the average age for each investor group.

As expected, wealthy households are older on average. However, there are no time-series

dynamics to the age difference that could explain the observed capital income dynamics.

4.2 Dynamics of Capital Income Inequality

We assess our model’s quantitative predictions for the evolution of capital income in-

equality in response to aggregate growth in information technology. We use the ratio of

financial wealth levels in the SCF in 1989 as a target for initial ratio of information capac-
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Table 5: Investor Characteristics in the SCF

1989 2013

I. Sophisticated/Unsophisticated Ratio
Capital Income 61 129
Financial Wealth 38 66

II. Financial Wealth
Unsophisticated/Non-participants 198% 219%
Bottom participants/Non-participants 42% 43%

III. Capital Income/Financial Wealth
Sophisticated 10.7% 4.6%
Unsophisticated 9.2% 3.0%

IV. Highest Degree Earned
Sophisticated 1.9 2.5
Unsophisticated 0.7 1.1

V. Has brokerage account
Sophisticated 64% 82%
Unsophisticated 16% 35%

VI. Share of liquid assets in financial wealth
Sophisticated 21% 19%
Unsophisticated 33% 46%

VII. Age (years)
Sophisticated 58 60
Unsophisticated 49 51

Degree variable is coded as 0: < 12 years; 1: jr. college or associate; 2: bachelor, nursing degree

or other certificate; 3: master or MBA; 4: PhD, JD, MD, DDS/DMD, other doctorate. “Bottom

participants” is the bottom decile of the wealth distribution in our participant group.

ities.22 Subsequently, we assume that the growth rate of aggregate information capacity is

determined by aggregate market return. Thus, all growth in income inequality is through

portfolio composition decisions in response to aggregate progress in information technology.

The details of the parametrization of the new elements of the model are as follows. We set

the initial ratio of investors’ information capacity, K1/K2 in the model, to the 1989 ratio of

average financial wealth in the top 10% and the bottom 50% of the total wealth distribution

22A guiding principle of our exercise is the existence of a capacity generating technology that is charac-
terized by high fixed and low marginal costs, as explored in Arrow (1987).
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Figure 5: Financial Wealth Inequality: Extensive Margin of Participation in the SCF.

of our households. In the data, this ratio is equal to 38. We then pick the initial aggregate

capacity level to match the excess return on the market portfolio, equal to 11.9% in the

data,23 and assume that the growth of each investor type’s capacity is the same and equal

to the market return. We simulate the model for 25 years forward, which is the time span

of our data set. The outcome of the experiment is the endogenous capital income inequality

growth implied by our mechanism.
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Figure 6: Cumulative Growth in Capital Income Dispersion

The results of this exercise are presented in Figure 6. The model comes very close to

23We also set initial wealth to match the average initial return on wealth of 10%, consistent with the SCF
in 1989. The parametrization procedure gives capacity levels equal to K1 = 0.3169 and K2 = 0.0083.

35



matching the overall growth in inequality in the data, with a 134% growth in the model vs.

109% growth in the data.

The Role of Heterogeneity Below, we explore a quantitative importance of heterogene-

ity in investor capacity and asset heterogeneity for the model’s quantitative predictions. In

Figure 7, we present results from two alternative specifications of the benchmark model.

In the first specification, labeled Asymmetric Growth, we ask how important are initial

capacity differences versus different capacity evolution for capital income inequality. In par-

ticular, we consider growth in capacity driven by individual rather than market returns on

equity. This generates asymmetric growth in capacities across investor groups. As Figure 7

demonstrates, asymmetric capacity growth driven by individual returns increases the growth

in inequality over time. Nevertheless, the quantitative impact is small relative to the bench-

mark inequality growth. This indicates that the initial capacity heterogeneity combined

with subsequent aggregate growth are the key forces driving the evolution of inequality in

the model.

0.5$

0.75$

1$

1.25$

1.5$

1.75$

2$

2.25$

2.5$

2.75$

1989$ 1992$ 1995$ 1998$ 2001$ 2004$ 2007$ 2010$ 2013$

One$Asset$

Benchmark$Model$

$Asymmetric$Growth$

Figure 7: Cumulative Growth in Capital Income Dispersion: The Role of Asset and Capacity
Growth Heterogeneity.

In the second specification, labeled One Asset, we quantify the role of asset heterogeneity

in driving capital income inequality. Specifically, we consider an analogously parameterized
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model with only one risky asset.24 The one-asset economy generates growth in capital

income inequality that is approximately 40% of the growth generated by the benchmark

model. Hence, asset heterogeneity plays a crucial role in driving capital income inequality in

the model. It generates higher payoffs from learning and larger effects on the retrenchment

of unsophisticated investors from risky asset markets.

4.3 Robustness

The Role of Capital Income in Financial Wealth To assess the importance of capital

income as a driving force of financial wealth inequality, relative to other mechanisms, such

as savings rates from non-capital income sources, we generate the counterfactual financial

wealth obtained from reinvesting capital income only. Specifically, for each wealth decile in

the 1989 SCF, we take 1989 financial wealth as a starting point, and derive a hypothetical

wealth level in subsequent SCF surveys by accumulating capital income.25
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Figure 8: Financial Wealth: Actual and counterfactual due only to capital income.

24In terms of the parametrization, the model with one asset takes away two targets from the benchmark
model: heterogeneity in asset volatility and fraction of actively traded assets. We keep the value of risk
aversion coefficient the same as in the benchmark model and change only three parameters: overall capacity
φ, volatility of the noise trader demand σx, and the volatility of asset payoff σ to match: the average market
return (11.9%), asset turnover (9.7%), and sophisticated ownership (23%). To make the results comparable,
in simulating the model, we feed in aggregate capacity growth equal to the one in the benchmark model.

25For example, the counterfactual financial wealth level in 1995 is equal to financial wealth in 1989 plus
3 times capital income in the 1989 and 1992 surveys.
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Figure 8 shows the time series for actual and counterfactual financial wealth inequality

between sophisticated and unsophisticated investors. The two series are remarkably close,

which suggests an important role for capital income in the evolution of financial wealth.26

One interpretation of Figure 8 is that looking at past capital income realizations may be

sufficient to explain the evolution of financial wealth, without resorting to mechanisms that

incorporate savings rates from other income sources. Still, we treat this evidence as sugges-

tive only, since this construction imposes a panel interpretation on a repeated cross-section.

Passive Investment Policies We study whether capital income differences are an out-

come of differences in market returns over time combined with passive, buy-and-hold house-

hold strategies. The hypothesis is that some households (the wealthy) hold a larger share

of their wealth in stock relative to the median household, which gives higher returns by the

mere fact that stocks outperform bonds. Figure 9 plots, for each year, the past 15-year

cumulative return on holding the aggregate index of the U.S. stock market.27 This gives

the cumulative return of such passive strategy of a household, relative to a household which

exclusively holds bonds (with a gross return of 1). The cumulative return on the passive

strategy actually exhibits a declining trend, which implies that if investors used the passive

strategy and the only difference was how much money they hold in the stock market versus

bonds, then we should observe a declining trend in capital income inequality, as the gross

return on the market converges to the gross return on bonds. This exercise highlights the

importance of active decisions of when to enter and exit stock market in generating returns.

Endogenous Capacity Choice In the benchmark model, we assume an exogenous re-

lation between initial capacity and an investor’s wealth. In the Appendix, we show how

such relation could arise endogenously. Intuitively, if investors endogenously choose different

portfolio sizes, then their net benefit of investing in information will increase with portfolio

size. We apply this idea in a model in which investors have identical CRRA preferences and

26By construction, the two wealth levels are identical in 1989, so the figure also implies that the counter-
factual levels of financial wealth of each of the group are very close to the data.

27The patterns we document are essentially the same for other choices of the horizon: 5, 10, or 20 years.
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Figure 9: Cumulative market return on a 15-year passive investment in the U.S. stock market.

make endogenous capacity choice decisions. In the context of the information choice model,

CRRA utility specification is not tractable; hence, we map a common relative risk aversion

together with wealth differences locally into different absolute risk aversion coefficients. In

a numerical example, we show how initial wealth differences observed in the 1989 SCF map

into endogenous capacity differences, for different values of the cost of capacity and differ-

ent relative risk aversion coefficients. We show that for a wide range of the risk aversion

specifications and for capacity cost away from zero, the implied differences in capacity are

equal or actually larger than the ones specified in the benchmark model. Hence, we view

our parametrization as cautious in that it implies modest initial differences.

Constant Relative Risk Aversion Utility In the Appendix, we analyze the model

with CRRA utility. Since a closed-form solution to the full model is not feasible, we focus

on a local approximation of the utility function. We show that the model solution under

no capacity differences predicts the same portfolio shares for risky assets, independent of

wealth. Intuitively, if agents have common information, then wealth differences affect the

composition of their allocation between the risk-free asset and the risky portfolio, but not

the composition of the risky portfolio, which is determined optimally by the (common) belief

structure. As a result, differences in capacity are a necessary component of the model to

generate any risky return differences across agents.
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5 Concluding Remarks

What contributes to the growing income inequality across households? This question has

been of great economic and policy relevance for at least several decades starting with the

seminal work by Kuznets (1953). We approach this question from the perspective of capital

income that is known to be highly unequally distributed across individuals. We propose

a theoretical information-based framework that links capital income derived from financial

markets to a level of investor sophistication. Our model implies the presence of income

inequality between sophisticated and unsophisticated investors that is growing in the extent

of total sophistication in the market, and could be the result of aggregate technological

progress. Additional predictions on asset ownership, market returns, and turnover help us

pin down the economic mechanism and rule out alternative explanations. The quantitative

predictions of the model match qualitatively and quantitatively the observed data.

One could argue that the overall growth of investment resources and competition across

investors with different skill levels are generally considered as a positive aspect of a well-

functioning financial market. However, our work suggests that one should assess any policy

targeting overall information environment in financial markets as potentially exerting an

offsetting and negative effect on socially relevant issues, such as distribution of income. Our

work also sheds light on the overall benefits and redistribution aspects of progress in financial

markets in terms of creating new financial instruments. Depending on where the new assets

land on the volatility (or more generally, opaqueness) spectrum, the benefits will accrue to the

relatively less (low-volatility assets) or more (high-volatility assets) sophisticated investors.

References

Acemoglu, Daron, 1999, Changes in unemployment and wage inequality: An alternative
theory and some evidence, American Economic Review 89, 1259–1278.

Admati, Anat, 1985, A noisy rational expectations equilibrium for multi-asset securities
markets, Econometrica 53(3), 629–657.

40



Alvaredo, Facundo, Anthony Atkinson, Thomas Piketty, and Emmanuel Saez, 2013, The top
1 percent in international and historical perspective, Journal of Economic Perspectives 27,
1–21.

Ameriks, John, and Steve Zeldes, 2001, How do household portfolios vary with age, Working
paper, Columbia University.

Arrow, Kenneth J, 1987, The demand for information and the distribution of income, Prob-
ability in the Engineering and Informational Sciences 1, 3–13.

Atkinson, Anthony B, Thomas Piketty, and Emmanuel Saez, 2011, Top incomes over a
century or more, Journal of Economic Literature 49, 3–71.

Autor, David H, and David Dorn, 2013, The growth of low skill service jobs and the polar-
ization of the US labor market, American Economic Review 103, 1553–1597.

Autor, David H, Lawrence F Katz, and Melissa S Kearney, 2008, Trends in US wage inequal-
ity: Revising the revisionists, Review of Economics and Statistics 90, 300–323.

Autor, David, H, Lawrence F Katz, and Melissa S Kearney, 2006, The polarization of the
US labor market, Working paper, National Bureau of Economic Research.

Barber, Brad M, Yi-Tsung Lee, Yu-Jane Liu, and Terrance Odean, 2009, Just how much do
individual investors lose by trading?, Review of Financial Studies 22, 609–632.

Barber, Brad M, and Terrance Odean, 2000, Trading is hazardous to your wealth: The
common stock investment performance of individual investors, Journal of Finance 55,
773–806.

Barber, Brad M, and Terrance Odean, 2001, Boys will be boys: Gender, overconfidence, and
common stock investment, Quarterly Journal of Economics 116, 261–292.

Brunnermeier, Markus K, 2001, Asset pricing under asymmetric information: Bubbles,
crashes, technical analysis, and herding. (Oxford University Press).

Calvet, Laurent E, John Y Campbell, and Paolo Sodini, 2007, Down or out: assessing the
welfare costs of household investment mistakes, Journal of Political Economy 115, 707–
747.

Calvet, Laurent E, John Y Campbell, and Paolo Sodini, 2009a, Fight or flight? Portfolio
rebalancing by individual investors, Quarterly Journal of Economics 124, 301–348.

Calvet, Laurent E, John Y Campbell, and Paolo Sodini, 2009b, Measuring the financial
sophistication of households, American Economic Review 99, 393–398.

Campbell, John Y, 2006, Household finance, Journal of Finance 61, 1553–1604.

Chien, YiLi, Harold Cole, and Hanno Lustig, 2011, A multiplier approach to understanding
the macro implications of household finance, Review of Economic Studies 78 (1), 199–234.

41



Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam, 2011, Recent trends in trad-
ing activity and market quality, Journal of Financial Economics 101, 243–263.

Cohen, Randolph B., Joshua D. Coval, and Luboš Pástor, 2005, Judging fund managers by
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Appendix: Proofs

Model

Portfolio Choice. In the second stage, each investor chooses portfolio holdings qji to solve

max{qji}ni=1
Uj = Ej (Wj)− ρ

2Vj (Wj) s.t. Wj = r (W0j −
∑n

i=1 qjipi) +
∑n

i=1 qjizi,

where Ej and Vj denote the mean and variance conditional on investor j’s information set:

Ej (Wj) = Ej [rW0j +
∑n

i=1 qji (zi − rpi)] = rW0j +
∑n

i=1 qji [Ej (zi)− rpi] ,

Vj (Wj) = Vj [rW0j +
∑n

i=1 qji (zi − rpi)] =
∑n

i=1 q
2
jiVj (zi) .

Let µ̂ji ≡ Ej [zi] and σ̂2
ji ≡ Vj [zi]. The investor’s portfolio problem is to maximize

Uj = rW0j +
∑n

i=1 qji (µ̂ji − rpi)− ρ
2

∑n
i=1 q

2
jiσ̂

2
ji.

The first order conditions with respect to qji yield qji =
µ̂ji−rpi
ρσ̂2
ji

. Since W0j does not affect the

optimization, we normalize it to zero. The indirect utility function becomes

Uj = 1
2ρ

∑n
i=1

(µ̂ji−rpi)2

σ̂2
ji

.

Posterior Beliefs. The signal structure, zi = sji + δji, implies that Cov (sji, zi) = σ2
sji and

µ̂ji = z +
Cov(sji,zi)

σ2
sji

(sji − sji) = sji,

σ̂2
ji = σ2

i

(
1− Cov2(sji,zi)

σ2
sjiσ

2
i

)
= σ2

δji.

Information Constraint. Let H (z) denote the entropy of z, and let H (z|sj) denote the condi-
tional entropy of z given the vector of signals sj . Then

I (z; sj) ≡ H (z)−H (z|sj)
(1)
=
∑n

i=1H (zi)−H (z|sj)
(2)
=
∑n

i=1H (zi)−
∑n

i=1H
(
zi|zi−1, sj

)
(1)
=
∑n

i=1H (zi)−
∑n

i=1H (zi|sj)
(3)
=
∑n

i=1H (zi)−
∑n

i=1H (zi|sji) =
∑n

i=1 I (zi; sji)

where (1) follows from the independence of the payoffs zi; (2) follows from the chain rule for entropy,
where zi−1 = {z1, ..., zi−1}; (3) follows from the independence of the signals sji.

For each asset i, the entropy of zi ∼ N
(
z, σ2

i

)
is H (zi) = 1

2 ln
(
2πeσ2

i

)
.

The signal structure, zi = sji + δji, implies that

I (zi; sji) = H (zi) +H (sji)−H (zi, sji) = 1
2 log

(
σ2
i σ

2
sji

|Σzisji |

)
= 1

2 log

(
σ2
i

σ2
δji

)
,
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where
∣∣Σzisji

∣∣ = σ2
sjiσ

2
δji is the determinant of the variance-covariance matrix of zi and sji.

Hence I (zi; sji) = 0 if σ2
δji = σ2

i . Note, for an additive noise signal structure, s̃ji = zi + δ̃ji,

I (zi; s̃ji) = 1
2 log

(
σ2
i+σ̃2

δji

σ̃2
δji

)
. Hence I (zi; s̃ji)→ 0 as σ̃2

δji →∞.

Across assets, I (z; sj) =
∑n

i=1 I (zi; sji) = 1
2

∑n
i=1 log

(
σ2
i

σ2
δji

)
= 1

2 log

(
n∏
i=1

σ2
i

σ2
δji

)
≤ Kj .

Finally, since σ̂2
ji = σ2

δji, the information constraint becomes
n∏
i=1

σ2
i

σ̂2
ji
≤ e2Kj .

Information Objective. Expected utility is given by

E0j [Uj ] = 1
2ρE0j

[∑n
i=1

(µ̂ji−rpi)2

σ̂2
ji

]
= 1

2ρ

∑n
i=1

E0j[(µ̂ji−rpi)2]
σ̂2
ji

= 1
2ρ

∑n
i=1

(
R̂2
ji+V̂ji

σ̂2
ji

)
,

where R̂ji and V̂ji denote the ex-ante mean and variance of expected excess returns, µ̂ji − rpi.

Conjecture (and later verify) that prices are normally distributed, pi ∼ N
(
pi, σ

2
pi

)
.

R̂ji ≡ E0j (µ̂ji − rpi) = z − rpi,

V̂ji ≡ V0j (µ̂ji − rpi) = V ar (µ̂ji) + r2σ2
pi − 2rCov (µ̂ji, pi) .

The signal structure implies that V ar (µ̂ji) = σ2
sji.

Following Admati (1985), we conjecture (and later verify) that prices are pi = ai + biεi − ciνi, for
some coefficients ai, bi, ci ≥ 0. We compute Cov (µ̂ji, pi) exploiting the fact that posterior beliefs
and prices are conditionally independent given payoffs:

Cov (µ̂ji, pi) =
Cov(µ̂ji,zi)Cov(zi,pi)

σ2
i

.

Since Cov (zi, pi) = biσ
2
i and Cov (µ̂ji, zi) = σ2

sji, then Cov (µ̂ji, pi) = biσ
2
sji. Then

V̂ji = σ2
sji + r2σ2

pi − 2rbiσ
2
sji = (1− rbi)2 σ2

i + r2c2
iσ

2
x − (1− 2rbi) σ̂

2
ji.

Hence the distribution of expected excess returns is normal with mean and variance:

R̂ji = z − rai and V̂ji = (1− rbi)2 σ2
i + r2c2

iσ
2
x − (1− 2rbi) σ̂

2
ji.

Expected utility becomes

E0j [Uj ] = 1
2ρ

∑n
i=1

[
(z−rai)2+(1−rbi)2σ2

i+r2c2i σ
2
x−(1−2rbi)σ̂

2
ji

σ̂2
ji

]
= 1

2ρ

∑n
i=1Gi

σ2
i

σ̂2
ji
− 1

2ρ

∑n
i=1 (1− 2rbi) ,

where Gi ≡ (1− rbi)2 +
r2c2i σ

2
x

σ2
i

+ (z−rai)2
σ2
i

, and where the second summation is independent of the

investor’s choices.
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Proof of Lemma 1. The linear objective function and the convex constraint imply that each
investor allocates all capacity to learning about a single asset. For all other assets, the posterior
variance is equal to the prior variance. Let lj index the asset about which investor j learns. The

information constraint becomes
n∏
i=1

σ2
i

σ̂2
ji

=
σ2
lj

σ̂2
jlj

= e2Kj , and hence the variance of the investor’s beliefs

is given by

σ̂2
ji =

{
e−2Kjσ2

i if i = lj ,

σ2
i if i 6= lj .

The investor’s problem becomes picking the asset lj to maximize
∑n

i=1Gi
σ2
i

σ̂2
ji

=
(
e2Kj − 1

)
Glj +∑n

i=1Gi. Since e2Kj > 1, the objective is maximized by allocating all capacity to the asset with
the largest utility gain: lj ∈ arg maxiGi. The distribution of posterior beliefs follows.

Conditional Distribution of Signals. Conditional on the realized payoff, the signal is a nor-
mally distributed random variable, with mean and variance given by

E (sji|zi) = sji +
Cov(sji,zi)

σ2
i

(zi − z) =

{
z +

(
1− e−2Kj

)
εi if i = lj

z if i 6= lj ,

V (sji|zi) = σ2
sji

(
1− Cov2(sji,zi)

σ2
sjiσ

2
i

)
=

{(
1− e−2Kj

)
e−2Kjσ2

i if i = lj

0 if i 6= lj .

Proof of Lemma 2. The market clearing condition for each asset in state (zi, xi) is∫
M1i

(
sji−rpi
e−2K1ρσ2

i

)
dj +

∫
M2i

(
sji−rpi
e−2K2ρσ2

i

)
dj + (1−m1i −m2i)

(
z−rpi
ρσ2
i

)
= xi,

where M1i denotes the set of measure m1i ∈ [0, λ] of sophisticated investors who choose to learn
about asset i, and M2i denotes the set of measure m2i ∈ [0, 1− λ], of unsophisticated investors who
choose to learn about asset i.
Using the conditional distribution of the signals,

∫
M1i

sjidj = m1i

[
z +

(
1− e−2K1

)
εi
]

for the type-
1 investors, and analogously for the type-2 investors. Then, the market clearing condition can be
written as α1z + α2εi − xi = α1rpi, where

α1 ≡
1+m1i(e2K1−1)+m2i(e2K2−1)

ρσ2
i

and α2 ≡
m1i(e2K1−1)+m2i(e2K2−1)

ρσ2
i

.

We obtain identification of the coefficients in pi = ai + biεi − ciνi as

ai = 1
r

[
z − x

α1

]
, bi = α2

rα1
, and ci = 1

rα1
.

Let Φi ≡ m1i

(
e2K1 − 1

)
+ m2i

(
e2K2 − 1

)
be a measure of the information capacity allocated to

learning about asset i in equilibrium. Further substitution yields

ai = 1
r

(
z − ρσ2

i x
1+Φi

)
, bi = 1

r

(
Φi

1+Φi

)
, ci = 1

r

(
ρσ2
i

1+Φi

)
.
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Proof of Lemma 3. Substituting ai, bi, and ci, equilibrium gains become Gi =
1+ρ2σ2

i (σ2
x+x2)

(1+Φi)
2 .

Defining ξi ≡ σ2
i

(
σ2
x + x2

)
, gives Gi = 1+ρ2ξi

(1+Φi)
2 .

By Lemma 1, each investor learns about a single asset among the assets with the highest gain.
WLOG, assets in the economy are ordered such that σi > σi+1, for all i ∈ {1, ..., n− 1}. First
suppose that all investors learn about the same asset. Since Gi is increasing in σi, this asset is

asset 1. All investors learn about a single asset as long as φ ≤ φ1 ≡
√

1+ρ2ξ1
1+ρ2ξ2

−1. At this threshold,

some investors switch and learn about the second asset.

For φ > φ1, equilibrium gains must be equated among all assets with positive learning mass.
Otherwise, investors have an incentive to switch to learning about the asset with the higher gain.
Moreover, the gains of all assets with zero learning mass must be strictly lower. Otherwise, an
investor would once again have the incentive to deviate and learn about one of these assets.

We now derive expressions for the mass of investors learning about each asset. We assume that
the participation of sophisticated and unsophisticated investors in learning about a particular asset
is proportional to their mass in the population: m1i = λmi and m2i = (1− λ)mi, where mi is
the total mass of investors learning about asset i. Hence Φi = φmi. Note that this implies that
the masses mi are also strictly decreasing in i across the assets that are learned about. We can
write the necessary and sufficient conditions for determining {mi}ni=1 as

∑k
i=1mi = 1; 1+φmi

1+φm1
= ci1,

for any i ∈ {2, ..., k} , where ci1 ≡
√

1+ρ2ξi
1+ρ2ξ1

≤ 1, with equality iff i = 1; and mi = 0 for any

i ∈ {k + 1, ..., n}. Recursively, mi = ci1m1 − 1
φ (1− ci1) , ∀i ∈ {2, ..., k}. Using

∑k
i=1mi = 1, and

defining Ck ≡
∑k

i=1 ci1, we obtain the solution for m1 given by m1 = 1
Ck

+ 1
φ

(
k
Ck
− 1
)

, where

we have used the fact that c11 = 1. Using this expression, we obtain the solution for all mi,

i ∈ {1, ..., k}, mi = ci1
Ck

+ 1
φ

(
kci1
Ck
− 1
)

.

Proof of Lemma 4. (i) First, consider an increase in φ to some φ′ ≤ φk, such that no new assets
are learned about in equilibrium (k and Ck are unchanged). For i ∈ {1, ..., k},

dmi
dφ = − 1

φ2

(
kci1
Ck
− 1
)

.

Hence mi is strictly decreasing in φ if ci1 >
Ck
k (namely, if the asset is above average in terms of

adjusted volatility), and mi is increasing in φ otherwise. Since ci1 is decreasing in i, the condition
cı̄1 = Ck/k defines the cutoff asset ı̄. Moreover, note that for i ∈ {1, ..., ı̄}, the absolute value of
dmi
dφ is decreasing in i, such that the masses of the more volatile assets fall by more than those of

the less volatile assets. Likewise, for i ∈ {ı̄+ 1, ..., k}, the value of dmi
dφ is increasing in i, such that

the masses of the less volatile assets increase by more than those of the more volatile assets. This
results in a flattening of the distribution of investors across assets.

Next, suppose that k < n, and consider an increase in φ to some φ′ > φk, such that k′ > k assets are
learned about (with k′ ≤ n). Let the new equilibrium masses be denoted by m′i for i ∈ {1, ..., k′}.
Hence, Σk

i=1m
′
i < 1. Using the recursive expression for mi in terms of m1, for i ∈ {2, ..., k}

mi −m′i = ci1 (m1 −m′1)− (1− ci1)
(

1
φ −

1
φ′

)
.
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Suppose that m1 ≤ m′1. Then mi−m′i < 0, which implies that Σk
i=1mi−Σk

i=1m
′
i = 1−Σk

i=1m
′
i < 0,

which is a contradiction. Hence m1 > m′1. Moreover, since ci1 is decreasing in i, the condition
mı̄ = m′ı̄ defines the threshold value for ci1 that defines the cutoff asset ı̄.

(ii) First, consider an increase in φ to some φ′ < φk, such that no new assets are learned about (k
and Ck are unchanged). For i ∈ {1, ..., k},

d(φmi)
dφ = ci1

Ck
> 0.

Next, suppose that k < n, and consider an increase in φ to some φ′ > φk, such that k′ > k assets
are learned about in equilibrium (with k′ ≤ n). First, for the new assets that are actively traded,
i ∈ {k + 1, ..., k′}, m′i > mi = 0, hence, φ′m′i > φmi. Second, consider an asset i ∈ {1, ..., k} and an
asset h ∈ {k + 1, ..., k′}. Let the new equilibrium gains be denoted by G′i and G′h. Then Gi > Gh,
which implies that 1 + φmi < cih, and G′i = G′h, which implies that 1 + φ′m′i = (1 + φ′m′h) cih >
(1 + φ′m′h) (1 + φmi)⇔ φ′m′i > φmi + φ′m′h (1 + φmi) > φmi.

(iii) Let K1 = K and K2 = δK, for some δ ∈ (0, 1), and consider an increase in K such that the
first k′ ≥ k assets are learned about. For i ∈ {k + 1, ...., k′}, first, mi = 0 and m′i > 0; second,
d(e2K − 1)/dK = 2e2K > 2δe2Kδ = d(e2Kδ − 1)/dK > 0. The result follows.

For i ∈ {1, ...., k}, let miφ ≡ dmi
dφ . The derivatives of interest are

D1 ≡ d[mi(e
2K−1)]
dK = miφ

(
e2K − 1

) dφ
dK + 2e2Kmi

D2 ≡ d[mi(e
2Kδ−1)]
dK = miφ

(
e2Kδ − 1

) dφ
dK + 2δe2Kδmi

where dφ
dK = 2λe2K + 2δ (1− λ) e2Kδ > 0.

First, for assets i ∈ {ı̄, ..., k}, for which miφ ≥ 0, D1 > D2 > 0, since e2K > e2Kδ > δe2Kδ.

Next, for assets i ∈ {1, ..., ı̄− 1}, for which miφ < 0, factoring out 2e2K yields

D1 = 2e2K
{
mi +miφ

(
e2K − 1

) [
λ+ (1− λ) δe2K(δ−1)

]}
= 2e2K

{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ) δ

(
e2Kδ − e2K(δ−1)

)]}
> 2e2K

{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ)

(
e2Kδ − 1

)]}
= 2e2K {mi +miφφ} = 2e2K

[
d(φmi)
dφ

]
> 0,

where the first inequality follows from miφ < 0, δ < 1, e2K > 1, and e2K(δ−1) < 1; and the last
inequality follows from part (ii) above.

Next, note that λD1 + (1−λ)D2 =
[
d(φmi)
dφ

]
dφ
dK = 2

[
d(φmi)
dφ

] [
λe2K + δ (1− λ) e2Kδ

]
. We have just

shown that D1 > 2e2K
[
d(φmi)
dφ

]
, so for the equality to hold, it must be that D2 < 2δe2Kδ

[
d(φmi)
dφ

]
.

Hence, D1 > 0 and D1 > D2. It remains to be determined if D2 > 0 as well. We can obtain a
sufficient condition for D2 > 0 as follows: For miφ < 0,

D2 = 2δe2Kδmi + 2miφ

(
e2Kδ − 1

) [
λe2K + (1− λ) δe2Kδ

]
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= 2e2Kδ
{
δmi +miφ

[
λ
(
e2K − e2K(1−δ))+ (1− λ) δ

(
e2Kδ − 1

)]}
.

> 2e2Kδ
{
δmi +miφ

[
λ
(
e2K − e2K(1−δ))+ (1− λ)

(
e2Kδ − 1

)]}
> 2e2Kδ

{
δmi +miφ

[
λ
(
e2K − 1

)
+ (1− λ)

(
e2Kδ − 1

)]}
= 2e2Kδ {δmi +miφφ} = 2e2Kδ

{[
d(φmi)
dφ

]
− (1− δ)mi

}
,

where the first inequality follows from miφ < 0 and δ < 1, and the second inequality follows from
miφ < 0 and e2K(1−δ) > 1. Hence if δ is not too small (i.e. capacity dispersion is not too large),
then D2 > 0 for i ∈ {1, ..., ı̄− 1} as well.

Summarizing, in response to symmetric capacity growth, for assets i ∈ {ı̄, ..., k′}, both mi

(
e2K1 − 1

)
and mi

(
e2K2 − 1

)
growth, but mi

(
e2K1 − 1

)
grows by more. For assets i ∈ {1, ..., ı̄− 1}, for which

the mass of investors falls in response to the capacity growth, mi

(
e2K1 − 1

)
grows and mi

(
e2K2 − 1

)
grows by less, or even falls, if capacity dispersion is large enough.

Analytic Results

Proof of Proposition 1. Results follow from equations (14-16).

Proof of Proposition 2. (i) Follows from the definition of capital income per capita and equa-
tion (15). (ii) Since for all i ∈ {1, ..., k}, the gains Gi are equated in equilibrium, then E [π1i − π2i]
is increasing in mi, which in turn is increasing in σ2

i .

Derivation of volume per capita. Consider an investor with asset holdings q in period t, and let
f denote the PDF and F the CDF of the cross-sectional distribution of holdings in this investor’s
group, with mean q and standard deviation σ. Since shocks are i.i.d., if investors don’t change
groups over time, the distribution of q in each investor group is stationary. The investor’s expected
volume of trade from t to t+ 1 is

v ≡
∫∞
−∞ |q

′ − q| f (q′) dq′ =
∫ q
−∞ (q − q′) f (q′) dq′ +

∫∞
q (q′ − q) f (q′) dq′

=
∫ q
−∞ qf (q′) dq′ −

∫ q
−∞ q

′f (q′) dq′ +
∫∞
q q′f (q′) dq′ −

∫∞
q qf (q′) dq′.

Adding and subtracting terms gives v = q [2F (q)− 1] + q − 2F (q)E [q′|q′ < q].

Using E [q′|q′ < q] = q − σ2
[
f(q)
F (q)

]
, v = q [2F (q)− 1] + q − 2F (q) q + 2σ2f (q).

Averaging across all q in the group,

V = 2
∫∞
−∞ qF (q) f (q) dq − 2q

∫∞
−∞ F (q) f (q) dq + 2σ2

∫∞
−∞ f (q)2 dq.

Using the formulas for integrals of normal distributions,∫∞
−∞ F (q) f (q) dq = 1/2,

∫∞
−∞ qF (q) f (q) dq = q/2 + σ/ (2

√
π), and

∫∞
−∞ f (q)2 dq = 1/2σ

√
π.

Then, the per capita expected volume of trade is

V = q + σ√
π
− q + σ√

π
= 2σ√

π
.
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Derivation of asset turnover. Consider the group of sophisticated investors actively trading
asset i. A particular investor j in this group holds qji = e2K1 (sji − rpi) /ρσ2

i . Conditional on the
state (zi, xi), the cross-sectional variance of holdings for this group is

V ar (qji) = e4K1

ρ2σ4
i
V ar (sji − rpi) = e2K1−1

ρ2σ2
i

.

Hence, the per capita expected volume for active sophisticated investors is V1i = 2√
π

(√
e2K1−1
ρσi

)
and for active unsophisticated investors is V2i = 2√

π

(√
e2K2−1
ρσi

)
.

Next, consider the group of sophisticated investors passively trading asset i. A particular investor
j in this group holds qji = (z − rpi) /ρσ2

i . Conditional on the realized state (zi, xi), the cross-
sectional variance of holdings for this group is 0. Hence, the per capita expected volume for
passive sophisticated investors is V3i = 0. Analogously, the per capita expected volume for passive
unsophisticated investors is V4i = 0. This gives, the expected volume for asset i,

Vi = λmi
2√
π

(√
e2K1−1
ρσi

)
+ (1− λ)mi

2√
π

(√
e2K2−1
ρσi

)
= 2mi√

π

[
λ
√
e2K1−1+(1−λ)

√
e2K2−1

ρσi

]
,

and average turnover

Ti ≡ Vi
x = 2mi

x
√
π

[
λ
√
e2K1−1+(1−λ)

√
e2K2−1

ρσi

]
.

Proof of Proposition 3. Results follow from the expression for asset turnover derived above.

Proof of Proposition 4. (i) The increase in dispersion keeps φ unchanged. Therefore, using
equation (11), the masses mi are unchanged. With both φ and mi unchanged, prices are unchanged.
(ii) The result follows from equation (15): masses and prices do not change, and dispersion,(
e2K1 − e2K2

)
increases. (iii) Relative capital income is

π1i

π2i
=

(zi − rpi) (zi − rpi) +
(
e2K1 − 1

)
mi (zi − rpi)2

(zi − rpi) (zi − rpi) + (e2K2 − 1)mi (zi − rpi)2 > 1.

Since prices are unchanged, (zi − rpi) (zi − rpi) and mi (zi − rpi)2 are unchanged. Since K ′1 > K1

and K ′2 < K2, the second term in π1i increases and the second term in π2i decreases.

Proof of Proposition 5. (i) Using equilibrium prices, pi = 1
r

(
z − ρσ2

i x
1+φmi

)
. Per Lemma 4, φmi

is increasing in φ. Hence, for i ∈ {1, ..., k}, pi is increasing in φ. The result for equilibrium expected
excess returns E [zi − rpi] follows.

(ii) Since λE [q1i]+(1− λ)E [q2i] = x̄, it is sufficient to show that for i ∈ {1, ..., k′}, E [q1i] increases
in response to symmetric capacity growth. Let K ≡ K1, and K2 = δK, with δ ∈ (0, 1). Since

E [q1i] =
1+mi(e2K−1)

(1+φmi)
x̄, then dE[q1i]

dK = x̄
(1+φmi)

2

[
d[mi(e2K−1)]

dK (1 + φmi)− d(φmi)
dφ

dφ
dKmi

(
e2K − 1

)]
.

Hence sign
(
dE[q1i]
dK

)
= sign

(
d[mi(e2K−1)]

dK − d(φmi)
dφ

dφ
dK

mi(e2K−1)
1+φmi

)
.
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In the proof of Lemma 4, we show that
d[mi(e2K−1)]

dK > 2e2K d(φmi)
dφ > 0. Hence,

sign
(
dE[q1i]
dK

)
= sign

(
2e2K − dφ

dK

mi(e2K−1)
1+φmi

)

= sign

(
2e2K − 2mi[λe2K+(1−λ)δe2Kδ](e2K−1)

1+mi[λ(e2K−1)+(1−λ)(e2Kδ−1)]

)

= sign

(
e2K −

(
e2K − 1

) mi[λe2K+(1−λ)δe2Kδ]
1+mi[λe2K+(1−λ)e2Kδ]−mi

)
(1)
= sign

(
e2K −

(
e2K − 1

) [ mi[λe2K+(1−λ)e2Kδ]
1+mi[λe2K+(1−λ)e2Kδ]−mi

])
(2)
= sign

(
e2K −

(
e2K − 1

))
> 0

where (1) follows from δ ∈ (0, 1), and (2) follows from the fact that the term in square brackets is
less than 1.

(iii) Let the per capita capital income be decomposed into a component Ci that is common across
investor groups, and a component that is group-specific:
π1i = ci + 1

ρσ2
i
mi

(
e2K − 1

)
(zi − rpi)2, where ci ≡ 1

ρσ2
i

(z − rpi) (zi − rpi), with expected value Ci.

Then E [π1i] = Ci + 1
ρσ2
i
mi

(
e2K − 1

)
E
[
(zi − rpi)2

]
= Ci + 1

ρmi

(
e2K − 1

)
Gi, where Gi is the gain

from learning about asset i, equated across all i ∈ {1, ..., k}.

We then obtain that E[π1i]
E[π2i]

=
Ci+

1
ρ
mi(e2K−1)Gi

Ci+
1
ρ
mi(e2Kδ−1)Gi

.

In response to an increase in K, Ci and Gi decrease, but they affect both sophisticated and unsophis-
ticated profits in the same way. From Lemma 4, mi

(
e2K − 1

)
increases by more than mi

(
e2Kδ − 1

)
in response to a change in K. Hence overall, E[π1i]

E[π2i]
increases.

(iv) The volume of asset i is

Vi = 2mi√
π

[
λ
√
e2K−1+(1−λ)

√
e2Kδ−1

ρσi

]
.

In Lemma 4, we show that for i ∈ {ı̄, ..., k}, d[mi(e
2K−1)]
dK >

d[mi(e2Kδ−1)]
dK > 0, hence Vi increases. For

assets i ∈ {1, ..., ı̄− 1}, d[mi(e2K−1)]
dK > 0, while mi

(
e2Kδ − 1

)
may increase or decrease, depending

on δ. Moreover, for i ∈ {k + 1, ..., k′} (that is, for newly actively traded assets), volume increases
from 0. In the proof of Lemma 4, we show that the decline in mi

(
e2Kδ − 1

)
is bounded by a term

that is smaller than the bound on the increase in mi

(
e2Kδ − 1

)
. Hence on net, Vi increases for

i ∈ {1, ..., ı̄− 1} as well. Therefore, total volume, V ′ =
∑k′

i=1 V
′
i >

∑k
i=1 Vi = V . Hence turnover

T ≡ V ′/nx increases.

Proof of Proposition 6. We consider the choice of an individual investor, taking the choices of
all other investors as given, characterized by the solution in the main text.

Case A. First, we consider the case in which the investor treats the price as any other random
variable that cannot be processed perfectly for free. Suppose that the investor allocates capacity
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to learning the price of asset i. This investor will observe a compressed representation of the price,

spji, that is the result of the decomposition pi = spji+εji,with spji ∼ N
(
pi, σ

2
spji

)
, εji ∼ N

(
0, σ2

εji

)
,

and σ2
pi = σ2

spji + σ2
εji. The amount of capacity consumed by the price signal is

I
(
pi; s

p
ji

)
= 1

2 log

(
σ2
pi

σ2
εji

)
.

The quantity of information about payoffs that is conveyed by the price signal is

I
(
zi; s

p
ji

)
= H (zi) +H

(
spji

)
−H

(
zi, s

p
ji

)
= 1

2 log

(
σ2
i σ

2
spji

|Σzispji |

)
,

where
∣∣Σzispji

∣∣ is the determinant of the variance-covariance matrix of zi and spji. Using the fact that

zi and spji are conditionally independent given prices, Cov
(
zi, s

p
ji

)
= Cov (zi, pi)Cov

(
pi, s

p
ji

)
/σ2

pi.

Using the solution for equilibrium prices, Cov (zi, pi) = biσ
2
i . Using the signal structure,

Cov
(
pi, s

p
ji

)
= σ2

spji. Hence Cov
(
zi, s

p
ji

)
= biσ

2
i σ

2
spji/σ

2
pi. The determinant becomes

∣∣Σzispji

∣∣ = σ2
i σ

2
spji

(
σ2
piσ

2
pi−b2i σ2

i σ
2
spji

σ2
piσ

2
pi

)
, so that

I
(
zi; s

p
ji

)
= 1

2 log

 σ2
pi

c2i σ
2
xi+

b2
i
σ2
i

σ2
pi

σ2
εji

.

Next, we show that I
(
zi; s

p
ji

)
≤ I

(
pi; s

p
ji

)
. Suppose not. Then, in order for the reverse inequality

to hold, it must be the case that

c2
iσ

2
xi <

(
1− b2i σ

2
i

σ2
pi

)
σ2
εji ⇔ σ2

pi < σ2
εji,

which is a contradiction. Hence, I
(
zi; s

p
ji

)
≤ I

(
pi; s

p
ji

)
, with equality if and only if σ2

pi = σ2
εji,

which occurs only if I
(
pi; s

p
ji

)
= 0. Hence for any positive capacity dedicated to the price signal,

the effective amount of information about the payoff is less than the capacity consumed in order
to receive the signal.

Case B. Next, we consider the case in which the price itself is a perfectly observed signal that
nonetheless consumes capacity. Suppose that the investor uses capacity to learn from pi, and let

posterior beliefs about zi conditional on pi be denoted by yi. Then yi ∼ N
(
yi, σ

2
yi

)
, with

yi = σ2
yi

[
1
σ2
i
zi +

b2i
c2i σ

2
xi
zi − bi

ciσ2
xi

(xi − xi)
]

1
σ2
yi

= 1

1

σ2
i

+
b2
i

c2
i
σ2
xi

.
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The information contained in the price of asset i is I (zi; pi) = 1
2 log

(
σ2
i

σ2
yi

)
. Using the solution for

equilibrium prices, this variance is given by

σ2
yi =

σ2
i

1+
(

φmi
ρσiσxi

)2 .
We next demonstrate that the investor’s ex-ante expected utility is higher when allocating all her
capacity to learning from private signals than when allocating at least a portion of her capacity to
learning from prices, owing to strategic substitutability. The investor’s objective is to maximize

Ẽ1j [U2j ] = 1
2ρ

∑n
i=1

(
Ṽji+R̃

2
ji

σ̃2
ji

)
s.t.

n∏
i=1

(
σ2
i

σ̃2
ji

)
≤ e2Kj ,

where R̃ji and Ṽji denote the ex-ante mean and variance of expected excess returns, (µ̃ji − rpi), µ̃ji
and σ̃2

ji denote the mean and variance of the investor’s posterior beliefs about the payoff zi, and
the tilde indicates that these variables are computed under a signalling mechanism that allows for
learning from prices.

Suppose that the investor uses capacity to learn from pi, and let posterior beliefs about zi conditional
on pi be denoted by yi. Then, the investor designs a signal conditional on the information obtained
from the price, yi = s̃ji+ δ̃ji, where we maintain the same two independence assumptions that were
used in setting up the private signal in the absence of learning from the price. Under this signal
structure, the ex-ante mean is the same, regardless of whether the investor learns from pi or not:
R̃ji = zi−rpi. The ex-ante variance of expected excess returns is given by Ṽji = V ar1j (µ̃ji)+r2σ2

pi−
2rCov1j (µ̃ji, pi). Using the formula for partial correlation and exploiting the fact that signals and
prices are conditionally independent given beliefs, Cov1j (µ̃ji, pi) = Cov1j (µ̃ji, yi)Cov1j (yi, pi) /σ

2
yi.

Using the signal structure, Cov1j (µ̃ji, yi) = V ar (s̃ji), V ar (s̃ji) = σ2
yi − σ̃2

ji, and using equilibrium

prices, Cov1j (yi, pi) = biσ
2
i . Hence Cov1j (µ̃ji, pi) = biσ

2
i − biσ2

i σ̃
2
ji/σ

2
yi. Hence Ṽji = (1− 2rbi)σ

2
i +

r2σ2
pi −

(
σ2
i − σ2

yi

)
−
[
1− 2rbi

(
σ2
i

σ2
yi

)]
σ̃2
ji, if the investor learns from pi.

Conversely, if the investor does not allocate any capacity to learning from prices, Vji =
(1− 2rbi)σ

2
i + r2σ2

pi − (1− 2rbi) σ̃
2
ji, where we have used the fact that the information constraint

implies that the investor’s posterior variance, here denoted by σ̃2
ji, is the same in both cases. Both

cases imply a corner solution, with the investor allocating all capacity to learning about a single
asset. The remaining question is: will the investor allocate any capacity to learning from the price,
or will she use all capacity on the private signal? It can be easily seen that for any positive level of
capacity allocated to the price signal, Vji > Ṽji. Hence, the investor’s ex-ante utility is lower when
she devotes any positive amount of capacity to learning from prices. Learning from prices increases
the covariance between the investor’s posterior beliefs and equilibrium prices, thereby reducing
the investor’s excess returns. This case is similar to that of Kacperczyk, Van Nieuwerburgh, and
Veldkamp (2013), who show that prices are an inferior source of information in a portfolio choice
model with an additive constraint on the sum of signal precisions.

Hence, regardless of the informativeness of prices relative to the investor’s capacity, the investor is
always better off learning through signals that provide information directly on the payoffs. In our
framework prices lose their special role as publicly available signals.
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Example with endogenous capacity choice

Below, we provide a numerical example of an endogenous capacity choice outcome in a model
in which wealth heterogeneity matters for endogenous capacity choice. In particular, we assume
that investors have identical CRRA preferences with IES coefficient γ, and differ in terms of their
beginning of period wealth. Then, for each investor j, the absolute risk aversion coefficient is a
function of wealth Wj , given by

A(Wj) = γ/Wj .

Locally, we map this into absolute risk aversion differences in a mean-variance optimization model
by setting the coefficient ρj for investor j equal to A(Wj). What these differences in absolute risk
aversion imply in the model is differences in the size of the risky portfolio, and hence different gains
from investing wealth in purchases of information capacity.
In particular, for a given cost of capacity given by the function f(K), each investor type is going
to choose the amount of capacity to maximize the ex-ante expectation of utility:

1

2ρj

n∑
i=1

σ2
i

σ̂2
ij

Gi − f(Kj),

where, in equilibrium, Gi is a function of the distribution of individual capacity choices of investors,
but not of individual capacity choices, and σ̂2

ij = σ2
i e
−2Kj if the investor learns about asset i.

The gain from increasing is given by the benefit of increasing the precision of information for the
asset that the investor is learning about. Since all actively traded assets have the same gain in
equilibrium, we can express the marginal benefit of increasing capacity in terms of the gain of the
highest volatility asset (asset 1), 1

2ρj
e2KjG1, and then the optimization problem for capacity choice

can be expressed as

max
K

{
1

2ρj
e2KG1 − f(K)

}
. (22)

Assumption 3 below ensures an interior solution to (22) exists.

Assumption 3. The following statements hold:
(i) For all j, G1

ρj
− f ′(0) > 0, where G1 is evaluated at Kj = 0 for all j,

(ii) There exists K > 0, such that for all j and for all K > K, 2G1
ρj
e2K − f ′′(K) < 0,

(iii) There exists K̄ > 0 such that for all j and for all K > K̄, G1
ρj
e2K − f ′(K) < 0.

Numerical example Assume that the cost function is of the form: f(K) = eaK . Under
assumption 3, the optimal choice of K for agent j is implicitly defined by:

G1({K̄j})
ρj

= ae(a−2)K ,

where we make the dependence of G1 on the distribution of capacities explicit. Clearly, for any
a > 2, the higher wealth investors (implying lower ρj) will choose higher capacity levels. However,
because of the dependence of G on equilibrium capacity choices, to quantify the differences we need
to solve the equilibrium fixed point of the model.
Figure 10 presents the ratio of capacities as a function of the cost parameter of capacity, a, for
different values of the absolute risk aversion coefficient of the wealthy ρ1 (which maps into different
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common relative risk aversion coefficients γ). The inequality in capacity exhibits a U-shape. First,
if the cost of capacity is small, then the equilibrium inequality in capacity grows without bound, as
the wealthier accumulate infinite capacity (faster than the less wealthy). For higher values of the
cost of capacity, inequality exhibits a growing trend as the cost increases, very quickly approaching
values in excess of 38, our benchmark value. It should be noted that even for the high values of the
cost parameter, the overall cost relative to gain, f(Kj)/

1
2ρj
e2KjG1, is relatively small, less than 1%

for the wealthy and less than 6% for the less wealthy.
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Figure 10: Inequality in information capacity (K1/K2) as a function of a and wealthy absolute
risk aversion coefficient.

CRRA Utility Specification

Here, we solve the main investment problem of maximizing the expected utility of wealth, where
the utility function is CRRA with respect to end of period wealth:

maxE
W 1−ρ

1− ρ
(23)

where ρ 6= 1. Generally, for our specification of the payoff process, i.e. z ∼ N (z̄, σ2
i ), wealth next

period is

Wt+1 = r(Wt −
∑
i

piqi) +
∑
i

qizi

which has a normal distribution if zi’s are normal. In order to analytically express the expecta-
tion in (23), we start by expressing wealth as W ′ = Welog{[r(1−

∑
p q
W

)+
∑ q

W
z]}, and then use an

approximation of the log of return.

Approximation To approximate log{[r(1−
∑
p q
W ) +

∑ q
W z]}, define

f(z − rp) ≡ log[r +
1

W

∑
pq
z − rp
p

].
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In the above equation, the term z is the only unknown stochastic term. The Taylor approximation
is

f(z − rp) = f(z̄ − rp) + f ′(z̄ − rp)(z − z̄) +
1

2
f ′′(z̄ − rp)(z − z̄)2 + o(z − rp)

where in the above,

f ′ =
1

r + 1
W

∑
q(z̄ − rp)

q

W
,

f ′′ = − 1

(r + 1
W

∑
q(z̄ − rp))2

q2

W 2
,

f ′′′ = 2
1

(r + 1
W

∑
q(z̄ − rp))3

q3

W 3
.

With these formulas in hand, the approximation is

f(z − rp) = log[r +
1

W

∑
q(z̄ − rp)] +

1

r + 1
W

∑
q(z̄ − rp)

q

W
(z − z̄)

−1

2

1

(r + 1
W

∑
q(z̄ − rp))2

q2

W 2
(z − z̄)2

Denote

r +
1

W

∑
q(z̄ − rp) ≡ R(q)

Then we can write

f(z − rp) = log[R(q)] +
1

R(q)

q

W
(z − z̄)− 1

2

1

R(q)2

q2

W 2
(z − z̄)2,

and

(elog(f(z−rp)))1−ρ = e
(1−ρ)(log[R(q)]+ 1

R(q)
q
W

(z−z̄)− 1
2

1
(R(q))2

q2

W2 (z−z̄)2)

= (R(q))1−ρe
(1−ρ) 1

R(q)
q
W

(z−z̄)− 1
2

(1−ρ) 1
(R(q))2

q2

W2 (z−z̄)2

We are interested in the object e
(1−ρ) 1

R(q)
q
W

(z−z̄)− 1
2

(1−ρ) 1
(R(q))2

q2

W2 (z−z̄)2
from the above expression.

First, we approximate the term (z − z̄)2 by its expected volatility, σ2
δi, to get

e
(1−ρ) 1

R(q)
q
W

(z−z̄)− 1
2

(1−ρ) 1
(R(q))2

q2

W2 σ
2
δi

As an approximation point, we pick z̄, which gives a constant R(q), and then

logEW 1−ρ = const.× logEe
(1−ρ) 1

R(q)
q
W

(z−z̄)− 1
2

(1−ρ) 1
(R(q))2

q2

W2 σ
2
δi (24)

where the variable in the exponent is normal, with mean (ignoring constants)
∑
qi(µ̂i − z̄i) and

variance equal to
∑
q2
i σ

2
δi. Then,

logEW 1−ρ = const.× (1− ρ)

{
1

R

∑ q

W
(µ̂i − z̄i) + (1− ρ)

1

W 2R2

1

2

∑
q2
i σ

2
δi
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−1

2

1

W 2R2

∑
q2
i σ

2
δi

}
which gives

logEW 1−ρ = const.× (1− ρ)

{
1

R

∑ q

W
(µ̂i − z̄i)− ρ

1

W 2R2

1

2

∑
q2
i σ

2
δi

}
Interior minimum (which maximizes EW 1−ρ/(1− ρ)) is

qi =
1

ρ

µ̂i − rp
σ2
δi

(Wr).

Plugging in gives:

U =
1

1− ρ
W 1−ρr1−ρe

1−ρ
ρ

1
2

∑ (µ̂i−rp)
2

σ2
δi

where µ̂i and σδi are the expected mean and standard deviation of the payoff process z, given the
investor’s prior, private signal and the price signal.
As in Brunnermeier (2001) to compute the expectation E(U). Some new notation is needed for
that. First, denote the excess return as

Ri ≡ µ̂i − rpi

with mean R̂i. Denote the period zero volatility of Ri− R̂i as V̂i (which is just the volatility of Ri).
Then we can write (in matrix form):

U =
1

1− ρ
W 1−ρr1−ρe

1−ρ
ρ

1
2

[(R−R̂)Σ−1
δ (R−R̂)+2R̂Σ−1

δ (R−R̂)+R̂Σ−1
δ R̂]

Which gives

EU =
1

1− ρ
W 1−ρr1−ρ|I − 2V̂

1− ρ
2ρ

Σ−1
δ |
−1/2×

exp(
(1− ρ)2

2ρ2
R̂Σ−1

δ (I − 2V̂
1− ρ

2ρ
Σ−1
δ )−1V̂ R̂Σ−1

δ +
1− ρ

2ρ
R̂Σ−1

δ R̂)

which becomes

EU =
1

1− ρ
W 1−ρr1−ρ(Πi(1− V̂i

1− ρ
ρ

σ−1
δi ))−1/2 × exp

(
1− ρ

2ρ

∑ R̂2
i

σδi

[
(1 +

V̂i
σδi

ρ− 1

ρ
)−1

])

logging the negative of that and simplifying gives

− log(−EU) = const.+
1

2

∑
i

log(1 +
V̂i
σδi

ρ− 1

ρ
) +

ρ− 1

2ρ

∑
i

R̂2
i

σδi + V̂i
ρ−1
ρ

This objective function is strictly decreasing in σδi and convex, which means that agents are going
to invest all capacity into learning about one asset. For that asset, σδi = e−2Kσyi, and σδi = σyi
otherwise.
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