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Abstract

The literature on dynamic factor demand models has, until recently, largely over-
looked the issue of capital utilization. In this paper we allow for variations in the rate of
capital utilization within the context of a dynamic factor demand model by adopting
a modeling framework within which the firm combines its beginning-of-period stocks
with other inputs to produce its outputs as well as its end-of-period stocks. We also define
measures of productivity and capacity utilization for the adopted framework. As a by-
product, the framework also provides for a consistent decomposition of gross investment
into replacement and expansion investment. As an illustration, the model is applied to
U.S. electrical machinery data.
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1. Introduction

In the last two decades a large body of literature emerged regarding the
utilization of capital.’ Still, studies of the firm’s demand for factor inputs often
assume a constant rate of utilization of the inputs and ignore the fact that the
firm can simultaneously choose the level and the rate of utilization of its inputs.
In particular, the literature on dynamic factor demand models has, until re-
cently, largely overlooked the issue of capital utilization, and/or did not
distinguish carefully between the distinct concepts of capital and capacity
utilization.

In this paper we allow for variations in the rate of capital utilization within
the context of a dynamic factor demand model by adopting a modeling frame-
work in which the firm combines its beginning-of-period stocks with other
inputs to produce its outputs as well as its end-of-period stocks. Of course, in
deciding on how much of its beginning-of-period stocks are left over at the end
of the period, the firm effectively decides on the rate of depreciation of its stocks.
The adopted modeling framework goes back to Hicks (1946), Malinvaud (1953),
and Diewert (1977, 1980). In the literature on dynamic factor demand models
this framework was first adopted by Epstein and Denny (1980), and more
recently by Kollintzas and Choi (1985) and Bernstein and Nadiri (1987a,b).”
Only the first two papers implement the model empirically. In contrast to
Epstein and Denny (1980) we model and estimate not only the firm’s demand for
its variable factors, but also the demand for its quasi-fixed factors. Kollintzas
and Choi’s (1985) model differs from ours in that adjustment costs are modeled
as external. In contrast to both studies we allow for more than one quasi-fixed
factor. The quasi-fixed factors may become productive immediately or with
a lag. (Apart from those general modeling differences, these studies also differ
from the current one in terms of the actual empirical specification, implementa-
tion, and detail of the analysis of the empirical results.)

To facilitate a full interpretation of the empirical results it seems of interest to
also report estimates of technical change. Consequently we define measures
of technical change and capacity utilization within the adopted modeling

' Most of this literature focused on the firm's long-run decision. Excellent summarics (including
important extensions) of this literature are given in Betancourt {1987), Betancourt and Clague (1981),
and Winston (1982).

?Bischoff and Kokkelenberg (1987) adopt a related framework where the depreciation rate is
modeled as a function of capacity utilization. Other contributions to the literature on dynamic factor
demand models that allow for the firm to operate at different levels of utilization, but are based on
alternative modeling frameworks, include papers by Nadiri and Rosen (1969), Abel (1981), Bernstein
(1983), Kokkelenberg (1984), Honkapohija and Kanniainen (1985), and Shapiro (1986).
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framework (which allows for temporary equilibrium and for the endogenous
determination of the depreciation rate). The specified productivity measures also
cover multiple-output technologies and generalize various productivity measures
previously introduced in the literature. Furthermore, we give a decomposition of
the traditional measure of total factor productivity growth into technical
change, scale effect, adjustment cost effect, and the variable depreciation effect.

While the approach adopted in this paper allows in general for the deprecia-
tion rate to be variable over time it also permits a constant depreciation rate as
a special case. The question whether the depreciation rate of the capital stock is
constant or variable was the subject of considerable debate in the literature. The
approach considered here can be used to formally test the hypothesis of
a constant depreciation rate.

Given the depreciation rate is estimated, existing capital stock series cannot
be employed for estimation. A consistent capital stock series must be generated
during estimation of the model from gross investment data. Thus, as a by-
product, we generate alternative capital stock series that can be contrasted with
‘official’ capital stock estimates. We also obtain a consistent decomposition of
gross investment into replacement and expansion investment which is impor-
tant from the vantage point of public policy analysis.

To illustrate the various features of the model we have estimated the model
using data from the U.S. electrical machinery industry. We test the hypothesis of
a constant depreciation rate and furthermore compare our estimates with those
obtained by Nadiri and Prucha (1990a) from a model with an exogenously given
capital depreciation rate. We find that for the U.S. electrical machinery industry
we cannot reject the hypothesis of a constant depreciation rate. Of course, as
mentioned above, in general our model allows for the depreciation rate to be
variable over time and in other applications the data may lead us to reject the
hypothesis of a constant depreciation rate.

The paper is organized as follows. The theoretical specification of the model is
presented in Section 2. Both primal and dual measures of technical change for
multi-product firms, and measures of capacity utilization are discussed in
Section 3. In this section we also explore the traditional measure of total factor
productivity growth as a measure of technical change in more detail and identify
sources of (possible) bias. In Section 4 we give an empirical specification of the
model and apply this model to U.S. electrical machinery data. We report on our
test of the hypothesis of a constant depreciation rate, and present estimates of
the model parameters, price and output elasticities, estimates of technical
change and scale, as well as report on the internally generated capital stock
series and the decomposition of gross investment into replacement and expan-
sion investment. We also give a decomposition of the traditional measure of
total factor productivity growth. Concluding remarks are given in Section 5.
Most of the underlying mathematic derivations are relegated to several
appendices.
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2. Theoretical model specification’

We consider a firm that combines a set of variable inputs and a set of
quasi-fixed inputs to produce a set of outputs for current sale, as well as a set of
capital inputs for future production. More specifically, we consider a firm that
can choose how much of the beginning-of-period stocks of some of the quasi-
fixed capital inputs will be left over at the end of the period. lL.e., we allow the
firm to endogenously choose the rate of depreciation of some, but not necessar-
ily all, of its quasi-fixed factors. To keep the theoretical specification general we
also allow for some quasi-fixed factors to become immediately productive and
for some to become productive with a lag.

In more detail, let M, be some variable factor, then we assume that the firm’s
technology can be represented by the following factor requirement function:

Mr:M(Yl’ LI’K;)’ I_<ts BlaAKt: AR!’ Tl)a (21)
with K, = d)KKt +(I - d)K)KrAls R = ¢RRr + - ¢R)Rt4h 4K, =K, - K-,

and AR, = R, — R,_,. Here Y, denotes the vector of output goods for current
sale, and L, represents the vector of the variable inputs other than M, With
K, we denote the vector of the end-of-period stocks of the quasi-fixed capital
inputs whose depreciation rates can be chosen endogenously by the firm.
K7 denotes the vector of ‘old’ stocks left over at the end of period ¢ from K, _ ;. As
mentioned, the firm is assumed to be able to choose the level of K? by, e.g.,
choosing appropriate levels of maintenance. Of course, this is equivalent to
choosing the rate of depreciation for respective stocks, since we can always write
K? = (1 — 85K, | and interpret 8¥ as a diagonal matrix of depreciation rates.
R, is the vector of the end-of-period stocks of the quasi-fixed factors whose
depreciation rates are exogenous to the firm. We allow for the possibility that all
or part of the net investments become productive with a one-period lag. More
specifically, with K, and R, we denote the vectors of productive stocks in period
t, and ¢ and ¢® denote diagonal matrices (where the diagonal elements are
assumed to lie between zero and unity). Observe that K, = ¢*4K, + K,_, and
R, = ¢$®AR, + R, _,; hence the diagonal elements of ¢¥ and ¢ represent the
fractions of the net investments that become immediately productive. If, in
particular, a diagonal element is one, then the corresponding quasi-fixed factor
becomes immediately productive; if a diagonal element is zero, then the corre-
sponding quasi-fixed factor becomes productive with a one-period lag. The

¥ The subsequent discussion makes use of the following notational conventions (unless explicitly
indicated otherwise): Let Z, be some kx 1 vector of goods in period t, then p? refers to the
corresponding k x 1 price vector; Z,; and pZ denote the ith elements of Z, and pZ, respectively.
Furthermore, in the following we often write (p?)' Z, for ¥ '~ p% Z,; where the prime () stands for
transpose.
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vectors AK, and AR, in the factor requirement function represent internal
adjustment costs in terms of foregone output due to changes in the quasi-fixed
factors. The variable T, represents an index of technology.

The stocks K, and R, accumulate according to the following equations:

Ki=If+K{, R=If+I—-05R,, (2.2)

where I¥ and I} denote the respective vectors of gross investment and 7 de-
notes the diagonal matrix of exogenous depreciation rates (some of which may
be zero).

The firm’s cost in period t, normalized by the price of the variable factor M, is
given by

M.+ (p7) Lo+ (p7) Ko + (PEYR. + (q) TS + (@) T2 (2.3)

To keep the theoretical specification general we distinguish between the price
(cost) associated with operating the stocks, pX and pX, and the price of new
investment goods after taxes, g¥ and gX, possibly normalized by 1 — u,, where
u, denotes the corporate tax rate.* (It is maintained that at least one price in each
corresponding pair is positive.) We assume that the firm faces perfectly com-
petitive markets with respect to its factor inputs.

Suppose the firm’s objective is to minimize the expected present value of its
future cost stream.’ Substitution of (2.1) and (2.2) into (2.3) then yields the
following expression for the firm’s objective function:

E, ) [M(Y. L, K K, R, AK, AR, T,) + (pr) L. — (¢ ) K2 + (pF) K,

=t

+(PEYR A+ (F VK + (@) [Re— (I = 0)R JI [T (L + )Y (24)
5=t
where E, denotes the expectations operator conditional on the set of information
available in period ¢ and r denotes the real discount rate (which may possibly
also incorporate variations in the corporate tax rate).
Suppose the firm follows a stochastic closed loop feedback control policy in
minimizing the expected present value of its future cost stream (2.4). Then, in

* As an illustration, suppose R is a scalar and corresponds to the number of nonproduction workers;
then p® may represent total compensation per nonproduction worker with g% equal to zero. As
a further illustration, suppose K is a scalar and corresponds to the stock of a certain capital good;
then p* may represent the insurance cost and g* may equal [1 — ¢ — u(1 — mc)B]p"® /(1 — w), where
p'¥ denotes the price of new investment goods, u denotes the corporate tax rate, ¢ is the rate of the
investment tax credit, m is the portion of the investment tax credit which reduces the depreciable
base for tax purposes, and B is the present value of the depreciation allowances.

* We note that the subsequent theoretical discussion can be readily modified to also apply to the case
of a profit-maximizing firm.
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period ¢ the firm will choose optimal values for its current inputs L,, K,, R,, and
for K;. At the same time the firm will choose a contingency plan for setting L.,
K, R,and K] inperiodst=t+ 1,t + 2, ... optimally, depending on observed
realizations of the exogenous variables and past choices for the quasi-fixed
factors. Of course, for given optimal values for L., K., R,, and K; the optimal
values for M, are implied by (2.1). Prices, output, and the discount rate are
assumed to be exogenous to the firm’s optimization problem.

Since L, and K? can be changed without adjustment costs the stochastic
closed loop feedback control solution can be found conveniently in two steps. In
the first step we minimize the total (normalized) cost in each period t with
respect to L, and K? for given values of the quasi-fixed factors and the
exogenous variables. Substitution of the minimized expressions into (2.4) then
leads in the second step to an optimal control problem that only involves the
quasi-fixed factors K, and R..

The part of total cost that actually depends on L, and K? is given by
M(Y.,L,K, K, R, AK_, AR, T,) + (p¥)L, — (g¥y K3, i.e., variable cost minus
the value of the ‘old’ stocks left over at the end of the period from the beginning-
of-period stocks. Assuming that M(.) is differentiable and that a unique interior
minimum of the above expression exists, the first-order conditions for that
minimum are given by

OM./BL. + p- =0, OM,/OK® —g¢X =0. (2.5)

Let L and k‘j denote the minimizing vectors, then the minimum of the variable
cost minus the value of the ‘old” stocks is given by

G.=G(pr, q%, Y, K., R, AK AR, T.) = M, + (pF)'L, — (¢¥) K2, (2.6)

with M, = M(Y,, L, K% K., R, AK., AR, T.). The function G(.) has the inter-
pretation of a normalized variable cost function net of the value of the ‘old’
stocks left over at the end of the period from the beginning-of-period stocks.
Technically it can be viewed as the negative of a normalized restricted profit
function. For duality results between factor requirement functions and normalized
variable profit functions see, e.g., Diewert (1982) and Lau (1976). We assume that the
function G(. ) 1s twice continuously differentiable in all its arguments, homogeneous
of degree zero in p* and ¢¥, nondecreasing in Y, |4K|, |AR|, and p*, nonincreasing in
K, R, and ¢*, concave in p* and ¢*, and convex in K, R, 4K, and AR.

As indicated above, the stochastic closed loop optimal control solution for the
quasi-fixed factors can now be found by replacing M, + (p-)' L, — (¢¥)' K2 in (2.4)
by G(pF, g%, Y., K., R, 4K, AR,, T,) defined in (2.6), and then by minimizing

E, Y [G(pr.qF, Y, K., R, AK , AR, T.) + (pX)Y K. + (p¥V R,

=t

@Ko @B TR~ (= 39R T[4 27
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with respect to the quasi-fixed factors {K,, R, };Z, only. Standard control theory
implies that the stochastic closed loop feedback control solution that minimizes
(2.7), say {K., R}, must satisfy the following set of stochastic Euler equations
(t=tt+1,..)°

- O S~ = GBS (1 )

=P gt {GZGK L r,+1)}, 8
— oS - B )

=pR+ck+ { aiu%t —E, aszé:, /(1 + rm)}, 2.9)

where c® = E[q®(1 + 7,4 1) — (I — 6®¢R, ,7/(0 + r.4 ) can be viewed as a vec-
tor of rental prices. The stochastic Euler equations (2.8) and (2.9) have the
following economic interpretation: The optimizing firm invests in the quasi-
fixed factors K and R until, at the margin (and properly discounted), the
reduction in the variable cost plus the increase in the value of the ‘old’ stocks
K° equals the price (cost) of operating the quasi-fixed factor plus the acquisition
price, plus current-period adjustment costs, minus the expected adjustment cost
that would have occurred if the investment would be undertaken in the next
period (rather than the current one). The firm’s optimization decisions with
respect to L, and K7 are incorporated in the stochastic Euler equations via G,.
[Recall from (2.6) that G, gives the minimal value of the variable cost net of the
value of the ‘old’ stocks for given values of the quasi-fixed factors and exogenous
variables.] The optimal values for L, and K? can be found by differentiating
G, with respect to p and ¢* and then making use of (2.5), i.e., via Shephard’s and
Hotelling’s lemma:’

L.=28G/opF, R!= —03G,[oq¥. (2.10)

The derivatives on the r.h.s. of the above equations need to be evaluated at the
optimal control solution for the quasi-fixed factors.

The formulation of a stochastic closed loop control policy generally requires
knowledge of the entire distribution of the exogenous variables. Alternatively

® Compare, e.g., Stokey, Lucas, and Prescott (1989, Ch. 9) for a more detailed list of assumptions and
a careful exposition of stochastic control theory, as well as for a discussion of the transversality
condition. An explicit solution and a more detailed list of assumptions for the case where G(.) is
linear quadratic will be given in Section 4.

"In case of a profit maximizing model we have furthermore the following condition for the output
vector: 8G,/QY, = p! + [0p!/3Y.]Y..
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one may postulate — as will be the case in the empirical application — that the
firm formulates a certainty equivalence feedback control policy, which only
requires knowledge of the first moment (mean) of the exogenous variables. In
that case the firms objective function is given by (2.4) or (2.7) with the expecta-
tions operator moved next to each of the exogenous variables. The firm would
now devise in each period ¢ an optimal plan for its inputs in periods £, ¢ + 1, ...
such that its objective function in period 7 is optimized, and then choose its inputs
in period t accordingly. In each future period the firm will revise its expectations
and optimal plan for its inputs based on new information. In case of a certainty
equivalence feedback control policy the first-order conditions for the optimal plan
in period ¢ for the quasi-fixed factors would be given by (2.8) and (2.9) with all
exogenous variables replaced by their expected values (conditional on informa-
tion available at time ¢ and the expectations operator in front of the respective
derivatives suppressed). Egs. (2.10) remain the same. If G(.) is linear-quadratic,
then the well-known certainty equivalence principle implies that the stochastic
closed loop and the certainty equivalence feedback control policy are identical.

3. Generalized measures of technological characteristics

The traditional measure of total factor productivity based on the Divisia
index formula assumes, in particular: (1) that producers are in long-run equilib-
rium, (2) that the technology exhibits constant returns to scale, (3) that output
and input markets are perfectly competitive, and (4) that factors are utilized at
a constant rate. If any one of those assumptions are violated, the traditional
measure of total factor productivity will in general yield biased estimates of
technical change. The puzzle of the observed slowdown of productivity growth
during the 1970’ has initiated a critical methodological review of the traditional
measures of productivity.®

The model considered here relaxes all of the above listed assumptions that
correspond to the traditional measure of productivity. In the following we
define, within the context of our model, appropriate measures of technical
change. We also define a measure of capacity utilization. Furthermore we
decompose the traditional measure of productivity into technical change and
sources of potential bias. The measures of technical change and capacity
utilization and the decomposition of the traditional measure of productivity
discussed in this section will be used to evaluate the empirical results presented
in Section 4.

8Cp., e.g, Berndt and Fuss (1981, 1986, 1989), Bernstein and Mohnen (1988), Caves, Christensen, and
Swanson (1980, 1981), Denny, Fuss, and Waverman (1981a), Griliches (1988), Hulten (1986),
Mohnen, Nadiri, and Prucha (1983), Morrison (1985a,b, 1986, 1989), Nadiri and Prucha (1984,
1990a,b), and Nadiri and Schankerman (1981a,b).
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3.1. Primal and dual measures of technical change

In discussing appropriate measures of technical change we first define those
measures, in order to avoid ambiguities, in terms of a transformation function, say,

F(Yu Vx’ K;)a Kta Rt: AKH ARU TI)

= M(Yu Lz’ K?: K., Bz, 4K, AR:; Tr) - Mt =0, (31)

where V, = [M, L]’ denotes the vector of all variable factors. We then show
how those measures can be evaluated from the normalized variable cost func-
tion net of the value of the ‘old’ stocks, G. We note that in the original version of
this paper, Prucha and Nadiri (1990), we also discuss corresponding index
number formulae. The measures defined for the model considered in this paper
generalize corresponding measures discussed in Berndt and Fuss (1981, 1986,
1989), Morrison (1985a,b, 1986), and Nadiri and Prucha (1990b) in that the
model considered here not only allows for the firm to choose its factor inputs but
also its rate of factor utilization optimally. For ease of notation we drop in the
following time subscripts whenever those subscripts are obvious from the
context.

Assume that the technology index T shifts by, say, A. Let « = «(4, Y,
V,.K% K, R, 4K, AR, T') be the proportionality factor by which all outputs
Y can be increased, and let £ = £(4, Y, V, K°, K, R, AK, AR, T') be the propor-
tionality factor by which all inputs and K° can be decreased corresponding to
this shift in technology such that the firm remains on its production
surface, i.e, F(«Y, V,K® K, R, AK, AR, T + 4) =0and F(Y, £V, £K", ¢K, £R,
LAK,6AR, T + A) = 0. Furthermore let ¢ =¢(x, Y, V,K° K, R, AK, AR, T)
be the proportionality factor by which all outputs Y can be increased corre-
sponding to an increase in all inputs and K° by a factor k such that the firm
remains on its production surface, i.e., F(¢Y,xV, kK° kK, kR, kAK, kAR, T)
= 0. We can now give the following two definitions of technical change, 7y and
Ax, and returns to scale, p:

by = 2—;" =T 2—;/ [;(aF/ayi)Y,.], 3.2)
Ix= — ;ij— = g%/( [; (OF/0V,)V; + ; (OF /oK) K,
+ Y @FRR)R, + 3 OF 0K} K}
+ Y QFRAK)AK, + Y, (aF/aAR,)AR,}
P 7
p =% - = Ay/Ax.
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We refer to Ay and Ay as the rates of, respectively, output- and input-based
technical change or productivity growth. The definitions given above coincide
with those given in Caves, Christensen, and Swanson (1981) and Caves,
Christensen, and Diewert (1982a, b) for the case of technologies without explicit
adjustment costs and constant factor utilization rates.

We next show how the above measures can be evaluated from the cost side.
Observe from (3.1) that 0OF/OM = — 1 and 0F/0Z =0M/0Z forZ =Y, L, K, R,
K° AK, AR, T. Hence it follows from (2.5) that OF/@L = —p" and
OF/3K° = g*. Observe furthermore from (2.5) and (2.6) that 0G/0Z = dM/0Z
and hence 0F/0Z = 0G/0Z for Z = Y, K, R, AK, AR, T. Therefore we can write
the above expressions for technical change and returns to scale alternatively in
terms of the normalized variable cost function net of the ‘old’ stocks, G, as

{
iy = —[0GRT ]// [Z (0G/oY,) yi] , (3.3)

i

Ax = - [GG/aT]/ [G - Z(aG/aI_(k)I_(k - Z (@G/@B,)B,

!

— Y (0G/04K, ) 4Ky — Y (6G/6AR1)AR,}
k

!

p=ryfix = [G - Z (0G/OK ) Ky — Z (0G/OR)R, — Z(aG/aAKk)AKk

k i k

-y (aG/aAR,)AR,] / [Z (0G/Y;) Yi].
1 ! i

The above expressions for output-based and input-based technical change and
returns to scale generalize, in particular, those previously given in Nadiri and
Prucha (1984, 1990a, b) for single-output technologies with adjustment costs,
but constant factor depreciation rates.” Due to space constraints we do not
present index number formulae corresponding to (3.3) in this paper; however,
those formulae are given in Prucha and Nadiri (1990).

3.2. Measures of capacity utilization

For ease of notation, we assume in this and the subsequent subsection that
L,K° K, and R are scalars (and that all quasi-fixed factors exhibit positive

? Nadiri and Prucha (1990b) also provide expressions for multiple-output technologies. We note,
furthermore, that the algebra adopted here is analogous to that used by Caves, Christensen, and
Swanson (1981) for multiple-output technologies without explicit adjustment costs and constant
factor utilization rates.
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growth).!® Furthermore, to simplify the discussion we assume that all quasi-
fixed factors only become productive with a lag, ie., ¢x = 0 and ¢g =0 and
K =K_; and R = R_,. We also assume that p* = 0 and p® = 0 and that all
price expectations are static.

For further interpretation of our input-based and output-based technical
change measures observe that the total shadow cost (normalized by the price of
the vanable factor M) is defined as

— (0G/BAK)AK — (0G/OAR) AR, (3.4)

where — 0G/0K, — 0G/OR, — 8G/04K, and — OG/0A4R denote the respective
shadow prices. Furthermore, consider the following measure of total cost
(normalized by the price of the variable factor M):

C" =M+ prL + XK + ¢*R

where ¢* = g%(r + 6%) and c® = ¢®(r + %) denote respective rental prices;
the second equality follows given M, L, and K° are chosen optimally and
observing that ¢*K = (1 + r) ¢*K — ¢¥K°. Now suppose we attempt to measure
technical change in terms of the total cost function C* by A = —(@C*/8T)/C™.
Observing that 8C"'/0T = 0G/dT it follows immediately from (3.3) and
(34) that

Ay =p2x(CT/C),  dx=45(CT/O). (3.6)

Clearly, in long-run equilibrium C* equals C and hence i{ equals ix. In
general, however, A5 differs from Ay and iy. We note that the above formulae
generalize analogous formulae given, e.g., in Morrison (1986) for adjustment
cost technologies in case of a single-output good and exogenously given factor
depreciation rates. Analogously to Berndt, Fuss, Hulten, and Morrison we can
interpret

cU =c/ct 3.7)

as a measure of capacity utilization and we can therefore interpret our input-
and output-based measures for technical change as being derived from Ay via an

'0The results generalize trivially to the case where L, K°, K, and R are vectors.
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adjustment in terms of a capacity utilization measure to account for temporary
equilibrium; ¢p. also Nadiri and Prucha (1990b).

3.3. Sources of bias in the traditional measure of TFP growth

As indicated by the above discussion the traditional measure of total factor
productivity growth, say TFP, is only a proper measure for technical change
under the assumption that returns to scale equal unity, that producers are in
long-run equilibrium, that output and input markets are perfectly competitive
and factors are utilized at a constant rate. In the following we provide—under
the less restrictive assumptions maintained here —a decomposition of the TFP
measure into technical change and sources of potential bias. We provide this
decomposition for the case of a firm that produces a single-output good and
T, =t

Consider the following typical Térnquist approximation for the traditional
measure of total factor productivity growth:

ATFP, = AlnY, — AInN,, (3.8a)

where A1n Y, denotes the growth rate of output and A 1n N, denotes the growth
rate of a cost-share-weighted index of aggregate inputs. The index of aggregate
inputs, N, is defined by

AlnN, = i[4InN' + Aln N~ 1], (3.8b)
AInN? ="()AInM, + s¥(1)4In L, + §¥(1)4In K, + s%(1)41nR,,
()= M/C,  sHr) =prL/C/,

$¥0) = ef KJC, 570 = cfR./CS,

where total cost C* is defined in (3.5) and the §° denote the respective cost shares
(Z =M, L, K, R). In Appendix A we show that AT FP can essentially be decom-
posed as follows:!?

ATFP, = ATFP}! + ATFP}? + ATFP} + ATFP} + ATFP?, (3.9)
where

ATFP! =3[ Ax(t) + Ax(t — 1)],

ATFP? =(1 — 1/p(t)4InY,,

"1 For ease of notation we give in (3.3) the decomposition under the assumption that p(s) = p(t — 1).
Appendix A covers the general case p(t) + p(t — 1).
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ATFP} =3 [[ —3G.OK. ~ (1 + r)g: 1K./C. J[4InK, — AIn N{]
t=t,1—1
+3 [[ —0G/OR, — ¢ 1R,/C; ][4InR, — AIn N{],
T=t,t—1
ATFP} =1 [[ —0G./AK JAK /C1[AIn4AK, — AIn N7]
t=¢,t—1
+3 [[ —0G./0AR,JAR,/C}][AInAR, — Aln N{],
T=t,0— 1

ATFP} =} [ —q¥K/CII[AmK? — AlnK,_].
T=tt—1

The first term in the above decomposition of ATFP corresponds to actual
technical change. The remaining terms decompose the difference between AT FP
and technical change, ie., they reflect sources of potential bias of ATFP as
a measure of technical change. More specifically, the second term reflects scale
effects. We note that under increasing returns to scale and positive output
growth ATFP will overestimate technical change. The third term reflects the
difference in the marginal conditions for the quasi-fixed factors between short-
and long-run equilibrium due to adjustment cost, i.e., the difference between the
shadow price and (long-run) rental price. Suppose the shadow price for a par-
ticular quasi-fixed factor exceeds the long-run price used in the computation of
ATFP. In this case ATFP will, ceteris paribus, overestimate the technical
change effects given the growth rate of the quasi-fixed input exceeds that of the
aggregate input index. The fourth term reflects the direct effect of adjustment
costs in the sense that due to the presence of 4K, and AR, in the transformation
function the growth rates of those terms also enter the decomposition of the
output growth rate. The fifth term stems from the fact that the firm can choose
the depreciation rate for some of its quasi-fixed factors endogenously. Clearly, in
case of a constant depreciation rate K° and K _; will grow at the same rate and
this latter term will be zero.

4. Empirical application

In the following we apply the above described approach to analyze the
production structure, factor demand, productivity growth, capacity utilization,
and the rate of capital depreciation in the U.S. electrical machinery industry. In
Nadiri and Prucha (1990a) we have estimated the production structure and
factor demand for that industry based on capital stock data from the Office of
Business Analysis (OBA). We use this previous study as a benchmark. The
model specified below coincides with that of our previous study, except that we
now estimate the depreciation rate of the capital stock econometrically and
generate the capital stock series internally. While the above described approach



356 LR. Prucha, M.I. Nadiri | Journal of Econometrics 71 (1996) 343-379

allows in general for the depreciation rate to be variable over time, it also
permits a constant depreciation rate as a special case. The question whether the
depreciation rate of the capital stock is constant or variable was the subject of
considerable debate in the literature. The approach considered here can be used
to test the hypothesis of a constant depreciation rate. We note that here even in
case of a constant depreciation rate this rate is estimated econometrically and
the corresponding capital stock series is generated internally.

4.1. Empirical specification and estimation procedure

Following Nadiri and Prucha (1990a) we specialize the model for the empiri-
cal analysis to two variable inputs, two quasi-fixed factors, and one output good.
More specifically, in the following L, and M, denote, respectively, labor input
and material input, and K, and R, denote, respectively, the end of period stocks
of physical capital and R&D, and Y, denotes gross output. The specification
allows for the firm to determine the depreciation rate of capital endogenously,
while the depreciation rate of R&D is fixed. p* now denotes the price of labor,
g¥ and g denote the after-tax acquisition price for capital and R&D normalized
by the price of material goods, respectively, and pX = pf = 0; cp. footnote 5. The
real discount rate is taken to be constant over time at 5 percent.'?

To model the technology we specify (dropping subscripts ¢) the following
functional form for the normalized variable cost function net of the value of the
‘old’ stocks as

G(p~ ¢ , K_,R_,,AK, AR, Y, T) 4.1)
= Y {ag + app + o 7p" T + Joxeke(q%) + opiep™q™ + Jop (p%)?}
+oxK -y + agR_{ + oxg K p* + age K _1g%
+ ag R_ypb + apgeR_ g% + agr K T + agrR_ T
+ Y7 Gogk K2 4 oxgK 1 R_y + J0ggR2 | + 3ogg AK? + Jagg AR}

For reasons of interpretation of the function G(.) we note that in general (as is
not difficult to see) the normalized variable cost function net of the value of the
‘old’ stocks corresponding to a homothetic production function is of the form

6.( ot o~ K.y R, 4K 4R
H(YY H(YY H(Y)Y H(Y)

T)H(Y), (4.2)

'2We have estimated the model with alternative discount rates and found the results to be
insensitive to this assumption. As discussed in more detail in Appendix B, in taking the discount rate
to be constant we are able to reparameterize the model such that we are able to estimate the explicit
solution for the quasi-fixed factors rather than just a set of Euler equations; cp. also Prucha and
Nadiri (1986) on implied trade-offs.



LR. Prucha, M.1. Nadiri [ Journal of Econometrics 71 (1996) 343-379 357

where H(Y) is a function in Y. The scale elasticity is then given by H(Y)/
[Y(dH/dY)]. In case H(Y) = Y/, the technology is homogeneous of degree p.
Consequently the function G(.) defined in (4.1) can be viewed as a second-order
approximation of the normalized variable cost function net of the value of the
‘old’ stocks corresponding to some general homogeneous technology (where
parameter restrictions such that the marginal adjustment costs at AK = AR =0
are zero have been imposed).!® The convexity of G(.) in K, R, 4K, 4R and the
concavity in p* and ¢¥ implies that agg >0, agg >0, agxxdrg — *xkg > 0,
agg >0, 045 >0, 0y, <0, tgoge <0, 0 fogoge — Afge > 0.

We assume that the firm determines its inputs according to a certainty
equivalence feedback control policy and holds static expectations on relative
prices, output, and the technology. Utilizing, e.g., the expressions for the optimal
control solution of a linear quadratic optimal control problem given in Madan
and Prucha (1989), it then follows that we can describe the firm’s optimal
quasi-fixed factor inputs in period t corresponding to the technology defined by
(4.1) by the following accelerator equations:

AK, = mgg(KF — K, () + mgr(RF — R, ), (4.3a)

AR, = mpg(K¥ — K,_ 1) + mgr(R¥ — R,_y), (4.3b)

|:Kz*] o [“KK aKR}_
R¥ dxkr ORR
| %% + agr Ty + agepr + 4r (1 + 1 + ogke) e
ag + ogr Ty + agppr + 68 C

with

In the above equations expectations are characterized with a carat (), and the
accelerator coefficients M = (m;;); j—x g have to satisfy the following matrix
equation: BM? + (4 + rB)M — A = 0 with 4 = («;);, j-x g and where B is the
diagonal matrix with elements axx and azg in the diagonal. The firm’s demand
equations for the variable factors and the firm’s optimal choice for the ‘old’ stock
(to be left over from the beginning-of-period capital stock) can be derived from

'3 We note that G(.) defined in (4.1) is a generalization of the normalized variable cost function
introduced by Denny, Fuss, and Waverman (1981b) and Morrison and Berndt (1981) for constant
returns to scale technologies. Nadiri and Prucha (1984, 1990b) generalized the latter function to
homothetic technologies. In imposing parameter restrictions such that the marginal adjustment
costs are zero for zero net investment we follow that literature.
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(4.1) as M, = G, — prL, + ¢¥*K?, L, = 0G,/opE, and K? = — 0G,/dgk:
M, = {0‘0 - %O‘K"K“(ézx)z - aLK"IarLCizK - %aLL(ﬁIL)Z} )7‘1/,;
+ g K, +agR—y +ogr K, T, + o0gr R -1 T,
+ {Zoxx K71 + agrK,— 1R~ 1 + 30grR7- 1
+ Joxg AK? + 3opg ART /Y 12, (4.4a)
L= {a, + oprT, + tuiedf + ot (PO?} V1% + g Kooy + ari Ro— 1, (44b)
Ky = — {aLK“ﬁtL + “K°K°41K} ?‘1/;7 — okgoKi— g — opgeRy—y. 4.5)
Recall also from (2.2) that
K, =1+ K°. (4.6)

Eq. (4.5) provides an economic model for K} and hence for the depreciation rate
of capital 5; recall that the depreciation rate of capital is implicitly defined by
K{ = (1 — 89K, . Eq.(4.5) explains K? as a function of relativesprices, output,
and lagged stocks. The case of a constant and exogenously given depreciation
rate is contained as a special case with o g = agoxe = ttzgx- = 0, and ogg. =
—(1 =85,

For purposes of estimation it proves advantageous to reparameterize the
model. More specifically, instead of estimating the parameter matrices A and B,
it proves advantageous to estimate the matrices C = (¢;;);, j—x.g = — BM and
B (and to express the elements of 4 as functions of the elements of B and C). This
approach is explained in more detail in Appendix B. The matrix C is found to be
symmetric and negative definite.

For purposes of estimation we also add stochastic disturbance terms to each
of the factor demand equations in (4.3) and (4.4). Those disturbances can be
viewed as random errors of optimization and errors in the data.'* Analogously
to the approach taken by Epstein and Denny (1980) we assume that Eq. (4.5) for
K? holds exactly. This assumption is clearly strong. It facilitates that the
unobservable stocks K, and K; can, at least in principle, be expressed as
functions of observable variables and the unknown model parameters. More
specifically, by solving (4.5) together with the identity (4.6) recursively for K, and
K7 from some given initial capital stock, say K, we can express K, as a function
of I, 1%, ...,Ko, R._1,R,_,, ..., the exogenous variables and the model
parameters. Consequently, upon replacing K, and K,_, in (4.3) and (4.4) by the
obtained expressions we can, at least in principle, rewrite the system of factor
demand equations as a dynamic system of equations that determines I, R, M,,

'4The error in the materials equation may also be viewed as a random shock observed by the firm
but not by the researcher; cp., e.g., Epstein and Yatchew (1985). In the labor equation we also
corrected for first-order autocorrelation of the disturbances.
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and L,, and where in the so obtained system all variables are observable. (If the
initial stock is unobserved, we may treat it as an additional parameter.)

Of course, for the actual numerical computation of estimators of the model
parameters it is generally not necessary to solve (4.5) and (4.6) analytically for
K, (and K7). Numerical algorithms for the computation of estimators that are
defined as optimizers of some statistical objective function generally require
the numerical evaluation of the statistical objective function for different
sets of parameter values. For any given set of parameter values we can solve (4.5)
and (4.6) numerically for K, (and K}). Hence, rather than to substitute the
analytic solution for K, we can, in evaluating the statistical objective func-
tion, first solve (4.5) and (4.6) numerically and then substitute the numerical
solution for K,.

The statistical objective function underlying the parameter estimates reported
in the next section is the Gaussian full information maximum likelihood (FIML)
function. We used the subroutine VA10AD from the Harwell program library to
numerically maximize this function, i.e., to calculate the FIML estimates. We
note that the factor demand system (4.3) and (4.4) in conjunction with (4.5) and
(4.6) may be viewed as a system of equations with implicitly defined variables.'?

4.2. Parameter estimates and elasticities

We have estimated two versions of model (4.3)+4.6) from U.S. electrical
machinery industry data. In one version we have imposed the parameter
restrictions o; g» = Agoxe = grg- = O which implies that K{ = — oxx-K,- ;. Le, in
this case the depreciation rate of capital is constant with 6¥ = 1 — ay.. In the
other version no parameter restrictions are imposed, and the depreciation rate
of capital is permitted to depend on relative prices, output and lagged stocks.
We refer to those versions as models 2 and 3, respectively. We note that for both
models 2 and 3 the depreciation rate is estimated, and the respective capital
stock series are determined consistently with the estimated model parameters
from gross investment data during estimation. To contrast these results we also
report the parameter estimates presented in Nadiri and Prucha (1990a) for
a model with exogenous capital depreciation rate based on the capital stock
series provided in the OBA data bank. We refer to this latter model as model 1.
It corresponds to (4.3}4.6) with a; o = otgexs = ogg- = 0 and with ax .. replaced
by — (1 — 8¥) where 6 is defined by the OBA capital stock series.

The underlying data for the U.S. electrical machinery industry are described
in Appendix C and are the same as those used in Nadiri and Prucha (1990a).
Expectations on (relative) prices were set equal to current (relative) prices.

13 For an estimation algorithm for general systems of equations with implicitly defined variables
that evaluates the gradient of the objective function from analytic expressions see, e.g., Prucha and
Nadiri (1988).
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Expectations on gross output were calculated as follows. We first estimated
a first-order autoregressive model for output, and then used this model to
predict Y, Time was used for the technology index T. In estimating models
2 and 3 we used as the initial capital stock the corresponding value of the OBA
capital stock.

FIML estimates of the structural parameter estimates are given in Table 1.
Asymptotic ‘t’-ratios are given in parentheses. The underlying estimator for the
variance—covariance matrix for the FIML estimator takes into account that
expectations on gross output depend on pre-estimated parameters; for more

Table 1
Full information maximum likelihood estimates of the parameters for the U.S. electrical machinery
industry: 1960-1980

Model I: Model 2: Model 3:
Estimated capital Estimated capital
stock and constant stock and variable

Parameters OBA capital stock depreciation rate depreciation rate

% 183 (6.61) 1.87 (6.40) 1.86 (5.07)
l/p 0.82 (11.32) 0.86 (11.28) 0.84 (10.39)
ax —095 (2.76) —082 (2.09) ~0.73 (1.65)
%x — 065 (2.01) —07 (1.76) ~ 081 (1.84)
Ay ~ 019 (3.58) ~ 020 (4.34) ~017 (3.38)
Agr 0.22 (2.83) 0.27 2.12) 0.23 (2.51)
Crk — 205 (2.66) —1.71 (2.58) — 141 (1.93)
Crr —2.10 (1.03) —245 (1.75) ~227 (1.96)
Cri 0.15 (0.71} 0.15 (0.59) 0.0t (0.07)
O 871 (2.61) 8.01 (3.13) 7.30 (2.79)
Lo 13.83 (1.75) 16.20 (1.56) 15.27 (1.82)
o, 1.91 (22.23) 1.94 (19.07) 1.88 (12.91)
oy, — 048 (3.56) — 044 (3.29) - 052 (2.67)
U 0.29 (2.25) 0.32 (2.78) 0.35 (2.57
%y, —0.52 (3.97) 057 (3.73) ~ 056 (3.40)
% —-0.28 (6.99) —034 (4.36) - 0.32 3.72)
%y ~0.96 (42.14) 0998  (24.66)
Luge ~0.003 (0.09)
0 o 0.028 0.52)
o 0.023 (0.40)
Log of likelihood 222.10 223.62 224.16
M equation: R? 0.85 0.84 0.84
L equation: R? 0.65 0.65 0.65
I¥ equation: R? 091 0.89 0.89
I® equation: R? 0.86 0.86 0.86

Absolute values of the asymptotic ‘t’-ratios are given in parentheses. The R? values correspond to the
squared correlation coefficients between the actual M, L, IX, I® variables and their fitted values
calculated from the reduced form.
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details see Appendix D. The parameter estimates satisfy the theoretical restric-
tions for all models. In particular, the estimates for c¢xg, Crr, %11, and ogex. are
negative and those for agg, 0gr, Cxk CRrR — CkRr, AN 01 Ogoxs — Afge AT€ POSitive.
The squared correlation coefficients between actual and fitted data are quite
high and very similar across models. (Fitted values are calculated from the
reduced form.)

To discriminate between the three models observe that, as pointed out above,
model 2 is a special case of model 3 with parameter restrictions o, xo = ttxoge =
agxe = 0. The corresponding likelihood ratio test statistic is distributed
chi-square with three degrees of freedom. Given the observed value of 1.08 for
the likelihood ratio test statistic and a critical value of 7.81 we accept model
2 over model 3 at the 5 percent significance level. Next observe that if we replace
in (4.3)44.6) ok by agge — (1 — ) (1 — 85), where X is defined by the OBA
capital stock series, we obtain a ‘combined’ model that contains models 1 and
2 as special cases corresponding to 3 =0 and 9 = 1, respectively. (Note, since
oK is observed & is identified.) The FIML estimate for & from the combined
model is 0.85 with an estimated standard error of 0.08, leading us to accept
model 2 over model 1.

It seems of interest to also test the specification of model 2 against some
general alternative. In particular, we may test if the stochastic disturbances in
the respective demand equations are orthogonal to elements of the information
set. More specifically, we use 16 instruments (consisting of lagged endogenous
variables, prices, lagged output, time, as well as quadratic terms of the
exogenous variables); this results, given we have four stochastic equations, in
a total of 64 orthogonality conditions. Following, e.g., White (1987), we define
our test statistic as a quadratic form of corresponding sample moments between
the estimated disturbances, based on our FIML estimates, and the respective
instruments. A more detailed discussion of the test statistic is given in Appendix
D; again the statistic has to take into account that expectations on gross output
depend on pre-estimated parameters. The statistic is asymptotically distributed
chi-square with 64 degrees of freedom. The observed value for our test statistic is
58.16, compared to a critical value of approximately 84. Thus, also this test leads
us to accept model 2, i.e., to accept the hypothesis of a constant depreciation rate
for capital for the U.S. electrical machinery industry.

The parameter estimates per se are difficult to interpret. Consequently we
present in the following estimates for various implied characteristics for the
estimated factor demand systems. For purposes of comparison we not only
report estimates for model 2 but also for models 1 and 3.

The adjustment cost coefficients ax g and oz are in magnitude similar across
models. For models 1, 2, and 3 the implied accelerator coefficients my, and
mgg are, respectively, 0.24 and 0.15, 0.21 and 0.15, and 0.19 and 0.15. The
cross-adjustment coeflicients mgg and mgy are small and (in absolute value) less
than 0.02 for all models. For a further interpretation of the adjustment cost
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coefficients observe that the normalized adjustment cost for capital and R&D in
any period is given by 0.5axxAK?*/Y'? and 0.5a34AR?/Y ' respectively. For
model 2 the sample average of the ratio of adjustment costs to gross investment
is 0.14 and 0.15 for capital and R&D, respectively. The estimates for models
1 and 3 are similar.

Our specification does not impose a priori constant returns to scale. Rather,
we estimate the scale elasticity p from the data. The implied scale estimates are
similar, 1.e., 1.22, 1.16, and 1.19 for models 1, 2, and 3.

The own- and cross-price elasticities and output elasticities of labor, mater-
ials, capital, R&D, the capital left over at the end of the period, and gross capital
investment for 1976 are reported in Table 2. They are calculated for the short
run (SR), intermediate run (IR), and long run (LR).!® We note that the elasticities
are stable over time. Estimated standard errors for respective long-run elastici-
ties are given in parentheses.

All of the own-price elasticities are negative. The magnitudes of the own- and
cross-price elasticities are generally similar across models. However, the results
also point to some important differences that may arise in case the capital
depreciation rate is endogenously determined: One interesting difference can be
observed in comparing the long-run elasticities of labor with respect to the price
of capital, ¢, .5, and the long-run elasticity of capital with respect to the price
of labor, g, For models 1 and 2 both ¢, « and &g, are negative, which reflects
the fact that in the long run 0L/d¢* = (r + 6%) 8K/dp". (Recall that g* denotes
the after-tax acquisition price and not the rental price.) However, for model 3 the
elasticity g« is positive while eg,. is negative. At first glance this may seem
inadmissible. However, as is demonstrated in Appendix D of the original version
of this paper (Prucha and Nadiri, 1990), if we allow for the depreciation rate of
capital to be endogenously determined as in model 3 we have the following long-
run relationship: 0L/0g" = (1 + r) 8K/op* — dK°/op™. Therefore, in the case of
an endogenous depreciation rate the sign of 8L/0¢* may differ from that of
OK/dp". The sign of 8L/¢X depends on the relative magnitudes of 9K/0p™ and
OK°/dp", as opposed to the case of an exogenous depreciation rate where
OK°/op" = (1 — 6%) 8K /op* and hence 0L/3gX = (r + 0X) 0K /dp*. Another inter-
esting difference can be observed in comparing the long-run elasticities of gross
capital investment with respect to the price of labor. For model 2 this elasticity is
negative, while for model 3 it is positive. Again this can be explained from the
fact that in the case of an exogenous depreciation rate we have dI%/0p* =
o*0K/0p", while in case of an endogenous depreciation rate we have more
generally 31%/0p" = 0K /dp* — 0K°/opt. As a consequence OI%/0p* can be posi-
tive while both dK/dp" and dK°/dp" are negative. The switch in the long-run

'SFor Z=M,L,K, R, K° IX I¥ let Z, . denote the optimal plan value for Z in period ¢ + t
corresponding to the firm’s optimization problem in period t. Short-run, intermediate-run, and long-
run elasticities then refer to the elasticities of Z, , for t =0, 1, and oo, respectively.
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elasticity of gross capital investment with respect to the price of materials from
positive for model 2 to negative for model 3 can be explained analogously.

The pattern of the output elasticities reveals that the variable factors of
production, labor, and materials respond strongly in the short run to changes in
output; in the short run they overshoot their long run equilibrium values. The
output elasticities of the quasi-fixed factors, capital and R&D, are small in the
short run but increase over time. In general the respective output elasticities are
similar across models.

4.3. Capital stock and capital depreciation rate

The modeling approach discussed in this paper generates estimates for the
capital stock and depreciation rate as a by-product of the estimation process. In
Table 3 we report those estimates for model 2. As discussed, the test results
reported above imply that for the U.S. machinery industry we accept model 2,
ie, we accept the hypothesis of a constant depreciation rate. Still, as an
illustration we also report estimates corresponding to model 3, where the
depreciation rate is allowed to vary over time, and for reasons of comparison
we also report the OBA capital stock and depreciation rate series that underlie
the estimates of model 1. For model 2 the estimated depreciation rate is 0.038
with an estimated standard error of 0.023. For model 3 the estimated depre-
ciation rate is on average again 0.038 as compared to 0.055 for the OBA
capital stock series. This translates into a difference of 16 percent in magnitude
between the former and latter capital stock series at the end of the sample
period. Still, all of the respective correlation coefficients between the respective
capital stock series exceed 0.99. We note that the pattern of depreciation rates
calculated from model 3 shows declines in 1974 and 1975 as well as in 1980,
reflecting periods of slow growth and recession in the U.S. electrical machinery
industry.

It seems of interest to discuss the magnitude of the estimated depreciation rate
as 1t relates to the shape of the efficiency function and to the average survival
time of capital in more detail. Let K, =) 2, ¢:I5 ; where ¢; > 0 denotes the
efficiency function. Assume that the ¢, are nonincreasing, ¢, = 1, ¢; > 0 for
i=0,..,mand ¢; = 0for i > m, where m is the maximal survival time (which
may possibly be infinite). Given K,=IX + (1 —35K,_, it follows that
6f =[Teoldi — div ) I WY o il i~ 1]. The average survival time is
given by 7. (¢; — ¢;+1)i. Clearly if gross investment grows at a constant rate,
ie, If =(1 + p;)'I§, and the efficiency function does not depend on ¢, the
depreciation rate is constant over time and given by 6f = [ Y7 o(¢i — $is1)
x(1+ p) /LY~ ¢:(1 + py)~]. That is, the depreciation rate is only a
function of ¢y, ..., ¢, and the growth rate of gross investment (and hence
constant) regardless of the shape of the efficiency function. We consider two
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Table 3
Comparison of OBA and estimated capital stock data in the U.S. electrical machinery industry:
1960-1980

Model 1: Model 2: Model 3:
Estimated capital stock Estimated capital stock
and constant and variable
OBA capital stock depreciation rate depreciation rate

Year K K° ok K K° ax K K° oK
1959 0.536 0489 0.055 0.544 0497 0.038 0.550 0502 0.028
1960 0.561 0506 0.055 0.576  0.523  0.038 0.588 0533  0.030
1961 0.587 0.530 0.055 0613  0.556 0.038 0.626 0569 0.033
1962 0612 0555 0.055 0647 0590 0.038 0.661  0.604 0035
1963 0.639 0578  0.055 0.683  0.622 0.038 0.698  0.637 0.036
1964 0.669 0.604 0.055 0722 0.657 0.038 0.737 0672 0.038
1965 0720 0632 0035 0.782 0.694 0.038 0.796 0708  0.040
1966 0.796  0.681 0.054 0.867 0752 0.038 0.877 0763  0.039
1967 0876 0754 0.052 0955 0833 0.038 0.963 0.841 0.040
1968 0.943 0831 0.051 1.030 0918 0.038 1.036 0924 0.041
1969 1.016  0.896 0.050 L1100 0991 0.038 1.114 0994 0.041
1970 1.069 0965 0.050 1.172 1.068 0.038 1.174 1070 0.039
1971 1.108 1015 0.051 12200 1127 0.038 1221 1.128  0.040
1972 1.143  1.050 0.052 1266 1173  0.038 1263  1.170  0.041
1973 1.208  1.081 0.054 1.344 1217 0.038 1.335  1.209 0.043
1974 1.281 1142 0.055 1432 1292 0038 1422 1283 0040
1975 1305 1211 0055 1471 1377 0.038 1465 1371  0.036
1976 1337 1230 0.057 1.521 1415  0.038 1.516  1.409 0038
1977 1.389  1.258  0.059 1.593 1463  0.038 1.587 1457 0.039
1978 1.460 1.306  0.060 1.687 1532 0.038 1.681 1526  0.039
1979 1.549 1372 0.060 1799 1622 0.038 1.794 1617 0.038
1980 1.678 1456  0.061 1952 1730 0.038 1952 1729 0.036

K, K°, and 0¥ denote, respectively, the end-of-period capital stock, the capital stock left over
at the end of the period from the beginning-of-period capital stock, and the depreciation rate of
capital.

‘limiting’ cases. In case of a one-hoss shay efficiency function, ie, ¢, =1 for
i=1,..,m, the depreciation rate equals 6; = 1/[ Y ,(1 + p;)'], and the
average survival time equals the maximal survival time m. In case of a geomet-
rically declining efficiency function, i.e., ¢; = (1 — &), the depreciation rate is
constant regardless of the pattern of investment and given by df = 4, and the
average survival time equals (1 — 9)/0. The average growth rate of gross invest-
ment in our sample is 9 percent. Corresponding to this growth rate and our
estimate of a depreciation rate of 0.038, the implied average survival times for
the two ‘limiting’ cases are approximately 13 and 25 years, respectively.
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The assumption of a constant depreciation rate has a long history and has
been the subject of considerable debate.'” (As remarked above, both a geomet-
rically declining efficiency function and a constant growth rate of gross invest-
ment imply a constant depreciation rate.) While for the U.S. electrical machinery
industry we accept the hypothesis of a constant depreciation rate, the model
considered in this paper allows in general for quasi-fixed factors with a variable
depreciation rate. Replacement investment is defined as the difference between
the initial stocks and what is left over from those stocks at the end of the period,
ie, IR =K, , — K?. Net investment is defined as the difference between
gross investment and replacement investment, ie, IXf=1X —I¥® or
I¥® = K, — K, . In the case of a variable depreciation rate both K, and K? are
endogenously determined by the firm; hence also IX® and I** are endogenously
determined. That is, as a by-product, our specification then also yields a struc-
tural model for the endogenous determination of replacement investment versus
expansion investment. We repeat that at the estimation stage only gross invest-
ment enters as an observed variable. Stocks are generated internally and hence
are generated consistently with replacement investment. As pointed out by
Jorgenson (1974) some of the previous studies on replacement investment were
not fully consistent in that they employed capital stock data that have been
generated under a different set of assumptions than those maintained in those
studies. Our approach is not subject to the same criticism and hence allows for
a proper test of the constancy of depreciation rates.

In Table 4 we present the ratio of net investment to gross investment for the
period 1960 to 1980. The ratios implied by model 2 and 3 are much higher than
the ratio implied by the OBA capital stock series. This implies (consistent with
our previous remarks) a much higher rate of capital accumulation as compared
to the OBA capital stock series. We note that the patterns of the net to gross
investment ratio over time seem quite similar across the models and the ratio
generally drops in years of slow output growth. The correlation coefficients
between the ratios corresponding to model 1 and models 2 and 3 are, respective-
ly,0.97 and 0.84. The correlation coefficient between the ratios corresponding to
model 2 and model 3 is 0.94.

4.4. Technical change and capacity utilization

Given our estimate of the normalized variable cost function net of the ‘old
stocks’, G, defined in (4.1) we can use the expressions in (3.3) to compute

7 The assumption of a constant depreciation rate has been challenged, among others, by Feldstein
and Foot (1971), Eisner (1972), Eisner and Nadiri (1968, 1970), Feldstein (1974), Feldstein and
Rothschild (1974), and Bitros and Kelejian (1974); and was forcefully defended by Jorgenson (1974).
Recently the validity of the geometric depreciation assumption has been tested in several papers by
Hulten and Wykoff (1980, 1981a, b, c) based on a sample of used asset transaction prices.
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Table 4
Ratio of net investment to gross investment in the U.S. electrical machinery industry: 1960--1980

Model |: Model 2: Model 3:
Estimated capital stock Estimated capital stock
and constant and variable
Year OBA capital stock depreciation rate depreciation rate
1960 0.46 (0.00) 0.62 (0.22) 0.69 (0.24)
1961 0.45 (0.00) 0.61 (0.23) 0.66 (0.22)
1962 0.43 (0.00) 0.59 (0.24) 0.62 (0.22)
1963 0.45 (0.00) 0.59 (0.24) 0.60 (0.22)
1964 0.46 (0.00) 0.60 (0.24) 0.59 (0.19)
1965 0.58 (0.00) 0.68 (0.19) 0.67 (0.14)
1966 0.66 (0.00) 0.74 (0.16) 0.72 (0.12)
1967 0.66 (0.00) 0.73 (0.16) 0.70 (0.13)
1968 0.60 (0.00) 0.67 (0.19) 0.65 (0.17)
1969 0.60 (0.00) 0.67 (0.20) 0.65 (0.17)
1970 0.51 (0.00) 0.59 (0.24) 0.57 (0.19)
1971 0.41 (0.00) 0.51 (0.29) 0.48 (0.22)
1972 0.38 (0.00) 0.50 (0.30) 0.47 (0.22)
1973 0.51 (0.00) 0.62 (0.23) 0.58 (0.17)
1974 0.53 (0.00) 0.63 (0.22) 0.61 (0.16)
1975 0.25 (0.00) 0.41 (0.35) 0.41 (0.25)
1976 0.30 (0.00) 0.47 (0.31) 0.49 (0.23)
1977 0.40 (0.00) 0.55 (0.26) 0.56 (0.20)
1978 0.46 (0.00) 0.60 (0.23) 0.61 (0.18)
1979 0.50 (0.00) 0.63 (0.22) 0.65 (0.17)
1980 0.58 (0.00) 0.69 (0.18) 0.70 (0.15)

The numbers in parentheses represent estimated standard errors.

estimates for technical change. As reported in Table 5 our estimates of pure
(input based) technical change from model 2 is 0.69. For reasons of comparison
and illustration we also report estimates for technical change based on models
1 and 3. Those estimates are, respectively, 0.60 and 0.66. As discussed in Section
3.3, the traditional measure of total factor productivity only equals technical
change if, in particular, producers are in long-run equilibrium, the technology
exhibits constant returns to scale, input and output markets are perfectly
competitive, and factors are utilized at a constant rate. In Table 5 we also report
estimates of the traditional measure of total factor productivity. Those estimates
are approximately three times larger than our estimates of pure technical
change. Based on the decomposition formula (3.9) given in Section 3.3 and based
on the estimates of the respective models we also provide a decomposition of the
sources for this difference. The main source of the difference is the scale effect
which represents about 40 percent of the growth in the traditional total factor
productivity measure. The remainder of the difference is mainly due to the
presence of adjustment costs. The measures of total factor productivity differ
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Table 5
Decomposition of total factor productivity growth in the U.S. electrical machinery industry in
percentages: 1960-1980

Model 1: Model 2: Model 3:
Estimated capital Estimated capital
stock and constant  stock and variable

OBA capital stock  depreciation rate depreciation rate
Technical change 0.60 0.69 0.66
Scale effect 1.04 0.83 0.93
Adjustment cost effects
Temporary equilibrium 0.33 0.42 0.39
effect
Direct adjustment cost 0.03 0.02 0.02
effect
Variable depreciation effect 0.00 0.00 0.02
Unexplained residual 0.04 0.03 —0.03
Total factor productivity 204 1.99 1.99

across the models since they are based on different capital stock series. Compar-
ing the decomposition between models 2 and 3 shows that allowing for the
depreciation rate to vary increases the scale effect, lowers the adjustment cost
effect and decreases the estimate for pure technical change. For the data set
under consideration the variable depreciation rate effect is small.

We note that for all models estimated pure technical change exhibits a very
smooth pattern and increases over time. In particular, for model 2 the estimate
of pure technical change is 0.60 in 1960 and 0.94 in 1980 with a low of 0.51 in
1964.

In Table 6 we report estimates of capacity utilization based on the cost ratio
C/C" defined in Eq. (3.7) given in Section 3.2. Those estimates are similar across
models. For all models capacity utilization drops approximately 10 percent in
1975, reflecting a 14 percent decline in gross output in the U.S. electrical
machinery industry in that year. Comparing the capacity utilization estimates
corresponding to models 2 and 3 we see that the estimates corresponding to the
latter are generally somewhat smaller. The correlation coefficients between the
respective capacity utilization series all exceed 0.99.

5. Conclusion

In this paper we have specified a general dynamic factor demand model where
the firm can choose the depreciation rate of some (or all) of the quasi-fixed
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Table 6
Capacity utilization in the U.S. electrical machinery industry: 1960-1980

Model 1: Model 2: Model 3:
Estimated capital stock Estimated capital stock
and constant and variable
Year OBA capital stock depreciation rate depreciation rate
1960 1.072 (0.041) 1.089 (0.047) 1.093 (0.057)
1961 1.091 (0.035) 1.107 (0.045) 1.107 (0.056)
1962 1.099 (0.032) 1.109 (0.038) 1.107 (0.052)
1963 1.111 (0.029) 1.122 (0.038) 1.118 (0.053)
1964 1.119 (0.028) 1.130 (0.039) 1.125 (0.055)
1965 1.118 (0.028) 1.125 (0.031) 1.121 (0.050)
1966 1.115 (0.030) 1.119 (0.030) 1.116 (0.048)
1967 1.119 (0.029) 1.126 (0.032) 1.121 (0.052)
1968 1.115 (0.029) 1.124 (0.039) 1.118 (0.057)
1969 1.113 (0.030) 1.123 (0.044) 1.117 (0.062)
1970 1.098 (0.037) 1.112 (0.068) 1.104 (0.084)
1971 1.071 (0.047) 1.086 (0.091) 1.078 (0.105)
1972 1.093 (0.041) 1.107 (0.072) 1.099 (0.089)
1973 1.111 (0.038) 1.122 (0.053) 1.114 (0.075)
1974 1.099 (0.046) 1.112 (0.071) 1.104 (0.093)
1975 0.995 (0.076) 1.010 (0.148) 1.009 (0.160)
1976 1.059 (0.056) 1.074 (0.107) 1.068 (0.125)
1977 1.102 (0.047) 1.116 (0.070) 1.107 (0.094)
1978 1.113 (0.047) 1.126 (0.061) 1.117 (0.087)
1979 1.125 (0.050) 1.137 (0.057) 1.127 (0.083)
1980 1.128 (0.054) 1.142 (0.063) 1.132 (0.091)

The numbers in parentheses represent estimated standard errors.

factors optimally. The case of an exogenously given constant depreciation rate is
contained as a special case, thus permitting a formal test of the hypothesis of
a constant depreciation rate. The model allows for multiple outputs, variable
inputs, and for the quasi-fixed factors to become productive immediately or with
a lag. Based on the model we discuss primal and dual measures of technical
change. Those measures extend various measures previously considered in the
literature. We also deduce a measure of capacity utilization and explore the
sources of bias for the traditional measure of total factor productivity growth.

As an illustration we apply the model to data from the U.S. electrical
machinery industry. We have estimated two versions of the model. The more
general version of the model permits the depreciation rate of capital to be
determined as a function of output and relative prices. For the other versions of
the model we have imposed parameter restrictions such that the depreciation
rate of capital is constant. We note that for both versions of the model the
depreciation rate is estimated and the respective capital stocks are generated
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internally during estimation in a theoretically consistent fashion from the gross
investment series. For purposes of comparison we also report the estimates
obtained in Nadiri and Prucha (1990a) from a model with exogenous deprecia-
tion rate that utilizes the capital stock series published by OBA. We refer to
those models as, respectively, model 3, 2, and 1.

Based on our tests we accept model 2 corresponding to a constant deprecia-
tion rate of capital for the U.S. electrical machinery industry. However, for
purposes of illustration and comparison we not only report price and output
elasticities, estimates of technical change, etc., for model 2 but also for models
1 and 3. On the whole the price and output elasticities are similar across models.
However, some interesting differences can be observed. In particular, as ex-
plained in more detail in the text, when the depreciation rate is permitted to be
endogenously determined the sign of the long-run cross-price elasticities of the
variable factors and capital need not be the same. In fact, we find the estimated
long-run cross-price elasticities of capital and labor to be of opposite sign.
Related to this phenomenon we also observe that the long-run elasticity of gross
investment with respect to the prices of labor and materials changes between
models 2 and 3 from — 0.24 to 0.83 and 0.44 to — 0.52, respectively.

For both models 2 and 3 the depreciation rate is estimated on average to be
0.038 as compared to 0.055 for the OBA capital stock series. This translates into
a sizable difference of 16 percent in the level of the capital stock at the end of the
sample period. Also the ratio of net to gross investment implied by models 2 and
3 is much higher than the ratio implied by the OBA data. All these ratios show
sensitivity to the growth in output.

Our estimate of pure technical change is approximately 0.6, which is approxi-
mately one third of the estimate implied by the traditional measure of total
factor productivity growth. Le., the traditional measure of total factor produc-
tivity growth significantly overestimates the rate of technical change.

Although the model considered here is quite general, several extensions of the
theoretical model seem of interest. In particular, variations in the rate of
utilization of an input can be achieved by varying the numbers of hours the
input is employed and/or by changing the intensity or speed with which the
input is used in the production process. An increase in the intensity or speed
with which capital is operated will typically result in an increase in the rate of
depreciation of capital. An increase in the length of time capital is employed will
typically result in increased costs due to shift and overtime premiums and an
increase in the rate of depreciation of capital. It seems of interest to incorporate
both cost aspects into the model.

At the empirical stage it may be interesting to include more quasi-fixed factors
by distinguishing between production and nonproduction workers and by
differentiating between different types of capital. Also it seems desirable to
endogenize the depreciation rate of R&D. Another extension would be to allow
for more general patterns of expectations. Furthermore, the model can be
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reformulated in a profit-maximizing setting to explore the existence of markups
in different industries.

Appendix A: Decomposition of the traditional measure of TFP growth

In the following we give a proof for the decomposition of the Toérnquist
approximation of the traditional measure of total factor productivity growth,
ATFP, presented in Section 3.3. We consider the case of a single-output good
and maintain that all assumptions stated in the text hold. We shall utilize the
following lemma,; for a proof see Prucha and Nadiri {(1990).

Lemma A.1. Letu=w — © where w = ¢ (oci/oc)r}i + Aand =37 (B/P)i
withoe =Y """ g and f=3T . Then
m m+k
u=(1—1/ew+ Y [l — )/l —d)+ Y, (/)0 — ) + (1/e) A
i=1 i=m+1

We shall utilize furthermore the following relationships Y /0M = p™/[0G/0Y],
dY /oL = p/[0G/oY], dY/RK® = — ¢¥/[0G/oY ], OY/DZ = — [0G/OZ]/[0G/aY ]
for Z = K, R, AK, AR. These relationships are obtained by respective differenti-
ation of (3.1), which yields 8Y/0M = 1/[0M/0Y ] and 8Y/0Z = — [OM/0Z]/
[0OM/3Y ] for Z = L,K° K, R, AK, AR, and by utilizing the results concerning
the derivatives of M given before (3.3). (Recall that p™ = 1))

Now consider the following decomposition of output growth based on
a translog expansion of the production function:

AlnY, =4AInY!+ AlnY!™ 1], (A.1)
AInY [ =¢yp(t)AInM, + ey (t)AIn L, + &yxo(1)AIn K7 + eyg(t)4In K,
+ EYR('E)A In Rt + ((JYAK(T)A In AKZ + 8YAR('C)A In AR[ + /ty(f),

with 1 =t, t — 1, and where the &y,(r) = [0Y./0Z.] [Z,/Y.] with Z =M, L,
K° K, R, 4K, AR denote output elasticities, and output-based technical change
Ay is defined by (3.2). (For notational convenience we do not underhne the
subscripts K and R in denoting the output elasticity with respect to K and R.) In
light of (3.3) and (3.4) the scale elasticity is given by p(1) = C,/[(0G./0Y,) Y],
where C denotes total shadow cost. Using the derivative relationships developed
after Lemma A.1 it follows that

eym(®) = p(O [P M/C.),  ey(t) = p(0) [pe L/C.], (A.2)
eyie(D) = p(0)[ = qEKI/C.L, ev2(t) = p(O) [( — 8G.OZ)Z.1/C.,
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with Z = K, R, 4K, 4R. Observe that ATFP,=AlnY, — AlnN,=3) ._, .,
[AInY [ — Aln N{]. A general decomposition of the Térnquist approximation
of the traditional measure of total factor productivity growth is now readily
obtained by applying Lemma A.1to AlnY [ — Aln N forz =¢t, t — 1, utilizing
(A.1) and (A.2) to express Aln Y|, using the definition of AIn N{ in (3.8), and
observing that ¢®*K = (1 + r)¢®*K — ¢*K°. The decomposition given in (3.9)
follows under the additional assumption that p(t) = p(t — 1).

Appendix B: Estimated system of factor demand equations

As noted in the text, the accelerator coefficients have to satisfy the following
matrix equation: BM? + (4 + rB)M — A = 0. In general this equation cannot
be solved for M in terms of 4 and B. The equation can, however, be solved for
Aintermsof M and B: A = BM(M + rI)(I — M)~ *. Since the real discount rate
r was assumed to be constant, the matrix M is constant over the sample. Hence,
instead of estimating the elements of 4 and B, we may estimate those of M and
B. To impose the symmetry of C we can also estimate B and C instead of B and
M. Let D=(d;); jox. k= —MA™"' and observe that A =C —(1 +r)x
[B—B(C+ B)"'B] and that D=B~' +(1 +r) (C —rB)~! is symmetric.'®
Analogously as in Nadiri and Prucha (1990b) it is then readily seen that we can
write (4.3} equivalently as

AK, = dgg[ax + axr T + ogept + G101+ r + aex)1 ¥ 17
+ dgrloag + agr To + agepr + 81V 17
+ Lexw/oxkr JK -y + [exr/arg IR -1,

AR, = dgg[ox + oaxr To + agp bt + 4F(1 + 1 + i) ]V 17
+ drrlor + ary Ty + arepr + ER1Y )7

+ [cxr/org 1K~ 1 + [crr/ozr] R -1,
where

dig = Vogg + (1 + r)[crr — raze]/e,
drr = Vogg + (1 + 1) [cgx — rogg /e,

dgr = — (1 + 1r)ckr/e,
and

e = (cxx — rogg)(Crr — Fogg) — C12<R-

'8 The reparametrization approach was first suggested by Epstein and Yatchew (1985) for a some-
what different model with a similar algebra. It was further generalized by Madan and Prucha (1989);
for further application see, ¢.g., Mohnen, Nadiri and Prucha (1986) and Nadiri and Prucha (1990b).
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Furthermore, we can express agx, %gg, dxg 10 (4.4) as
axk = cxx — (1 + ) Lok — (4xx)* (@rr + crr)/f ],
arr = Crr — (1 + ) [oaar — (2re)* (txx + cxx)/f 1,
agr = ckr — (1 + r)(agg %xrCxr)/ [,

and
[=(ogk + cxx)(org + Crr) — CEr-

Once the model has been estimated in the reparameterized form we can ob-
tain estimates for the original model parameters via A =C — (1 +r)x
[B— B(C + B) 'B].

Appendix C: Data sources and construction of variables

Gross Qutput: Data on gross output in current and constant 1972 dollars
were obtained from the U.S. Department of Commerce, Office of Business
Analysis (OBA) database and correspond to the gross output series of the U.S.
Department of Commerce, Bureau of Industrial Economics.

Labor: Total hours worked were derived as the sum of hours worked by
production workers and nonproduction workers. Hours worked by production
workers were obtained directly from the OBA database. Hours worked by
nonproduction workers were calculated as the number of nonproduction
workers * hours worked per week * 52. The number of nonproduction workers
was obtained from the OBA database. Weekly hours worked of nonproduction
workers were taken to be 39.7. A series of total compensation in current dollars
was calculated by multiplying the total payroll series from the OBA database
with the ratio of compensation of employees to wages and salaries from U.S.
Department of Commerce, Bureau of Economic Analysis (1981, 1984).

Materials: Materials in current dollars were obtained from the OBA
database. Materials in constant 1972 dollars were calculated using deflators
provided by the U.S. Department of Commerce, Bureau of Economic Analysis.

Value Added: Value added in current and constant 1972 dollars was cal-
culated by subtracting materials from gross output.

Capital: The net capital stock series in 1972 dollars (utilized only in the
estimation of model 1) and the current and constant 1972 dollar gross invest-
ment series were taken from the OBA database. The method by which the OBA
capital stock series is constructed is described in the U.S. Department of Labor,
Bureau of Labor Statistics (1979). The user cost of capital was constructed as
c® = g%(r + 8%) with ¢* = p"®/(1 — u), where p'¥ is the investment deflator, u is
the corporate tax rate taken from Pechman (1983), and r = 0.05.



LR. Prucha, M.I. Nadiri | Journal of Econometrics 71 (1996) 343—-379 375

R&D: The stock of total R&D is constructed by the perpetual inventory
method with a depreciation rate 6® = 0.1. The 1958 benchmark was obtained by
dividing total R&D expenditures by 6% plus the growth rate of real value added.
The nominal R&D expenditures are taken from National Science Foundation
(1984) and earlier issues. To avoid double counting we subtracted the labor and
material components of R&D from the labor and material inputs. The GDP
deflator for total manufacturing is used as the deflator for R&D expenditures,

R All R&D expenditures were taken to be immediately expensible. The user
cost for R&D was hence constructed as ¢® = p'%(r + 5%).

All constant dollar variables were normalized by respective sample means.
Prices were constructed conformably from current and constant dollar vari-
ables. Furthermore all prices were normalized by the price of materials.

Appendix D: Variance-covariance matrix estimator and specification test
statistic

Suppose the probability law of some random vector depends on the para-
meter vectors 6 and 7, and let [,(6, y) denote the corresponding (conditional)
log-likelihood function in perlod t and let s,(6,y) = —0L(0, y)/06. Suppose
further that we observe another random vector whose probability law only
depends on y, and let 7,(y) denote the corresponding log-likelihood function in
period ¢ and let h,(y) = — 8l,(y)/dy. Next suppose that § and y are estimated in
two stages from samples of size n. In the first stage y is estimated by the
maximum likelihood estimator, say §,, corresponding to the latter log-likelihood
function, /.. In the second stage 6 is estimated by the maximum likelihood
estimator, say 9,, corresponding to the former log-likelihood function, {,, where
v 1s replaced by the first-stage estimator ;‘),, More specifically, Pn and 0, satisfy the
following first-order conditions: ¥ ;_, h(3,) = 0 and Y /_ s(0,, §,) = 0. Under
assumptions as, e¢.g., in White (1987) 1t is then not dlfﬁcult to show that
n'%(0, — ) > N(0, &), where ®; can be estimated consistently by

@9=§7n1 [sln_San;lv - VshH 1Szn_+_S2n n]Sln ’
with
-1 z 35.(0,, 9,)/00, RLUGAALY
H,=n""Y oh(,)/0y, Vao=Vie=n""Y 50, Fu)hilFa)
t=1 =1

In the context of Section 4 the estimator 8, denotes the FIML estimator for the
parameters of the factor demand equations (4.3)-(4.6), and $, denotes the vector
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of FIML (OLS) estimators for the vector of parameters of the autoregressive
process from which the expectations on output are calculated.

Next consider moment conditions of the form Em, (0, y) = 0 where m, is of
dimension p x 1. Given those moment conditions hold we expect the sample
averages W, =n ' Z:’zlm,(g,,, 7.} to be close to zero. Following, e.g., White
(1987) it is not difficult to show that under a set of assumptions as, e.g.,
maintained in that paper the test statistic M,, = nm, ¥, '#, is distributed
asymptotically chi-square with p degrees of freedom, with ¥, given by

where

Ml ! Z amt ns /n/a() MZn :n_l Z amr(gnﬂ;?n /a}"’

1= t=1

h n
Ty (O 5)mi D 50). Vo= Vi =071 3 mulB,, 3)hi(G),
= t=1

and the other terms are defined above.

In the context of Section 4 the moment conditions Em(f), y) = 0 represent
orthogonality conditions between the stochastic disturbances and respective
instruments. In evaluating the above expressions we computed all first-order
derivatives (from the log-likelihood functions) analytically. All second-order
derivatives were calculated by differentiating the analytic first-order derivatives
numerically.
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