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MAXIMUM LIKELIHOOD AND INSTRUMENTAL VARIABLE
ESTIMATION IN SIMULTANEOUS EQUATION
SYSTEMS WITH ERROR COMPONENTS*

By INGMAR R. PrucHA!

1. INTRODUCTION

Error component models have been widely considered in the econometric
literature. Most of these studies have focused on single equation models.?
Exceptions are the studies of Avery [1977], Baltagi [1980], Magnus [1982] and
Prucha [1984] who considered a seemingly unrelated regression (SUR) model with
error components. Recently Baltagi [1981] extended the literature to the case
of a simultaneous equation model with error components. He introduced,
respectively, a specific generalization of the two stage least squares (2SLS) and
three stage least squares (3SLS) estimators in the error component context, and
derived the asymptotic distribution of those estimators.®* To the best of my
knowledge, Baltagi’s estimators are the only estimators for the simultaneous
equation model with error components. He did not consider classes of
asymptotically equivalent estimators, nor questions of asymptotic efficiency.

In this paper we derive, assuming normality, the full information maximum
likelihood (NFIML) estimator for the regression parameters and the error
covariances of a linear simultaneous equation model with error components.
This generalizes Amemiya’s [1971] result for the single equation case, and makes
it possible to discuss questions of asymptotic efficiency. We show that the
NFIML estimator has an instrumental variable (IV) representation which
generalizes a similar result of Hausman [1974, 1975] for the standard simultaneous
equation model. The IV form of the normal equations of the NFIML estimator
is used to generate a wide class of IV estimators. These estimators are typically
computationally simpler and can, by construction, be viewed as numerical approx-
imation to the NFIML estimator. We, henceforth, refer to these estimators as
NFIML, estimators. This approach is similar to that of Hendry [1976] for the

* Manuscript received April, 1983; revised May, 1984.

1 An earlier version of this paper was presented at the European Econometric Society Meetings
in Pisa, 1983. I would like to thank Roger Betancourt, Manfred Deistler, Harry Kelejian,
Benedikt Poetscher, and this journal’s editor, Robert A. Pollak, and referees for helpful com-
ments and suggestions. I assume responsibility, however, for any errors.

2 See e.g. Balestra and Nerlove [1966], Wallace and Hussain [1969], Amemiya [1971], Maddala
[1971], Nerlove [1971a, b], Swamy and Arora [1972], Fuller and Battese [1974], Mundlak [1978]
and Anderson and Hsiao [1981, 1982].

3 Baltagi’s generalization of the 2SLS estimator was originally suggested by Maddala [1971].
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standard simultaneous equation model.*

All NFIML, estimators have the same basic structure and differ only in the
choice of the estimators of the reduced form parameters and the covariance
components used in the construction of the instrument matrix. Based on easy to
determine characteristics of the latter estimators we identify, respectively, a wide
subclass of limited and full information estimators. We prove, for general
disturbance distributions, the asymptotic equivalence of all members within each
subclass; we also demonstrate their consistency and derive their asymptotic
distribution. All members of the full information subclass are asymptotically
equivalent with the NFIML estimator and in this sense efficient.> The asymptotic
equivalence holds not only for the normal but also for general disturbance
distributions given consistency of the NFIML estimator.

Virtually all NFIML, estimators of practical interest are contained in the
two subclasses considered. In particular they contain, respectively, limited and
full information generalizations of the least squares dummy variable (LSDV)
estimator as well as generalizations of virtually all estimators known for the
standard simultaneous equation model. Typically various asymptotically
equivalent generalizations are possible. Baltagi’s [1981] specific generalizations
of the 2SLS and 3SLS estimator turn out to be members of, respectively, the
limited and full information subclasses. Several other examples of NFIML,
estimators, including an alternative generalization of the 3SLS estimator, are
given. Furthermore, we present results that make it very easy to check if an
estimator belongs to one of the two equivalence classes.

The plan of the paper is as follows: Section 2 gives the specification of the
model. The NFIML estimator and its IV from are derived in Section 3. In
Section 4, the class of NFIML, estimators is defined and the asymptotic properties
of wide subclasses of limited and full information estimators are analyzed.
Section 5 contains various examples. Concluding remarks are given in Section 6.
Technical issues are relegated to the appendices.

4 There exist known transformations which reduce the simultaneous equation model with
error components to a standard simultaneous equation model. It may seem appealing to try to
analyze the simultaneous equation model with error components by applying the results obtained
by Hausman [1974, 1975] and Hendry [1976] to one of the transformed models satisfying standard
assumptions. Unfortunately, all known transformations lose information; more precisely, in
all cases the transformed model no longer depends on all the parameters characterizing the
original model. Hence, by applying Hausman’s and Hendry’s results to the transformed models
no conclusions can be made about the true NFIML estimator (for instance, if it will be of IV
form) or about the properties of classes of approximating estimators. Consequently the analysis
must be performed in terms of the original model. .

5 In light of part of the literature on systems of equations with error components, it may seem
surprising that Hendry’s finding of large asymptotic equivalence classes for the standard case
carries over to the error component case. In particular, for the special case of a seemingly
unrelated regression model with error components, Baltagi [1980] gives results that suggest the
contrary. However, those results turn out to be incorrect as is shown in Prucha [1984].



SYSTEMS WITH ERROR COMPONENTS 493

2. THE MODEL

In specifying the model, we follow Baltagi [1981]. Let there be N
cross-sectional units observed over T periods; consider the following system of
linear simultaneous relationships:

@) Y=eyra+ YB+ZC+ U

where Y=[y,,..., yp] is the NTx M matrix of observations on the M endogenous
variables of the system, Z=[z,,..., zx] is the NTx K matrix of observations
on the K non-stochastic exogenous slope variables and U=[uy,..., u,] is the
NTx M matrix of disturbances;® eyr is a NTx 1 vector of unit elements; a, B
and C are 1 x M, M x M and K x M matrices of parameters. As a normalization
rule, the diagonal elements of B are taken to be zero. Further, (I — B) is assumed
to be nonsingular, so that (1) has the reduced form representation

(2) Y= entT + zn + Wa [na H, W] = [aa C9 lJ:I(I_B)_1

The disturbance vector of the j-th equation of (1) is assumed to be composed
of three stochastic components, in particular

(3) u; = (In®ep)u; + (ex®I)A; + v; j=1L..M

where the i-th element of the N x 1 vector pu; and the t-th element of the T'x 1
vector A; represent the error components specific to the i-th unit and the t-th
period respectively; the NT'x 1 vector v; contains the error components specific
to both; er and ey are Tx1 and N x1 vectors of unit elements. The error
components are assumed to have zero mean and the covariance structure

U; o,idy 0 0
@)} E| A |[up, A, 0] = 0 Gl 0 j,l=1..., M
Uj 0 0 O-OleNT

with 2, =(0,;), X,=(0;;) and Zy=(g,;) positive definite. Define X, =(c,;)=
Zo+T2,, 2,=(0,)=2o+NX;, and ZX3=(03;)=2¢+TX,+NZX;; then the
covariance matrix of the disturbance vector of the j-th and I-th equation can
for j, I=1,..., M be expressed as

3
5 E(uju;) = 0,3Ant + 03Byt + 00y = 'EO G11Qn

where Qo=Iyy—Ang/T—Byg/N+Jyp/NT, Qi =Ang/T—JIng/NT, Q,=Bys/N—
Int/NT, Q3=Jng/NT with Ayp=Iy®erer, Byr=eyey®Iy and Jyr=eyreyr.

$ The assumption that Z is non-stochastic is made to simplify the exposition. Without
complications, we could relax this assumption and only maintain that Z is strongly exogenous
in the sense of Engle, Hendry and Richard [1983]; we would then interpret the subsequent results
as conditional on Z.
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We do not require that the disturbances are normally distributed except when
specifically stated. However, we assume that all fourth moments exist and that
zero covariance between disturbances also indicates stochastic independence.
In particular, we assume v=[v},..., Vi ] =(P®Iyr)¢ where & is an NMTx1
vector of i.i.d. random variables with zero mean and unit variance and ~,=PP’.

Every equation is identified subject to zero-type parameter restrictions. Let
Y; and Z; denote, respectively, the NTx M; and NTx K matrices of observations
on the endogenous and exogenous variables that appear as regressors in the
Jj-th equation and let f8; and y; be the corresponding M;x 1 and K;x 1 vectors of
unrestricted (non-zero) parameters; let further a=[ay,..., ay], then the j-th
equation of (1) can be written as

(6) yj = eNTaj + Xjéj + uja Xj = [Yp Zj], 5j = [ﬂlp y;],

Define y=vec(Y), X=diagy (X;), u=vec(U), and =[6},..., 5], then the
stacked form of (1) can be written as

(7) y == (1M®€’NT)CI, + X5 + u.

Equation (5) implies for the variance covariance matrix of the stacked disturbance
vector

® 2=Euu)=2-02,® Q.

It will be convenient for our later discussion to introduce selector matrices L; such
that X;=[Y, Z]L;.” The elements of B and C can then be related to those of
6 as vec [(B’, C")]=Lé with L=diagy (L;).

We further assume that the elements of Z=(z,;) are uniformly bounded, i.e.,
sup, ; z,;<o0, and that Z’Z/NT and Z'Q,Z/NT tend to finite positive definite
matrices as both N and Ttend to infinity in every possible way.

3. THE FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATOR

The following theorem gives the full information maximum likelihood (NFIML)
estimator of the model parameters for normally distributed disturbances. The
proof of the theorem is given in Appendix A.

THEOREM 1. Consider the model specified in Section 2 and assume u~ N(0, X).
Suppose only the first S (< M) equations contain an intercept term, i.e. a=[a', 0]
with a=[ay,..., a5]’. The full information maximum likelihood estimators
&, 9, %2, f,, and £, then satisfy the following system of normal equations:

(9a) S =[XP'X]'X'dly, X = diagy (X)),
X;=(Y,Z)L;, Y =eyt +ZIl,

©Ob) &= {{ls (ZI) ' E12I®eyr/NT} {y— X},

7 See Dhrymes [1978, pp. 276-7] for a further discussion of selector matrices.
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%) P 1=571®0+ 27 @0y + £5' ® Q, + diag (Osxs, 23,122) ® s,
9d) (N=D(T-1DI5t = 551 0'Q, U851 = 231 — 251 0'Q,U%5!
= —(N-DE{' 4+ 271 00,0571
= —(T-DE' + 51 00,0551,
20 = 21 + 22 - 23, Su = (21_20)/71 2,1 = (22_20)/1\],
(%e) A#=a(—-B)y', 1 =CU-B),
a=(&,0),vec[(B, C)] = L3,

with U=Y—eyrd—YB—ZC and where £ and Zy;; denote for i, j=1, 2 the
(i, j)-th block of the matrices £3! and £, respectively. The underlying partition
is (S, M—S)x (S, M—S).

REMARK 1. In case there is an intercept in each equation, i.e. S=M, the
expression for =1 in (9¢c) reduces to ~1=X2_,5,'®Q,. Since Q,ex;=0 for
h=0, 1, 2 we can then simplify formula (9a) for § further by calculating Y as
Y=Z 1.8 Formula (9b) for & simplifies to 4=[I,,®eyr/NT][y—X5].

For expositional simplicity, we assume for the remainder of the paper that
there is an intercept term in each equation, i.e. S=M. All of the subsequent
results can readily be generalized to the case S<M. We further concentrate
in the following on the estimation of the slope parameters.

REMARK 2. The arrangement of the normal equations as given in (9) is of
particular interest since it shows that the NFIML estimator has an instrumental
variable representation. To see this, define the instrument matrix P=&"1X and
note that §=(P'X)"1P’'y. This generalizes a similar result of Hausman [1974,
1975] for the standard simultaneous equation model.®

REMARK 3. Amemiya [1971] derived the full information maximum likelihood
estimator of the error component model in the single equation case. He paid
particular attention to the estimation of the covariance components. We note
that the normal equations for the NFIML estimators of the covariance components
as given in (9) are direct matrix generalizations of the corresponding normal
equations in the single equation case — compare Amemiya [1971, p. 7].

8 For the same reason, it is readily seen that & is invariant against centering the data around
overall sample means.

° See Appendix A for details of the derivation of the instrumental variable arrangement of the
normal equations from the original form of the first order conditions for a maximum of the
likelihood function. A crucial step in that derivation was to show that 33_,U0’Q,US7!/NT=
I, despite the fact that ﬁ',, is not proportional to U’Q,U and that there exists no explicit
solution of 3 , in terms of U. We note that this contrasts with the case of the standard simul-
taneous equation model where the NFIML estimator of the disturbance variance covariance
matrix can be expressed explicitely as a function of the NFIML estimator of the disturbance
matrix.
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4. A GENERAL CLASS OF APPROXIMATING INSTRUMENTAL VARIABLE ESTIMATORS

In the following, we use the instrumental variable form of the normal equations
of the NFIML estimator as estimator generating equations.'® The NFIML
estimators solve system (9a)-(9¢) simultaneously. Such a solution may be
obtained iteratively. Note that in replacing the NFIML estimators for the
reduced form parameters and the covariance components on the R.H.S. of (9a)
by other estimators we obtain a new estimator for 4. This estimator can be
interpreted as an approximation to the NFIML estimator. Using the normal
equations (9a) in this sense as estimator generating equations leads to the definition
of the following general class of estimators.

DEerINITION 1. For h=0, 1, 2 let [T, be some estimators for IT and £;! some
estimators for X! further, let X, =diagy (X;u4) with X;4=[Y4, ZIL,; and
Yuw=2I, Then any estimator of the form

(10) d=1[2% jzl(h)(i;1®Qh)X]_12%=O XE;;)(SP@Q;.)J/

= G(ﬁ09 fals ﬁl» f;h ﬁZa le)
is called an NFIML, estimator (where the subscript 4 is used to indicate that
the estimator can be viewed as an approximation to the NFIML estimator). If
any of the ;! are nondiagonal, the resulting estimators are referred to as full
information NFIML, estimators. If all £! are diagonal, i.e., £; ! =diag,, Gt
equation (10) reduces to

(1) 5j =[27-0 &J_'j]h)?}(h)QhXj]_l 2o &;}h}?}(h)thj
and we refer to those estimators as limited information NFIML, estimators.

REMARK 4. Clearly the class of NFIML, estimators defined above contains
the NFIML estimator of the structural parameters as the special case in which
1, and &5 are taken to be the respective NFIML estimators of the reduced
form parameters and the covariance components. All NFIML, estimators are
instrumental variable estimators. Let the instrument matrix be defined as P=
2702 '®0) X 4, then 5=(P'X)"1P'y.

ReEMARK 5. The standard simultaneous equation model is a special case of
our model with X,=2,=0. Hendry [1976] showed for the standard model that
virtually all known standard estimators can be viewed as numerical approximations
to the standard NFIML estimator. It is, hence, evident that our class of
estimators will contain generalizations of virtually all known standard estimators.!!

10 See Hausman [1974, 1975] and Hendry [1976] for an analogous approach applied in the
standard simultaneous equation model case.

11 Hendry’s class of estimators is readily seen to constitute a special subclass of the above
NFIML, class with 77, =7, and 5;'= 55 for h=1, 2; in this case, (10) reduces to =
(X0 [25'QUyr—JInrINT)1X} ' X0y [25'@Unr—JInr/NT) y.
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Examples of such generalizations will be given in Section 5.
DerINITION 2. Consider the following estimators:
(12)  dppy = [X'(C5'®Q)X] ' X'(5'®Q0)y = G(IT, X5, ., 0, ,0),
(13) &, Ly = [X;0:X,171X500y; j=L.,M

where X =diag, (X,) and X,=Z[II, I]L;, We, henceforth, refer to these
estimators as, respectively, the FIDV and LIDV estimators; they represent (non-
feasible) full and limited information NFIML, generalizations of the single
equation and seemingly unrelated regression dummy variable estimators to the
simultaneous equation case.!?

Next, we analyze the asymptotic properties of NFIML, estimators. We note
that in the subsequent analysis convergence in distribution, probability limits or
limits are always understood in the sense that both N and T tend to infinity.!3
The following theorem establishes the asymptotic equivalence of the members of
a wide subclass of full information NFIML, estimators. The proof of the
theorem is given in Appendix B.

THEOREM 2. Let the model be specified as stated in Section 2. Consider the
class of full information NFIML, estimators § defined by (10) with plim IT,=11
for h=0, 1, 2, plim $,=2%, and plim T'~¢Z{t=plim N1¢£51=0 for some
0<e<1/2.'* Then all members of this class are asymptotically equivalent
to the FIDV estimator (and consequently to each other) in the sense that

plim \/NT(5~8ipy)=0. In particular, any member of this class is consistent
and \/NT(3—3) converges in distribution to a normal random vector with zero
mean and variance covariance matrix Q=plim [X'(Z5'®Q,)X/NT] 1.

The following lemma proves helpful in analyzing the class of estimators
considered in Theorem 2. The proof of the lemma is not difficult and hence
omitted.

LemMa 1. Let £y, £, and £, be any consistent estimators of Z,, £, and X,.
Define S7'=[£,+TZ,1"" and £3'=[£,+NZ,]7', then plim T':57i=
plim N1~¢571=0 for all 0<e<1/2.

REMARK 6. We can now identify two important subclasses of estimators that
satisfy the assumptions of Theorem 2:
(i) The class of full information NFIML, estimators based on consistent esti-

12 For a definition of the dummy variable estimator in the single and seemingly unrelated
regression case see, respectively, Wallace and Hussain [1969] and Baltagi [1980].

13 Compare e.g. Wallace and Hussain [1969], Amemiya [1971] and Baltagi [1981]. We also
note that the model considered in this paper is static. Results by Anderson and Hsiao [1981,
1982] for the single equation model suggest that in case of a dynamic model, particular attention
will have to be paid to initial conditions.

14 Note that lim 7' 3 7'=lim N'7¢37'=0 for any 0<<e <1/2.
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mators of the reduced form parameters II and the covariance components
Zy, 2, and X, (in the sense of Lemma 1),
(ii) The class of feasible FIDV estimators dppipy=G(1,, £51,.,0, ., 0) based
on consistent estimators for IT and Z,,.
Most full information NFIML, estimators of practical interest will fall into one
of these two categories. Theorem 2 should hence make case by case consid-
erations of the asymptotic properties of full information NFIML, estimators
essentially unnecessary.

REMARK 7. We have the following result concerning asymptotic efficiency:
Given the consistency of the NFIML estimators it follows immediately from
Remark 6 that the NFIML estimator § and the members of the class of full
information NFIML, estimators considered in Theorem 2 are asymptotically
equivalent. We note that the latter class contains various members that are
computationally considerably simpler than the NFIML estimator.

The following theorem identifies a wide subclass of asymptotically equivalent
limited information NFIML, estimators. Since the proof and the discussion of
the theorem would be analogous to that of Theorem 2 we omit both.

THEOREM 3. Let the model be specified as stated in Section 2. Consider the
class of limited information NFIML, estimators 5,- defined by (11) with plim [T, =
II for h=0,1,2, plim Gy;;=0,;; and plim T1~¢67};=plim N17¢G;};=0 for some
0<e<1/2. Then all members of this class are asymptotically equivalent
with the LIDV estimator (and consequently to each other) in the sense that
plim \/W(gj—gj,ubv)=0. In particular, any member of this class is consistent
and \/NT(3,—§;) converges in distribution to a normal random vector with
zero mean and covariance matrix Q;=0,;; plim [X Qo X ;/NT] .

5. EXAMPLES OF ESTIMATORS

In the following, we give some specific examples of NFIML, estimators. As
remarked above, virtually all known estimators for the standard simultaneous
equation system have generalizations within the NFIML, class. For expositional
reasons, we concentrate on generalizations of full information estimators.” We
start out with a brief discussion of consistent estimators for X, 2, X, and I1.

5.1.  On Consistent Estimators of the Covariance Components. The following
estimators of the covariance components are generalizations of the single equation
analysis of variance (AOV) estimators:!3
$0=0'Q0/[(N=1XT-1)), 5,=0'[(T-1)0,~Qo]0/[T(N~1XT-1)]  and
2,=U[LN-1Q,—Q,JU/[N(N—1)(T—1)] where U is some estimator of the
disturbance matrix U. It then follows that ¥, =%+ TZ,=0'Q,U/(N—1) and

15 Those generalizations have been introduced by Baltagi [1980] in the context of a SUR
model with error components.



SYSTEMS WITH ERROR COMPONENTS 499

5,=5,+N%,=0Q,0/(T—1).16

LeMMA 2. Consider the model of Section 2. Let U=Y—ey;d—YB—2C be
an estimator of the disturbance matrix based on consistent parameter estimators.
Then the AOV estimators for 5, & » and 5, defined above are consistent estimators
for 2y, X, and X,.

The proof of the lemma is not difficult and hence omitted here. Lemma 1 and
Lemma 2 combined imply that the assumptions of Theorem 2 with respect to
the covariance component estimators are satisfied for AOV estimators based on
consistent residual estimators.

5.2. On Consistent Estimators of the Reduced Form Parameters. Thereduced
form (2) can be written in stacked notation as y =(I,,®eyr)vec(n) + (I, ® Z)vec(IT)
+w where w=[(I—B') '®Iyr]u. Clearly E(w)=0 and E(ww)=23_, ¥,®0Q,
with Y, = —B')"1Z,(I—B)"!. The reduced form model can hence be viewed
as a SUR model with error components and identical regressors in each equation.
Each reduced form equation by itself represents a single equation error component
model. The consistency of the following estimators of the reduced form para-
meters is obvious from the existing literature on SUR and single equation error
component models.!?

The simplest consistent estimator is the ordinary least squares (OLS) estimator,
fMors=[Z'(I—Jyp/NT)Z]1Z'(I —Jy;/NT)Y.  Other consistent estimators
that do not depend on estimators of the covariance components are: II,=
[2'Q,Z17'Z'Q,Y for h=0, 1, 2. The estimator corresponding to h=0 is the
least squares dummy variable (LSDV) estimator, that corresponding to h=1 is
the between group least squares (LSBG) estimator and that corresponding to
h=2 is the between time least squares (LSBT) estimator.!® Note that the LSDV
estimator and the seemingly unrelated regression dummy variable (SURDYV)
estimator, vec (Tgyrpy) = [Vo! ®Z'Q0Z] ' [Y5'® Z'Q,]y, are identical. The
LSDYV estimator is, therefore, for normally distributed disturbances, also asymp-
totically efficient.!®

16 Amemiya [1971, pp. 1 and 7-8] has shown for the single equation case that the AOV esti-
mators can be interpreted as first stage estimators in the interation process of obtaining maximum

likelihood estimators. Note that by replacing the NFIML estimator 3, in (9d) by the AOV
estimator for Y, we obtain the AOV estimators for Y, ¥, and %,, 2;. Hence, Amemiya’s
interpretation of the AOV estimators carries over to the systems case.

17 References to that literature are given in the introduction.

8 See e.g. Swamy and Arora [1972] for a general discussion of the LSDV, LSBG and LSBT
estimators.

19 This follows from the asymptotic equivalence of the SURDYV estimator and the seemingly
unrelated regression generalized least squares (GLS) estimator. While this result is well known,
it also follows immediately from Theorem 2. The above discussion implies further that all
feasible single equation and seemingly unrelated regression GLS estimators for the reduced form
parameters are asymptotically efficient, given they are e.g. based on AOV estimators of the
reduced form covariance components constructed from consistent residuals.
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5.3. Generalizations of the 3SLS and FIVE Estimator. Baltagi [1981]
introduced an error components 3SLS estimator, henceforth referred to as the
EC3SLS, estimator, as a weighted average of three standard 3SLS estimators
applied to different transformations of the model (1). The following discussion
interprets the EC3SLS, estimator in relation to the NFIML estimator. = Denoting
the dependence of X and X; on (say) /T more explicitly as X(/T) and X (IT) the
estimator is given by

~ 2 o~ ~ 2 o~ ~
(5.1 OgcasLs; = {,EO X'(I)[2'®0,]1X} ! hEOX/(Hh)[Zﬁl@)Qh]y

where the £, are AOV estimators. It is readily seen that the EC3SLS, estimator
is a member of the NFIML, class. The residuals used in constructing these AOV
esﬁimators 5, for h=0, 1, 2 are based on, respectively, the estimators SJ-(,,)=
[X'(1,)Q,X ;17 X(I1,)Q,y; obtained by applying the 2SLS formula to trans-
formations of the model. It is not difficult to show that the latter estimators are
consistent. As a consequence of Lemmata 1 and 2 and the discussion of the last
subsection it is then readily seen that the EC3SLS, estimator satisfies the
assumptions of Theorem 2. Next, consider the following feasible FIDV estimator
S0)={X"T)[EZ5'®QIX} ' X' (IT))[25'®Q,]y used in constructing the
EC3SLS, estimator. It is readily seen that this estimator also satisfies the
assumptions of Theorem 2. - Both estimators are hence asymptotically equivalent
to each other as well as to any other member of the class of full information
NFIML, estimators defined by Theorem 2.

The instruments of the EC3SLS; estimator are formed from three different
estimators of the reduced form parameters. In analogy to the NFIML estimator,
it seems appealing to form the instruments from only one (efficient) estimator for
II. We thus, introduce the following alternative generalization of the 3SLS
estimator, which we shall refer to as the EC3SLS, estimator:

(52 Secasus, = (XN 2 5 @01 X)X (L £ 57 ©0.]y.

Clearly the advantage of this formulation could only be in terms of the small
sample properties of the estimator. According to Theorem 2, the EC3SLS; and
EC3SLS, estimators are asymptotically equivalent.2°

Both of the above EC3SLS estimators make use of OLS type estimators of the
reduced form parameters. Hence, those estimators cannot be computed in case
there are more exogenous variables in the system than observations. The number
or regressors in each equation is typically small as compared to the total number
of exogenous variables in the system. Following the approach of Brundy and
Jorgenson [1971, 1974] for the standard simultaneous equation model we may

20 Obviously, various other (reasonable) generalization of the 3SLS estimator are possible.
For instance, we may base all AOV covariance component estimators on the feasible LIDV

estimator 4 (o).



SYSTEMS WITH ERROR COMPONENTS 501

get initial consistent estimators of the structural parameters, say éw and Cv’w,
from some single equation IV procedure. Those estimators can then be used to

form a consistent estimator of the reduced form parameters as g ,V=CVW(I - BVIV)“1

and to form a consistent estimator of the disturbance matrix, say U. We introduce
the following generalization of the FIVE estimator, say the ECFIVE estimator:

~ v 2 v ~ v 2 v
(5.3) SEcrIvE = {X,(HW)[;.EO 2;1®Q1JX}—1X’(H1V)[’£0 2'®0,]y

where f,, denotes the AOV covariance component estimators based on U. Again,
this estimator is seen to bz a member of the asymptotic equivalence class defined
by Theorem 2.

6. CONCLUSION

In this paper, we considered the estimation of a system of linear simultaneous
relationships from N cross sectional units observed over T periods. The model
considered in particular is the linear simultaneous equation model with error
components of Baltagi [1981]. We derived the full information maximum
likelihood estimator for that model and referred to that estimator as the NFIML
estimator. We showed that the normal equations of the NFIML estimator can
be put into an instrumental variable form. The normal equations in instrumental
variable form were then used as estimator generating equations to define a wide
class of instrumental variable estimators that can be viewed as numerical approxi-
mations to the NFIML estimator. We referred to those estimators as NFIML,
estimators. The class of NFIML, estimators was shown to contain gener-
alizations of virtually all known estimators for the standard simultaneous equation
model. We give theorems concerning the asymptotic properties of the NFIML
estimator as both N and T tend to infinity. In particular, we established the
existence of wide asymptotic equivalence classes of, respectively, full and limited
information estimators. Baltagi’s [1981] generalizations of the 2SLS and 3SLS
estimator are found to be members of those equivalence classes.

The results of this paper simplify and clarify the asymptotic appraisal of estima-
tors for the simultaneous equations model with error components. However, the
results also suggest that to discriminate between estimators further research is
needed concerning the properties of those estimators when both N and T are small
or when only T or N is large. Furthermore, an extension of the present analysis
to the case of dynamic models seems desirable. Results of Anderson and Hsiao
[1981, 1982] for the single equation model suggest that such an extension will
have to pay particular attention to initial conditions. Also, a generalization of
the present model to the nonlinear case seems of interest.

University of Maryland, U. S. A.
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APPENDIX A

ProoF OF THEOREM 1. By assumption, the disturbance vector u is distributed
multivariate normal with zero mean and variance covariance matrix 2. The
log-likelihood function of the sample is hence given by

(A1) £, 8, Z,, Z;, Z,|Y, Z) = const + NTIn {|I-Bl} + %m (z-1

[ S
Su 2.
We use in the following the conventions on matrix differentiation of Dhrymes

[1978, pp. 523-540]. The first order derivatives of £(-) with respect to the
unrestricted parameters are given by

0f _ _ 1 owI'u  0f _ o dIn{I-Bl} _ 1 u'I'u
oo > oo > 3 38" 2 a6 ¢
(A.2)
o _ 1 oln{Z"Y} _ 1 ou'Zlu P
oz, 2 o, 2 oz, =H 40

The first order conditions for a maximum of the log-likelihood function are
obtained by equating the above derivatives to zero. We need to find explicit
expressions for them. Proposition 90 in Dhrymes [1978, p. 523] implies that
0 vec (I —B)[05= —diagy [I, Oyxx)]L. Applying Proposition 102 in Dhrymes
[1978, p. 533] and recognizing that diagy [(I5, Opxk)'] vec[(I—B') " 1]=
vec {[(I—B)™1, Oyxk]’} then yields

(A.3) O0ln {|I-BJ|}/06" = — L' vec {[(I—B)™!, Opxx]'}-

We adopt the following notation: ¢J! denotes the (j, I)-th element of ;! and
o'/ and o', respectively, the j-th column and the I-th row of 2! for s=0,..., 3.
Baltagi [1980] showed that 2-1=233_,2;1®Q,. By using the results given in
Remark 45 of Dhrymes [1978, p. 522] we get u'2Z-lu=tr {J}_,2;1U'Q,U}.
Corollary 38 in Dhrymes [1978, p. 540] implies that

X100, = — 27H0(Zo+ T2 ) /00,;} 27t = — To ol 2

Similarly it is seen that 0X3'/dc,;;= —Tos/cy. From these results and since
025100, ;,=025"/0c, ;=0 it follows that

(A.4a) olu'2"'u]/0o,;; = — Ttr{oJe{'U' QU+ 063705 U'Q;U}

! Note that ¢,;, =0, for s=g, 2, 0. It turns out that differentiating £(-) with respect to the
elements of %, X', and X, without taking those symmetry restrictions into account leads to the
same first order conditions as when those restrictions are taken into account. Since it simplifies
the presentation, we neglect those restrictions in the subsequent computation of the derivatives.

2 Note that 93 ,/d0,;,=e.;e;. where e.; and e,. are the j-th column and the /-th row of the
M x M identity matrix.
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= — Tol'U'QUo,/ —TesU'Q;Uq/.

Recall that ¥=23_.,2,®0Q,. Noting that the idempotent matrices Q,, Q,, Q,
and Q5 are orthogonal to each other with tr (Q))=NT—T—N+1, tr(Q,)=N—1,
tr (Q,)=T—1and tr (Q;)=1 and applying Corollary 30 in Dhrymes [1978, p. 534]
it is further seen that

(A.4b) o[l |-1]/dc,;, = tr{E(0Z~/d0,;)} = — Ttr{Z;07i0t ®Q,

+ 230565 ®03} = — ol T(N—1) -6y T.3
Analogously we obtain
(A.4c) o[u'2"'u]/00,;, = — NoyU'Q,Us;’ — Nos'U'Q3Us3/,
(A.4d) dlln |2-1]/00,;; = — 64 N(T—1) — ¥'N,
(A.de) o[u'2"'u]/006y;, = — abU'QyUay/ — a'U'Q Uay’
-6y U'Q,Uc,) — i U'Q; U4/,
(A.41) o[ln|271]/d04;, = — o (NT—T—N+1)

— gy (N=1)—al(T—1)—0d}.

By assumption only the first S equations contain an intercept so that u=y—
[(Is, Osxp—s) ®eyrlo—X0. Using the results (A.3), (A.4) and Propositions 94
and 95 in Dhrymes [1978, p. 526] we obtain the following set of first order
conditions by equating the derivatives (A.2) equal to zero:

0f

(A52) 2 = (U Oguros) @i S0 = 0,
(A.5b) % = — NT-L vec[ (IO_B/)_I J +X'510 =0,
KxM

(A.5¢) 2% = —T(N=-1)E7' — TS5 + 12710'0, 0871

+ 12;10'0,0%51 = 0,
(A.5d) 2 (;’i — — N(T—1)55' — NE51 + N5510'0,0551

+ N£310'0,0851 =0,
(A.5e) 2% — — (N=I)(T=1)$5! — (N=D)S5! — (T=1)55!

— 331+ 5510'0,0851 + 27100, 0871
+ 2510'0,085 + £310'0, 0851 = 0,

3 Note that tr {3,065 ®Q,} =tr{Z 0i/al }tr (Q,) and tr {3,070} } =0 for s=1, 3.



504 INGMAR R. PRUCHA

with
(A.51) i = vec(0) = y — [(Is, Osxpr—s) @enrld — X3
(A.5g) 1= )3: 5®0, =52 +2%,- %,

h=0

and where £,=(2,— %,)/Tand £,=(£,—%,)/N. Dividing (A.5¢c) by Tand (A.5d)
by N and subtracting the resulting equations from (A.Se) yields
(ASh) —(N—=D)(T-1DZ5! + E31 + £510'Q, 085t — 2510'Q,0851 = 0.

Equation (A.5h) corresponds to the first of the normal equations (9d) of
Theorem 1. The other two equations of (9d) are obtained by substituting (A.5h)
into (A.5¢c) and (A.5d). Note that ey, is othogonal to Q, Q; and Q,;
consequently,

(A.6) (s, Ogxp-s)®enr1E71 = (I, 05><M—s)2§1 ® eyr-

Making use of this result and (A.5f) it is readily seen that (A.5a) implies (9b) of
the normal equations as given by Theorem 1. To obtain the instrumental variable
equations (9a) note from (A.5c, d, h) that

3 o
(A7) NT.I,, = ¥ U'Q, U

h=0
Further let X=[Y, Z] so that X=(I,,®X)L; then by applying Corollary 33 in
Dhrymes [1978, p. 520] to (A.5b) it is readily seen that

ot
00’
Now let X=[¥, Z] with ¥ =[eys, Z1[a’, C'TU—-B)"!, and X=(I,,® X)L=
diag,, (X,). Since (I—B)"10'=Y'— ¥’ it follows that by premultiplying (A.7)
with (I — B’)~! and substituting the result into (A.8) we get

(A8) = L' vec {[NTU=B)™", Oyux]’ = X'[ £ 0,057} =0,

(A.9) L' vec {X'[ 3 0,0z;11} =0.
h=0

Applying Corollary 23 in Dhrymes [1978, p. 520] to (A.9) and making use of
(A.5f) and (A.6) yields

- 5 - o3 . R
(A.10) X'S-'n = X{[33%, ST ®eyp}a + X[ 2 £5'®0Q,]1[X6—y] = 0.
h=0
Premultiplying (9b) with X'{[£1!, £12]' ®ey}, subtracting the result from (A.10)
and observing that £3%,=5£%2— $21(£11)~1£12 yields (9a). Q.E.D.

APPENDIX B

PrOOF OF THEOREM 2. To prove the theorem we first show that

3 ~ -~ —
B plim gl 2 X @)X~ X (55'®Q0)X} = 0,
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(B.2) plim X{,,E7'®Q)u//NT = 0 h=1,2,
(B.3) plim {X(0)(55'®Qo)u//NT—X(25'®Qo)u/\/NT} = 0,
(B.4) X'(25'®Qo)u/\/NT 45 N(0, Q).

By assumption, the matrices Z'Z/NT and Z'Q,Z/N T converge to finite nonsingular
limiting matrices as both N and T'tend to infinity ; we define M ,,, =1im Z'Q,Z/NT.
This implies that also the matrices Z'Q,Z/N T converge for h=1, 2 to finite limiting
matrices. Since convergence in probability to zero can be proven by showing
that both the sequences of means and variances converge to zero and since the
matrices Q, are orthogonal to each other, it is not difficult to see from (5) that

(B4)  plim(Z'Qu;)INT=0 h=0,1,2,
(B.5)  plim(Z'Q,u,)/(T'=*/NT) = plim (Z'Q,u,)/(N'~*/NT) = 0

for all 0<e<1/2. Let Y=2ZIT where IT is some consistent estimator for IT; since
Y=ey;n+ZII+ U(I—B)~! it follows from (B.4) and Q,ey;r=0 for h=0, 1, 2 that

B6)  plim gz [, ZVQ,[Y, 2] = U, L' lim 7 (Z'0, ) UT, Iy]
h=0,1,2.

Note that X{,(5;'®0)X=L"{E;'®[ Y4, Z1Q,[Y, ZI}L. Since plimS{!=
plim £51=0 result (B.1) then follows from (B.6) and the fact that the matrices
Z'Q,Z|NT converge to finite limiting matrices. (B.6) implies further that

(B.7) Q = plim X'(Z51®Q)X/NT = plim X'(Z5;'® Q) X/NT
= R'(Z5'®Mz9,)R

with R=diag,, [(IT, Ix)L;]. Since each equation is identified subject to zero type
parameter restrictions it follows (along the lines of Schmidt [1976, pp. 205-207])
that R is of full column rank. Since X, and My, are nonsingular, it follows
also that Q is nonsingular. Next, note that X{,,(57!®Q,)u/\/NT=L{T'5{'®
[T, I{IHUIu®Z'Q)u}/(T5/NT). Result (B.2) is then readily seen to hold
for h=1 because of (B.5) and since plim T!1¢571=0. The other probability
limit in (B.2) follows analogously.

Because of (3) and Qu(Iy®er)=Qo(ex®Iy)=0 we have Qou;=Qqv;. By
assumption v=(P®Iyr)¢ where £ is a MNTx 1 vector of i.i.d. random variables
with zero mean and unit variance and Z,=PP’. Applying a standard central
limit theorem (compare e.g. Theil [1971, p. 380-381]) it then follows that
(Un®Z'Qo)u/\/NT=(Iy®Z'Qo)v/\/NT 145 N(O, Zo®M 4,). This result and
the consistency of f1, £, are then readily seen to imply (B.3) and (B.4) since
~20)(551®Q0)”/\£V_T= L'(£5'®[1,, IK]/)(IM®Z'Qo)uWand
X'(Z5'®Qo)u/\/ NT=L'(Z5 ' ® [, I 1)1 ®Z'Qo)uly/NT.

_Clearly 5=5+[_{%=o X nCr®0nX1 1230 X(1)(Z5'®Quu and Sppy=56+
[X'(Z53'®0)X]T X' (25'®00)u; combining (B.1)-(B.4) and (B.6) it is then not
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difficult to see that plim \/NT(6 —Sg;py)=0 and \/NT(Sppy — ) <:4:> N(0, Q).
Q.E.D.
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