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Abstract

The fixed effects estimator of panel models can be severely biased because of well-known incidental parameter

problems. It is shown that this bias can be reduced as T grows with n. We consider asymptotics where n

and T grow at the same rate as an approximation that allows us to compare bias properties. Under these

asymptotics, bias corrected estimators we propose are centered at the truth, whereas fixed effects estimators

are not. Our methods are applicable to a wide variety of non-linear dynamic panel models. We discuss

several examples and provide Monte Carlo evidence for the small sample performance of our procedure.



1 Introduction

Panel data, consisting of observations across time for different individual economic agents, allows the possi-

bility of controlling for unobserved individual heterogeneity. Failure to control for heterogeneity can result

in misleading inferences. One method to deal with unobserved individual effects is to treat each effect as a

separate parameter to be estimated. Unfortunately, these estimators are typically subject to the incidental

parameters problem noted by Neyman and Scott (1948). The estimators of the parameters of interest will

be inconsistent if the number of individuals goes to infinity while the number of time periods is held fixed,

which suggests that fixed effects estimators may be severely biased.

Hahn and Kuersteiner (2002) recently showed that the bias in a panel AR(1) model can be alleviated

substantially by considering an alternative approximation where the number of individuals (n) and the

number of time series observations (T ) grow to infinity at the same rate. Hahn and Newey (2002) showed

how the bias correction can be implemented in a static nonlinear panel data model with fixed effects under

the same asymptotics. The static assumption there is so strong that both dependent and explanatory

variables are required to be independently distributed over time. In other words, even explanatory variables

are required to be independent and identically distributed over time, which is clearly violated for many

applications. In this paper, we examine asymptotic biases of general dynamic nonlinear panel models with

fixed effects, and develop methods to remove them.

Our analysis could provide a useful alternative to papers that propose estimators that have desirable

properties with T fixed such as Honoré and Kyriazidou (2000), who examined a dynamic binary response

model. Their identification and estimation methodology requires conditioning on covariates taking identical

values over time, which is not required in our approach. On the other hand, it is expected that our approach

requires reasonably large T to be a good approximation. We investigate in Monte Carlo experiments how

large T needs to be in practice for our approach to work. For the dynamic Probit model discussed in Example

2, we find that the bias can be reduced by half when T = 16 in samples of 250 and 500 individuals. For

the dynamic Logit model similar bias reductions are available already for T = 8, again for 250 and 500

individuals. As far as the root mean squared error (RMSE) of the estimators is concerned, we find that for

the MLE the bias component by far is the dominating factor of the RMSE. Our simulation results also show

that bias correction does not seem to come at the cost of increased variances and consequently the reductions

in RMSE of our bias corrected estimators relative to the MLE are of the same order of magnitude as the

bias reductions. The sample sizes we consider in our Monte Carlo experiments are relevant for many real

life applications in labor economics and consumer choice.

There exist a number of methods for bias correction in the literature. The jackknife and bootstrap are

examples. In an iid context it was shown by Hahn, Kuersteiner and Newey (2002) that these methods are all

equivalent. With temporal dependence this equivalence is not likely to carry over in general because the need

to employ blocking schemes reduces relevant rates of convergence for bias estimators. More specifically it is

not clear how the jackknife discussed in Hahn and Newey (2002) could be adapted to the situation where

observations are dependent. A potential drawback of any bias correction method is that the fixed effect

estimators are needed as preliminary estimators for estimates of the bias, and may strongly affect the quality

of the latter, as discussed by Kiviet (1995) in a slightly different context. Our Monte Carlo experiments shed

some light on the finite sample performance of our method.
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One advantage of our approach is that it is quite flexible. We discuss examples that show how our method

can be applied to a variety of, mainly parametric, non-linear models. For some of these models there do not

seem to exist any adequate alternative estimators which are less biased than the MLE in finite samples.

2 Bias Corrected Estimator: Intuition

In this section, we characterize the approximate bias of the fixed effects estimator for a dynamic nonlinear

panel model. We consider an asymptotic approximation where n and T grow to infinity at the same rate.

We show that the fixed effects estimator is consistent and asymptotically normal, but has an asymptotic

bias. We provide a formula for the asymptotic bias under our asymptotic approximation.

Suppose that we are given a panel data model with a common parameter of interest θ0 and individual

specific fixed effects γi0, i = 1, . . . , n. Suppose we define a maximization estimator as³bθ, bγ1, . . . , bγn´ = argmax
θ,γ1,...,γn

nX
i=1

TX
t=1

ψ (xit; θ, γi) (1)

for some criterion function ψ (·) that does not depend on T . We assume that ψ is a sensible function that a

time-series econometrician would use: If n is fixed, and T → ∞, the estimator is such that
³bθ, bγ1, . . . , bγn´

is consistent for (θ0, γ10, . . . , γn0). For simplicity of notation, we will assume dim (θ) = R and dim (γ) = 1.

Example 1 The binary panel model with fixed effects is characterized by yit = 1 (γi0 + z0itθ0 + eit) where eit
conditional on zit either has a logistic or standard normal distribution. The MLE, defined as the maximizer

of Pn
i=1

PT
t=1 [yit logΛ (γi + z0itθ) + (1− yit) log (1− Λ (γi + z0itθ))] ,

where Λ denotes the Logit or Probit CDF, is consistent as T → ∞. The MLE is a special case of (1),

with xit = (yit, z
0
it)
0 and ψ (xit; θ, γi) = yit logΛ (γi + z0itθ) + (1− yit) log (1− Λ (γi + z0itθ)). Extensions to

multinomial Logit follow easily in the same way and have been applied for example by Hendel and Nevo

(2002).

Example 2 The dynamic binary panel model with fixed effects is defined as yit = 1 (γi0 + z0itβ0 + τ0yi,t−1 + εit)

where the MLE is again obtained from maximizing the conditional likelihood based on the Logit or Probit CDF

depending on whether εit is conditionally logistic or standard normal. The criterion then takes on the form

ψ (xit; θ, γi) = yit logΛ (γi + z0itβ + τyit−1) + (1− yit) log (1− Λ (γi + z0itβ + τyit−1))

with xit = (yit, z
0
it, yit−1)

0 and θ =
¡
β0, τ

¢0
. This model has been applied by Chintagunta, Kyriazidou and

Perktold (2001) to household brand choices.

Example 3 Tobit Models with Lagged Dependent Variables and Fixed Effects have been considered by Honoré

(1993) who obtains orthogonality conditions and constructs a method of moments estimator. The model can

be written as yit = max(0, z0itβ0 + τ0yit−1 + γi0 + εit). If εit is iid Gaussian as in the previous example, we

obtain

ψ (xit; θ, γi) = 1 {yit = 0} logΛ
¡
(τyit−1 + z0itβ + γi) /σ

2
iε

¢
+1 {yit > 0}λ

¡
(yit − τyit−1 − z0itβ − γi) /σ

2
iε

¢
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where Λ is the cumulative distribution function of the standard normal distribution and λ is the corresponding

density. Also, for the special case where τ0 = 0, we have an unobserved effects Tobit model that was considered

in Heckman and Macurdy (1980) and Honoré (1992).

The fixed effects estimator for bθ is obtained formally by concentrating out the fixed effects γi from the

criterion function. We solve

bγi (θ) ≡ argmax
a

PT
t=1 ψ (xit; θ, a) and bθ ≡ argmax

c

Pn
i=1

PT
t=1 ψ (xit; c, bγi (c))

where bγi (θ) is obtained for each individual i. Substituting out the estimator for γi in ψ, then leads to the

concentrated criterion function and bθ can be characterized as the solution to the first order condition
0 =

Pn
i=1

PT
t=1 Ui

³
xit;bθ, bγi ³bθ´´ , (2)

where we use the following notation throughout the paper:

Ui (xit; θ, γi) ≡
∂ψ (xit; θ, γi)

∂θ
− ρi0 ·

∂ψ (xit; θ, γi)

∂γi
, Vi (xit; θ, γi) ≡

∂ψ (xit; θ, γi)

∂γi
,

ρi0 ≡ E

·
∂2ψ (xit; θ0, γi0)

∂θ∂γi

¸Á
E

·
∂2ψ (xit; θ0, γi0)

∂γ2i

¸
, Ii ≡ −E

·
∂Ui (xit; θ0, γi0)

∂θ0

¸
Note that, in case ψ is the log likelihood, Vi (xit; θ, γi), Ui (xit; θ, γi), and Ii denote the score for γi, the
efficient score for θ, and the Fisher information for θ from the ith observation. For simplicity of notation,

we will write Uit ≡ Ui (xit; θ0, γi0) and Vit ≡ Vi (xit; θ0, γi0). We will denote by U
γi
it and U

γiγi
it the first

and second derivatives of Uit with respect to γi. Likewise, we will denote by V
γi
it the derivative of Vit with

respect to γi. Note that E
£
U
γi
it

¤
= 0.

The key to understanding inconsistency results when T is fixed and corresponding biases when T increases

with n is to note that, while E [Uit] = 0 in general, it does not hold that E [U (xit; θ0, bγi (θ0))] = 0. Replacing
γi0 with an estimator bγi (θ0) therefore results in biases in the estimation of θ. To understand the nature of
the bias introduced by the fixed effect estimator bγi, we consider an infeasible estimator θ̃ based on bγi (θ0)
rather than bγi ³θ̂´, where θ̃ solves the first order conditions

0 =
Pn

i=1

PT
t=1 U

³
xit;eθ, bγi (θ0)´ .

Our analysis in Section 4 establishes an expansion for the more complicated feasible estimator θ̂. The results

in Section 4 imply that
√
nT
³
θ̂ − θ̃

´
= op(1), which means that the intuition gained from studying θ̃ carries

over to θ̂. For θ̃, standard arguments suggest that

√
nT
³eθ − θ0

´
≈
µ
1

n

Pn
i=1 Ii

¶−1
1√
nT

Pn
i=1

PT
t=1 U (xit; θ0, bγi (θ0)) .

Because E [U (xit; θ0, bγi (θ0))] 6= 0, we cannot apply the central limit theorem to the numerator on the right

side. We use a second order Taylor series expansion to approximate U (xit; θ0, bγi (θ0)) around γi0:

1√
nT

Pn
i=1

PT
t=1 U (xit; θ0, bγi (θ0)) ≈ 1√

nT

Pn
i=1

PT
t=1 Uit

+
1√
nT

Pn
i=1

PT
t=1 U

γi
it (bγi (θ0)− γi0) +

1

2
√
nT

Pn
i=1

PT
t=1 U

γiγi
it (bγi (θ0)− γi0)

2
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The first term on the right will follow a central limit theorem because E [Uit] = 0. As for the second and

third terms, we note that bγi (θ0) − γi0 ≈ −T−1
PT

t=1 Vit
¡
E
£
V
γi
it

¤¢−1
, and substituting for bγi (θ0) − γi0 in

the approximation for U (xit; θ0, bγi (θ0)) leads to
√
nT
³eθ − θ0

´
≈

µ
1

n

Pn
i=1 Ii

¶−1µ
1√
nT

Pn
i=1

PT
t=1 Uit

¶
−
r

n

T

µ
1

n

Pn
i=1 Ii

¶−1
1

n

nX
i=1

" PT
t=1 Vit√

TE
£
V
γi
it

¤# " 1√
T

TX
t=1

Ã
U
γi
it −

E
£
U
γiγi
it

¤
2E
£
V
γi
it

¤ Vit!#

The probability limit of the second term on the right determines the asymptotic bias of eθ. Let
β = −plim

µ
1

n

Pn
i=1 Ii

¶−1
1

n

nX
i=1

" PT
t=1 Vit√

TE
£
V
γi
it

¤#" 1√
T

TX
t=1

Ã
U
γi
it −

E
£
U
γiγi
it

¤
2E
£
V
γi
it

¤ Vit!#

We can then write

eθ ≈ θ0 +

µ
1

n

Pn
i=1 Ii

¶−1µ
1

nT

Pn
i=1

PT
t=1 Uit

¶
+ T−1β

where T−1β can be interpreted as an approximation to the bias of θ̃.

The preceding discussion indicates the existence of two sources for the asymptotic bias. The correlation

between Vit and U
γi
is is a generalized form of an endogeneity bias. Note that in linear panel models such

as the ones considered by Hahn and Kuersteiner (2002) this correlation is zero if the model only contains

exogenous regressors. With the more general non-linear models considered here it may be non-zero even if

all the regressors are strictly exogenous. The second term involves the variance and autocovariance of Vit.

This second term in general is zero in linear models irrespective of whether the regressors are endogenous or

exogenous because for linear models Uγiγi
it = 0.

To describe the nature of the bias more fully we define spectra and cross spectra at frequency zero in the

following way

fV U
γ

i ≡
P∞

l=−∞Cov
¡
Vit, U

γi
it−l

¢
, fV Vi ≡

P∞
l=−∞Cov (Vit, Vit−l) ,

ϕV U
γ ≡ limn−1

Pn
i=1

¡
E
£
V
γi
it

¤¢−1
fV U

γ

i , ϕV V ≡ 1
2
limn−1

Pn
i=1

¡
E
£
V
γi
it

¤¢−2
E
£
U
γiγi
it

¤
fV Vi .

Note that fV U
γ

i and fV Vi are cross-spectra and spectra at zero frequency of the processes Uγ
it and Vit. We

allow for cross-sectional heterogeneity by allowing fV U
γ

i and fV Vi to differ across i. Consequently, ϕV U
γ

and

ϕV V are weighted averages of the spectral quantities fV U
γ

i and fV Vi . Our bias correction is based on the

characterization that

β ≡ −I−1Ψ (3)

where Ψ ≡ ϕV U
γ − ϕV V and the existence of I−1 =

¡
limn→∞ n−1

Pn
i=1 Ii

¢−1
is justified by Condition 7 in

Section 4. We give an asymptotic justification for the approximate bias β in the next section.

If a reasonably precise estimator bβ of β is available, we would expect that bbθ ≡ bθ − T−1bβ would be less
biased than the fixed effects estimator bθ. Hahn and Newey (2002) proposed a method of characterizing
and estimating β for the static model when xit is iid. over time. In the context of the binary panel model

discussed above, this implies that their bias reduction may be used if (z0it, eit)
0 is independent over time.

4



Unfortunately, this requires that even the explanatory variable zit satisfies the independence restriction over

time, which is expected to be violated in many applications. Thus, one important difference between the

case considered in Hahn and Newey (2002) and our model is that all the elements of the second order term

of the expansion are correlated across different time periods.

Our estimate of the asymptotic bias is based on sample analogs of I and Ψ. For this purpose, we construct
sample analog estimators for E

£
V
γi
it

¤
, E

£
U
γiγi
it

¤
, fV U

γ

i , and fV Vi , and plug them into the expression for β.

We will use the hat notation to denote these sample analogs.1 Natural estimators for E
£
V
γi
it

¤
and E

£
U
γiγi
i

¤
are then given by

bE £V γi
it

¤
≡ 1

T

PT
t=1

bV γi
it ,

bE £Uγiγi
i

¤
≡ T−1

PT
t=1

bUγiγi
it ,

The estimators for spectral quantities fV U
γ

i and fV Vi are given by

bfV Uγ

i ≡
Pm

l=−m bΓV Uγ

il , bfV Vi ≡
Pm

l=−m bΓV Vil ,

where

bΓV Uγ

il ≡ T−1
max(T,T+l)P
t=max(1,l)

bVit bUγi
it−l, bΓV Vil ≡ T−1

max(T,T+l)P
t=max(1,l)

bVitV̂it−l.
The parameter m is a bandwidth parameter that needs to be chosen such that m/T 1/2 → 0 as T →∞. We
thus estimate β by

bβ ≡ −Ã 1
n

nX
i=1

bIi!−1 1
n

nX
i=1

 bfV Uγ

ibE £V γi
it

¤ − bE £Uγiγi
it

¤ bfV Vi

2
³ bE £V γi

it

¤´2


and our bias corrected estimator is given by

bbθ ≡ bθ − 1

T
bβ

For many microeconometric applications, T is relatively small so a natural choice for m would be 1 in

practice, which is the bandwidth considered in our Monte Carlo experiment reported in the next section. Our

Monte Carlo experiments also indicate that the bias of the MLE is quite small even with moderately large T ,

which is further justification to focus on cases where T is so small thatm = 1 is the only reasonable choice for

the bandwidth. Nevertheless, when T is moderately large, which is unlikely in many applications, bandwidth

selection methods developed in the time series literature could in principle be used here. The literature on

spectral density estimation has focused on three main methods. Kernel smoothing and optimal bandwidth

selection was considered by Parzen (1957). The special case of spectral estimation at zero frequency was

further analyzed by Newey and West (1987, 1994), Andrews (1991) and Andrews and Monahan (1992).

Methods for selecting the bandwidth discussed in these papers are based on minimizing the approximate

mean squared error (MSE) as a function of m and on plugging this optimal choice of m into the formula

for the spectral density. It follows immediately that our Conditions 3 and 4 discussed in Section 4 imply

that Assumption 2 of Newey and West (1994) holds uniformly in i. This suggests that a formal theory of

bandwidth choice could be based on selecting m̂i optimally for each individual time series. This choice is not

1Precise definitions can be found in Appendix A.
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likely to be optimal for Ψ however, and additional work would be needed to establish uniform convergence

of any choice of m that is individual specific. For the aforementioned reasons we do not believe that it is

worth while to develop these results in more detail.

A second approach to spectral density estimation is the cross validation procedure of Hurvich (1985),

Beltrao and Bloomfield (1987), Robinson (1991) and Velasco (2000) which has the advantage that it does

not rely on additional nuisance parameters such as formulas of the approximate MSE that are needed for

the plug in procedures. Cross validation is thus fully automatic which is not the case for the plug in

methods where the best currently available procedure by Newey and West (1994) still needs a non-automatic

bandwidth choice for the estimation of the nuisance parameters. Currently, cross-validation for a single

frequency is only considered by Velasco (2000) under conditions that are more restrictive than ours. This

indicates that more research would be needed to adapt this procedure to our application. A third method for

spectral density estimation is based on infinite order vector autoregressions (VAR(∞)) as flexible parametric
forms of the covariance structure. Such methods were proposed by Akaike (1969). Integrated MSE optimal

selection of approximating VAR(h) models was analyzed by Shibata (1981) but fully automatic versions

implementing this selection procedure do not seem to exist in the literature. Recently, fully automatic

versions of asymptotically unbiased VAR(∞) estimators were obtained by Kuersteiner (2004). In principle,
VAR approximations could be adapted to our context but this is beyond the scope of this paper.

Our formulations for estimators of fV U
γ

i and fV Vi rely on the truncated kernel. Newey and West (1994)

argue that the choice of the kernel function is of secondary importance in the performance of statistical

tests based on spectral estimates and we conjecture that this is even more so in our application. When

spectral densities such as fV U
γ

i and fV Vi are estimated in the context of constructing confidence regions or

test statistics, one needs to guarantee that the estimators are positive definite matrices. This is typically

achieved by choosing appropriate kernel functions as pointed out by Newey and West (1987) and Andrews

(1991). In the current context of bias correction, positivity of the estimates is of no concern and the main

motivation for using any kernel other than a truncated kernel disappears. On the other hand, plug-in methods

for bandwidth selection are mostly formulated for kernel functions other than the truncated kernel. If such

automated procedures were to be used then a kernel based estimate may be preferable even in our context.

As explained earlier, these problems can be neglected for the sample sizes we think are most relevant to the

bias correction problem.

3 Monte Carlo Results

In order to evaluate the quality of our bias corrected estimator, we conduct some Monte Carlo experiments.

We consider a binary response model with lagged dependent variables. Specifically, we consider a model,

where

yi0 = 1 (γi0 + z0i0ζ0 + εi0)

yit = 1 (γi0 + z0itζ0 + yi,t−1 · τ0 + εit) t = 1, . . . , T − 1; i = 1, . . . , n

By generating εit from two different distributions, we generate panel Probit and Logit models. Robert and

Tybout (1997) employed a panel Probit model, in which the coefficient of the lagged dependent variable

6



measured the importance of sunk costs in an empirical model of entry.2 We generate the strictly exogenous

regressor zit such that it is iid. N
¡
0, Idim(zit)

¢
for Probit models, and N

¡
0,
¡
π2
±
3
¢
· Idim(zit)

¢
for Logit

models. Our bθ is the maximum likelihood estimator.

For the panel Probit model with fixed effects, there does not seem to exist any estimator in the literature

that attempts to reduce the bias of the MLE. We therefore limit our analysis to a comparison of the MLE

with the bias corrected MLE for the bandwidth choice m = 1. The results are reported in Table 1. We can

see that the bias corrected MLE removes about half of the bias and RMSE. To investigate the robustness of

our bandwidth selection we compare the performance of the bias corrected estimator for alternative choices

of m where we set m = 0 or m = 2. We find that m = 1 gives the best results over all in terms of bias

reduction and RMSE.

For the panel Logit model with fixed effects, Honoré and Kyriazidou (2000) proposed an estimator that

is consistent under large n, fixed T asymptotics. We therefore compare their estimator to the MLE, and the

bias corrected MLE with m = 1. As in the panel Probit case, the bias corrected MLE removes about half

of the bias and RMSE. When dim (zit) = 1, our bias corrected estimator is slightly inferior to Honoré and

Kyriazidou’s estimator. The latter is known to have a slower rate of convergence when dim (zit) is large. We

therefore compare the properties of their estimator with ours when dim (zit) = 2. We find that, when the

dimension of zit is as small as 2, our bias corrected estimator strictly dominates Honoré and Kyriazidou’s

(2000). We conjecture that the poor performance of the Honoré and Kyriazidou estimator is due to the fact

that the zit’s are continuously distributed.3

It should be pointed out that the initial observation yi0 was generated in such a way that the stationarity

assumption is violated. Monte Carlo evidence therefore suggests that our bias correction is robust to mild

violations of the stationarity assumption.

4 Asymptotic Theory

We assume the following:

Condition 1 For each η > 0, infi
h
G(i) (θ0, γi0)− sup{(θ,γ):|(θ,γ)−(θ0,γi0)|>η}G(i) (θ, γ)

i
> 0, where bG(i) (θ, γi) ≡

T−1
PT

t=1 ψ (xit; θ, γi) and G(i) (θ, γi) ≡ E [ψ (xit; θ, γi)].

Condition 2 n, T →∞ such that n
T → κ, where 0 < κ <∞.

Condition 3 Suppose that, for each i, {xit, t = 1, 2, . . .} is a stationary mixing sequence. Let Ai
t =

σ (xit, xit−1, xit−2, ...) , Bit = σ (xit, xit+1, xit+2, ...) and αi (m) = supt supA∈Ai
t,B∈Bit+m |P (A ∩B)− P (A)P (B)|.

Assume that supi |αi (m)| ≤ Cam for some a such that 0 < a < 1 and some C > 0. We assume that

{xit, t = 1, 2, 3, ...} are independent across i.
2 It should be pointed out that they assumed the random effects model. Because there did not exist any estimator that

dealt with the incidental parameters problem with panel Probit models, it is perhaps unavoidable that they had to assume this

particular structure for the individual specific effects.
3The method Honoré and Kyriazidou depends on a bandwidth choice. In our tables we report results obtained with their

preferred choice c = 8 (their notation). Especially for the case dim(zit) = 2, which is not reported in their paper, we

experimented with c ranging from .1 to 8192 but found no significant effect on the performance of the estimator.
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Condition 4 Let ψ (xit, φ) be a function indexed by the parameter φ = (θ, γ) ∈ intΦ, where Φ is a compact,
convex subset of Rp and p ≡ dimφ = R + 1. Let ν = (ν1, ..., νk) be a vector of non-negative integers

vi, |v| =
Pk

j=1 vj and Dvψ (xit, φ) = ∂|ν|ψ (xit, φ)
±
(∂φv11 ...∂φνkk ). Assume that there exists a function

M (xit) such that |Dvψ (xit, φ1)−Dvψ (xit, φ2)| ≤M (xit) kφ1 − φ2k for all φ1, φ2 ∈ Φ and |v| ≤ 5. We also
assume that M(xit) satisfies supφ∈Φ kDvψ (xit, φ)k ≤ M(xit) and supiE

h
|M(xit)|10q+12+δ

i
< ∞ for some

integer q ≥ p/2 + 2 and for some δ > 0.

Condition 5 infi infT λiT > 0, where λiT is the smallest eigenvalue of ΣiT = Var
³
T−1/2

PT
t=1 Ui (xit; θ, γi)

´
.

Condition 6 infi |E [∂Vi (xit; θ0, γi0)/ ∂γi]| > 0.

Condition 7 Let µi1 ≤ ... ≤ µik ≤ ... ≤ µiR be the eigenvalues of Ii in ascending order. Assume that
(i) 0 < infi µi1 ≤ supi µiR < ∞; (ii) limn→∞ n−1

Pn
i=1 Ii exists; (iii) letting I ≡ limn→∞ n−1

Pn
i=1 Ii, we

assume that I is positive definite.

Condition 1 is a sufficient condition that guarantees that the parameters are identified based on time

series variation. This is a typical condition usually invoked to prove consistency of extremum estimators.

Condition 2 formalizes our asymptotic approximation, where n and T go to infinity at the same rate.

Condition 3 restricts the serial dependence in each time series {xit, t = 1, 2, . . .} as well as the moments of
Dvψ. Condition 3 also imposes stationarity, which rules out time-dummies. This is one important drawback

of our approach. Stationarity is sometimes used as a way to solve the initial conditions problem associated

with a random effects approach. Therefore, there might be less of a case of taking a fixed effects approach

under stationarity. Finally, Condition 3 imposes only mild assumptions on the behavior of xit across i. In

particular, we impose a uniform upperbound on the decay rate of temporal dependence without requiring

that dependence be homogeneous across i. Conditions 5, 6, and 7 are put in place to rule out the possibility

that the properties of any estimator can be influenced by only a small number of i’s.

We discuss in turn the additional restrictions necessary such that our examples satisfy Conditions 1-7.

Example 1 cont.: From Newey and McFadden (1994, p.2125) it follows that the Probit likelihood has a

unique maximum and E [|ψ (xit; θ, γi)|] <∞ if E [witw
0
it] is positive definite where wit = (1, z

0
it)
0. Also,

ψ (xit; θ, γi) is globally concave such that G(i) (θ, γi) has a unique global optimum. Similar arguments

hold for the Logit case. Condition 3 is satisfied if zit is a stationary mixing sequence with mixing

coefficients αi such that supi |αi (m)| ≤ Cam for some a such that 0 < a < 1 and some C > 0 because

yit is a measurable function of zit and thus inherits the mixing and stationarity properties from zit. For

Logit and Probit models all finite order derivatives of logΛ (v) exist and are continuous. This implies

that the derivatives are uniformly bounded on a compact parameter space Φ and satisfy the Lipshitz

condition of Condition 4. For the Logit model with Λ(xit, φ) = (1 + exp(γi + zitθ))
−1, it follows that all

the derivatives of logΛ(xit, φ) are of the form Dv
h
(z0itφ)

|v|i
g|v|(z0itφ) with g|v| (·) a uniformly bounded

function. The moment restrictions of Condition 4 are then satisfied if supiE
·¯̄̄
zjit

¯̄̄|v|+10q+12+δ¸
< ∞

for j = 1, ..., R where zjit is the j-th element of zit. Similar results hold for the probit model where we

also require the same moment bounds on zjit. If the regressors are assumed to have bounded support,

this requirement is automatically satisfied. For the Probit model Conditions 5, 6 and 7 hold if E [witw
0
it]

is positive definite uniformly in i by the results of Newey and McFadden (1994, p.2147 and Footnote

29).
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Example 2 cont.: De Jong and Woutersen (2003) discuss conditions for consistency which are analogous

to the case in Example 1 such that for wit = (1, yit−1, z0it)
0 we need E [witw

0
it] nonsingular. Stationarity

and exponential mixing conditions hold if zit is strictly stationary with mixing coefficients αi such that

supi |αi (m)| ≤ Cam for some a such that 0 < a < 1 and some C > 0 and εit is iid. Then, by de

Jong and Woutersen (2003, Theorem 2), it follows that (yit, zit) is strong mixing with strong mixing

coefficients βi = C0 (C1 exp(−C2m) + αi (m)) for positive constants C0, C1, C2 and can be assumed to

be strictly stationary. The moment bounds are satisfied as before if supiE
·¯̄̄
zjit

¯̄̄|v|+10q+12+δ¸
< ∞

and the remaining conditions hold under the same assumptions as previously discussed.

Example 3 cont.: Identification as in Condition 1 follows if
¡
β0, τ0, γi0, σ

2
iε

¢
∈ intΘ, E [witw

0
it] is positive

definite for wit = (1, yit−1, z0it)
0 and εit is iid Gaussian from Amemiya (1973) and Olsen (1978). In

this example it is not clear whether the mixing property can be established as before. We use it to

illustrate the role that the mixing condition plays in our proofs and how it can be relaxed. Inspection

of our proofs shows that the mixing condition is only used as a convenient way to summarize the decay

pattern of autocovariances of various nonlinear functions of xit. In particular, our results depend on

the moment inequality of Hall and Heyde (1980, Corollary A.2). Assume that |τ0| < 1, εit is iid across
i and t with εit ∼ N

¡
0, σ2ε

¢
and zit is strictly stationary and mixing with supi |αi (m)| ≤ Cam for some

a such that 0 < a < 1 and some C > 0 and supiE [|zit|
r] < ∞ for some r > 7 + 10q + 12 + δ with

q ≥ p/2 + 2 and for some δ > 0. Let yit and ψ (xit; θ, γi) be as defined before in Example 3. Then,

Condition 4 is satisfied, xit can be assumed to be strictly stationary and for |v| ≤ 5 autocovariances
of Dvψ (xit, φ) decay exponentially uniformly for φ ∈ intΘ.4 Conditions 5, 6 and 7 hold if E [witw

0
it]

is positive definite uniformly in i by the results of Amemiya (1973).

It can be shown that the parameter estimates are consistent under the alternative asymptotics: For every

η > 0,

Pr
h¯̄̄bθ − θ0

¯̄̄
≥ η

i
= o

¡
T−1

¢
(4)

and

Pr

·
max
1≤i≤n

|bγi − γi0| ≥ η

¸
= o

¡
T−1

¢
. (5)

See Appendix C for a proof. Although these consistency results are not directly useful in understanding the

asymptotic bias of bθ discussed below, establishing uniform consistency for the parameter estimates is the key
to constructing consistent estimates of the asymptotic bias. This is because the asymptotic bias implicitly

depends on bθ and γ̂i, and the natural estimator using sample analogs requires substituting bθ and bγi for θ0
and γi0. Uniform consistency of the fixed effects can also be useful when estimates of the fixed effects are

necessary to evaluate the average partial effects of zit on yit in the panel Probit example.

We now present a theoretical justification of the asymptotic bias formula, which is based on a higher

order expansion. The expansion is defined in terms of functional derivatives of the population distrib-

ution of xit in the direction of the empirical distribution function of the sample. To describe the ex-

pansion let F ≡ (F1, . . . , Fn) denote the collection of (marginal) distribution functions of xit and let

4A proof is available upon request.
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bF ≡ ³ bF1, . . . , bFn´, where bFi denotes the empirical distribution function for the i-th observation. Define

F (�) ≡ F + �
√
T
³ bF − F

´
for � ∈

£
0, T−1/2

¤
. For each fixed θ and �, let γi (θ, Fi (�)) be the solution to

the estimating equation 0 =
R
Vi [θ, γi (θ, Fi (�))] dFi (�), and let θ (F (�)) be the solution to the estimating

equation 0 =
Pn

i=1

R
Ui (xit; θ (F (�)) , γi (θ (Fi (�)) , Fi (�))) dFi (�). By a Taylor series expansion, we have

θ
³ bF´− θ (F ) =

1√
T
θ� (0) +

1

2

µ
1√
T

¶2
θ�� (0) +

1

6

µ
1√
T

¶3
θ��� (e�) , (6)

where θ� (�) ≡ dθ (F (�))/ d�, θ�� (�) ≡ d2θ (F (�))
±
d�2, ..., and e� is somewhere in between 0 and T−1/2.

Lemma 2 in the Appendix allows us to ignore the last term. We will therefore work with the expansion

√
nT
³
θ
³ bF´− θ (F )

´
=
√
nT

1√
T
θ� (0) +

√
nT
1

2

µ
1√
T

¶2
θ�� (0) + op (1) . (7)

The term

√
nθ� (0) =

µ
1

n

Pn
i=1 Ii

¶−1µ
1√
nT

Pn
i=1

PT
t=1 Uit

¶
is the efficient score for θ evaluated at γi0. It admits an asymptotically normal distribution centered at zero

because it is essentially an average over independent, mean zero random variables. It is shown in Appendix

C that the second order term in our expansion takes the form

1

2

p
n/Tθ�� (0) = −

r
n

T

µ
1

n

Pn
i=1 Ii

¶−1
1

n

nX
i=1

" PT
t=1 Vit√

TE
£
V
γi
it

¤#" 1√
T

TX
t=1

Ã
U
γi
it −

E
£
U
γiγi
it

¤
2E
£
V
γi
it

¤ Vit!#+op (1) .

It turns out that under our asymptotics where n and T tend to infinity jointly, the first term on the right of

(7) determines the asymptotic distribution of the estimator, while the second term turns out to be a pure

bias term. In the proof of Theorem 1 in the Appendix, it is shown that

1
√
n
√
T

nX
i=1

TX
t=1

Uit → N (0,Ω) , (8)

where Ω ≡ limn n
−1Pn

i=1 ΣiT and ΣiT ≡ Var
³
T−1/2

PT
t=1 Ui (xit; θ, γi)

´
. It may be interesting to point out

that the Central Limit result in (8) is based on the independence across individuals i of the triangular array

viT = T−1/2
PT

t=1 Ui (xit; θ, γi) where viT has uniformly (in i and T ) bounded variance ΣiT . In other words,

the mixing and stationarity properties of the process xit do not play a major role in this result, except to

guarantee the uniform boundedness of ΣiT . We also point out that we do not need to impose homogeneity

of the distribution of xit across individuals, as long as moments are uniformly bounded across i.

In the same way we show that

1

n

nX
i=1

" PT
t=1 Vit√

TE
£
V
γi
it

¤#" 1√
T

TX
t=1

Ã
U
γi
it −

E
£
U
γiγi
i

¤
2E
£
V
γi
it

¤ Vit!# = Ψ+ op (1) . (9)

In this case the stationarity assumptions for xit do help to simplify the form of Ψ but it is clear that more

general results could be obtained without this restriction.

While stationarity assumptions do not play a crucial role in the representation of our main result in

Theorem 1 they are used in bounding the error terms in the approximation of the first order condition.
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Our results rely on an extension of a Lemma by Lahiri (1992) where we use the stationarity assumption to

simplify the argument. It is possible that a different proof strategy could be used to relax this restriction

but this question will be left for future research.

The asymptotic distribution of the fixed effects estimator bθ is obtained by combining (8) and (9):
Theorem 1 Assume that Conditions 1, 2, 3, 4, 5, 6, and 7 hold. Then

√
nT
³bθ − θ0

´
→ N

³
β
√
κ, I−1Ω (I 0)−1

´
where β ≡ −I−1Ψ.

Proof. See Appendix C.

We can further show that the bias corrected estimator removes the asymptotic bias:

Theorem 2 Assume that Conditions 1, 2, 3, 4, 5 and 7 hold. Let m,T →∞ such that m/T 1/2 → 0. Then,
√
nT

µbbθ − θ

¶
→ N

¡
0, I−1ΩI−1

¢
, where bbθ ≡ bθ − 1

T
bβ.

Proof. See Appendix C.

5 Summary

In this paper, we provide a simple characterization of the asymptotic bias of a fixed effects estimator for

dynamic nonlinear panel models with fixed effects. The asymptotic bias was based on the “large n, large

T” asymptotics adopted by, e.g., Hahn and Kuersteiner (2002) and Hahn and Newey (2002). A method of

reducing bias based on these expansions was developed.

The method we propose is quite flexible and our examples show that it can be applied to a variety of,

mainly parametric, non-linear models. For some of these models there do not seem to exist any adequate

alternative estimators which are less biased than the MLE in finite samples. The dynamic panel probit model

is an example of such a model. We investigate the quality of our bias correction for this particular example

and the closely related dynamic panel Logit model. For the latter there does exist an alternative estimator

by Honoré and Kyriazidou (2000). We expect our procedure to perform relatively well compared to this

particular alternative procedure in situations where there is a reasonable amount of time series variation

in the data, the dimension of the regressor space is relatively large and at least some of the regressors are

continuously distributed. We conduct a Monte Carlo experiment to shed some light on the data-requirements

for our method to perform well.

As is apparent from the previous discussion, the quality of our approximation may be poor in some models

or for certain type of data sets, especially when T is much smaller than in our Monte Carlo experiments. For

linear models there are a number of alternative approaches to the estimation of models with individual specific

fixed effects. One example of a method with desirable finite sample properties is the quasi MLE developed

for panel vector autoregressive models by Binder, Hsiao, and Pesaran (2000). It might be interesting to

develop a nonlinear analog of this procedure.
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Appendix

A Sample Analogs

bVit ≡ ∂ψ
³
xit;bθ, bγi´
∂γi

, bV γi
it ≡

∂2ψ
³
xit;bθ, bγi´
∂γ2i

,

bρi ≡
T−1

TX
t=1

∂2ψ
³
xit;bθ, bγi´
∂γ2i

−1T−1
TX
t=1

∂2ψ
³
xit;bθ, bγi´
∂θ∂γi

 ,

bUit ≡ ∂ψ
³
xit;bθ, bγi´
∂θ

− bρi · ∂ψ
³
xit;bθ, bγi´
∂γi

,

bUγi
it ≡

∂2ψ
³
xit;bθ, bγi´
∂γi∂θ

− bρi · ∂2ψ
³
xit;bθ, bγi´
∂γ2i

,

bUγiγi
it ≡

∂3ψ
³
xit;bθ, bγi´
∂γ2i ∂θ

− bρi · ∂3ψ
³
xit;bθ, bγi´
∂γ3i

.

B Auxiliary Lemmas

We present a few Lemmas needed in the proof of the main results of Section 4. All the proofs are available

upon request.

Lemma 1 For all η > 0 it follows that

Pr

"
max
1≤i≤n

sup
(θ,γ)

¯̄̄ bG(i) (θ, γ)−G(i) (θ, γ)
¯̄̄
≥ η

#
= o

¡
T−1

¢
Lemma 2 Pr

·
max0≤�≤ 1√

T
|θ��� (�)| > C

³
T

1
10−υ

´3¸
= o

¡
T−1

¢
for some constant C > 0 and 0 < υ <

(100q + 120)−1.

Lemma 3 Assume that xit satisfies Condition 3 and let ξ (xit, φ) be a function indexed by the parameter

φ ∈ intΦ where Φ is a convex subset of Rp. For any sequence φi ∈ intΦ assume E [ξ (xit, φi)] = 0. Moreover
supφ kξ (xit, φ)k ≤M (xit) for some M (xit) such that E

h
M (xit)

4
i
<∞. Let ΣnT =

Pn
i=1Σ

ξξ
iT with Σ

ξξ
iT =

Var
³

1√
T

PT
t=1 ξ (xit, φi)

´
. Denote the smallest eigenvalue of ΣξξiT by λ

ξ
iT and assume that infi infT λξiT > 0.

Then 1√
nT

Pn
i=1

PT
t=1 ξ (xit, φi)

d→ N
¡
0, fξξ

¢
and supi

°°°ΣξξiT − fξξi

°°°→ 0, where fξξ ≡ limn−1
Pn

i=1 f
ξξ
i with

fξξi ≡
P∞

j=−∞E
£
ξ (xit, φi) ξ (xit−j , φi)

0¤.
Lemma 4 Let ξ (xit, φ) be a function indexed by the parameter φ ∈ Φ where Φ is a convex subset of

Rp with E [ξ (xit, φ)] = 0 for all i, t and φ ∈ Φ. Assume that there exists a function M (xit) such that

|ξ (xit, φ1)− ξ (xit, φ2)| ≤ M (xit) kφ1 − φ2k for all φ1, φ2 ∈ Φ and supφ |ξ (xit, φ)| ≤ M(xit). For each i,

let xit be a α-mixing process with exponentially decaying mixing coefficients αi (m) satisfying supi |αi (m)| ≤
Cam for some a such that 0 < a < 1 and some 0 < C <∞. Let q denote a positive integer such that q ≥ p+4

2 ,
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where p = dimφ. We also assume that E
h
|M (xit)|10q+12+δ

i
< ∞ for some δ > 0. Finally, assume that

n = O (T ). We then have Pr
h
maxi

¯̄̄
1√
T

PT
t=1 ξ (xit, φi)

¯̄̄
> T

1
10−υ

i
= o

¡
T−1

¢
for 0 < υ < (100q + 120)−1.

Here, {φi} is an arbitrary nonstochastic sequence in Φ.

Lemma 5 Let Conditions 1, 2, 3, 4 and 5 be satisfied. Then Pr
h
maxi sup�∈[0,1/

√
T ] |bγ�i (�)| > T

1
10−υ

i
=

o
¡
T−1

¢
, Pr

h
maxi |bγ�i (0)| > T

1
10−υ

i
= o

¡
T−1

¢
, Pr

·
maxi sup�∈[0,1/

√
T ] |bγ��i (�)| > ³T 1

10−υ
´2¸

= o
¡
T−1

¢
,

and Pr
h
maxi

¯̄̄√
T (bγi − γi0)

¯̄̄
> T 1/10−υ

i
= o

¡
T−1

¢
for 0 < υ < (100q + 120)−1.

Lemma 6 Let kit = k (xit; θ0, γi0) and bkit = k
³
xit;bθ, bγi´ where xit satisfies Condition 3, kit satisfies

Condition 4 and bθ, bγi are defined in (1). Assume that E [kit] = 0 for i, t. Let Ai be conformable matrix of

constants such that maxi kAik < ∞. Let fkki =
P∞

l=−∞E
£
kitk

0
it−l

¤
and fkk = limn→∞ n−1

Pn
i=1Aif

kk
i .

Then, 1n
Pn

i=1Ai

³
1
T

Pm
l=−m

Pmin(T,T+l)
t=max(1,l)

bkitbk0it−l´− fkk = op(1), where m,T →∞ such that m = o
¡
T 1/2

¢
.

C Proof of Main Results

Proposition 1 Assume that Conditions 1, 2, 3, 4, 5, 6, and 7 hold. Then, for every η > 0, Pr
h¯̄̄bθ − θ0

¯̄̄
≥ η

i
=

o
¡
T−1

¢
and Pr [max1≤i≤n |bγi − γi0| ≥ η] = o

¡
T−1

¢
.

Proof. The result follows by standard arguments from Lemma 1.

Proof of Theorem 1:. We first obtain a Taylor series expansion in � for θ (F (�)) as defined in Section

4. By Lemma 2 we only need to consider the first two terms in the Taylor expansion of θ (F (�)) formally

stated in equation (6). Let

hi (·, �) ≡ Ui (·; θ (F (�)) , γi (θ (F (�)) , Fi (�))) (10)

such that θ (F (�)) solves the first order condition which may be written as

0 =
1

n

nX
i=1

Z
hi (·, �) dFi (�) (11)

Differentiating repeatedly with respect to �, we obtain

0 =
1

n

nX
i=1

Z
dhi (·, �)

d�
dFi (�) +

1

n

nX
i=1

Z
hi (·, �) d∆iT (12)

0 =
1

n

nX
i=1

Z
d2hi (·, �)

d�2
dFi (�) + 2

1

n

nX
i=1

Z
dhi (·, �)

d�
d∆iT (13)

0 =
1

n

nX
i=1

Z
d3hi (·, �)

d�3
dFi (�) + 3

1

n

nX
i=1

Z
d2hi (·, �)

d�2
d∆iT (14)

where ∆iT ≡
√
T
³ bFi − Fi

´
.

Evaluating (12) at � = 0, and noting that E
£
U
γi
i

¤
= 0, we solve5 for θ� (0) = dθ (F (�)) /d� such that

θ� (0) =

Ã
1

n

nX
i=1

Ii

!−1Ã
1

n

nX
i=1

Z
Uid∆iT

!
(15)

5More detailed steps of this derivation are available on request.
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Using Lemma 3, we show that

1
√
n
√
T

nX
i=1

TX
t=1

Uit → N (0,Ω)

and

√
nT

1√
T
θ� (0) =

Ã
1

n

nX
i=1

Ii

!−1Ã
1

√
n
√
T

nX
i=1

TX
t=1

Ui

!
→ N

³
0,I−1Ω (I 0)−1

´
We now turn to the analysis of the term θ�� (0) = d2θ (F (�)) / (d�)

2 which depends on the estimator for

γ̂i and reflects the impact of incidental parameters on the bias of θ̂. In order to evaluate this impact we need

to analyze the first order conditions for γ̂i. In the ith observation, γi (θ, Fi (�)) solves the estimating equationZ
Vi (·; θ, γi (θ, Fi (�))) dFi (�) = 0 (16)

Differentiating the LHS with respect to θ and �, we obtain

0 =

Z
∂Vi (·, θ, �)

∂θ
dFi (�) +

µZ
∂Vi (·, θ, �)

∂γi
dFi (�)

¶
∂γi (θ, Fi (�))

∂θ
,

0 =

µZ
∂Vi (·, θ, �)

∂γi
dFi (�)

¶
∂γi (θ, Fi (�))

∂�
+

Z
Vi (·, θ, �) d∆iT .

Equating these equations to zero and solving for derivatives of γi evaluated at � = 0 gives

γθi = −
E
£
∂Vi
∂θ

¤
E
h
∂Vi
∂γi

i , (17)

γ�i = −
PT

t=1 Vit√
TE

h
∂Vi
∂γi

i = −T−1/2PT
t=1 Vit

E
h
∂Vi
∂γi

i , (18)

where γθi ≡
∂γi(θ,Fi(0))

∂θ , and γ�i ≡
∂γi(θ,Fi(0))

∂� .

Now, evaluating each term of (13) at � = 0, and noting that E
£
U
γi
i

¤
= 0, we obtain

0 =
1

n

nX
i=1

E

·
∂Ui
∂θ0

¸
θ�� (0)

+
2

n

nX
i=1

γ�i ·E
·
∂2Ui
∂θ0∂γi

¸
θ� (0) +

2

n

nX
i=1

γ�i
¡
θ� (0)

0
γθi
¢
·E
·
∂2Ui
∂γ2i

¸

+G + 2

n

nX
i=1

θ� (0)
0
γθi ·E

·
∂2Ui
∂θ0∂γi

¸
θ� (0) +

1

n

nX
i=1

¡
θ� (0)

0
γθi
¢2 ·E ·∂2Ui

∂γ2i

¸

+
1

n

nX
i=1

(γ�i)
2 ·E

·
∂2Ui
∂γ2i

¸

+
2

n

nX
i=1

µZ
∂Ui
∂θ0

d∆iT

¶
θ� (0) +

2

n

nX
i=1

¡
θ� (0)0 γθi

¢
·
Z

∂Ui
∂γi

d∆iT +
2

n

nX
i=1

γ�i ·
Z

∂Ui
∂γi

d∆iT

where

G ≡
·
θ� (0)0

µ
1
n

Pn
i=1E

·
∂2U

(1)
i

∂θ∂θ0

¸¶
θ� (0) · · · θ� (0)0

µ
1
n

Pn
i=1E

·
∂2U

(R)
i

∂θ∂θ0

¸¶
θ� (0)

¸0
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from which we obtainÃ
1

n

nX
i=1

Ii

!
θ�� (0) =

1

n

nX
i=1

(γ�i)
2 ·E

·
∂2Ui
∂γ2i

¸
+
2

n

nX
i=1

γ�i ·
Z

∂Ui
∂γi

d∆iT + T (19)

for some T = Op

¡
n−1

¢
. (Proof is available upon request.) It follows that

√
nT
1

2

µ
1√
T

¶2
θ�� (0)

= −
r

n

T

Ã
1

n

nX
i=1

Ii

!−1 1n
nX
i=1

 1√
T

TX
t=1

Vit

E
h
∂Vi
∂γi

i
 1√

T

TX
t=1

U
γi
i −

E
£
U
γiγi
i

¤
2E
h
∂Vi
∂γi

i Vit
+ op (1)

It remains to establish the limiting behavior of θ�� (0) . Let ZiT ≡
·

1√
T

PT
t=1

Vit

E
h
∂Vi
∂γi

i ¸ · 1√
T

PT
t=1

µ
U
γi
i −

E[Uγiγi
i ]

2E
h
∂Vi
∂γi

i Vit
¶¸
.

Then, ZiT are independent across i such that

E [Zit] =
ΣV UiT

E
h
∂Vi
∂γi

i − E
£
U
γiγi
i

¤
2
³
E
h
∂Vi
∂γi

i´2ΣV ViT
where ΣV UiT ≡ T−1

PT
t,s=1E

h
VitU

γi0
i

i
and ΣV ViT ≡ T−1

PT
t,s=1E [VitV

0
is]. Next note that

Var(ZiT ) = T−2
TX

t1,...,t4=1


E
h
Vit1Vit4U

γi
it2
U
γ0i
it3

i
− ΣV UiT ΣV U 0iT³

E
h
∂Vi
∂γi

i´2
−
E
£
U
γiγi
it3

¤ ³
E
h
Vit1Vit4Vit3U

γ0i
it2

i
− ΣV ViT ΣV U 0iT

´
2
³
E
h
∂Vi
∂γi

i´3
−
¡
E
£
Vit1Vit4Vit2U

γi
it3

¤
− ΣV ViT ΣV UiT

¢
E
£
U
γiγi
it2

¤
2
³
E
h
∂Vi
∂γi

i´3
+
E
£
U
γiγi
it2

¤
E
£
U
γiγi
it3

¤0 ¡
E [Vit1Vit2Vit3Vit4 ]− ΣV ViT ΣV ViT

¢
4
³
E
h
∂Vi
∂γi

i´4


Note that Vitk , U
γi
itk0

are random variables measurable with respect to the filtration generated by xit. By

Condition 4, sufficient moments exist to apply Corollary A.2 of Hall and Heyde (1980, p.278) as well as

Lemma 1 of Andrews (1991). First note that for any element (j1, j2) we have

E
h
Vit1Vit4U

γi,j1
it2

U
γ0ij2
it3

i
−
£
ΣV UiT Σ

V U 0
iT

¤
j1,j2

= E [Vit1Vit4 ]E
h
U
γi,j1
it2

U
γ0ij2
it3

i
+ E

h
Vit1U

γ0ij2
it3

i
E
h
Vit4U

γi,j1
it2

i
+ Cum

³
Vit1 , Vit4 , U

γi,j1
it2

, U
γ0ij2
it3

´
where the fourth order cumulant Cum

³
Vit1 , Vit4 , U

γi,j1
it2

, U
γ0ij2
it3

´
is uniformly summable. For δ > 0 and some

constant 0 < c <∞ it follows from Corollary A.2 of Hall and Heyde (1980, p.278) and Condition 3 that

sup
i

¯̄̄
E
h
Vit1U

γi,j1
it2

i¯̄̄
≤ 8c

³
E
h
|Vit1 |

2+δ
i´ 1

2+δ

µ
E

·¯̄̄
U
γi,j1
it2

¯̄̄2+δ¸¶ 1
2+δ ³

a
δ

2+δ

´|t1−t2|
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with similar inequalities holding for the remaining second moments. These arguments establish that

sup
i

¯̄̄̄
¯T−2

TX
t1,...,t4=1

E
h
Vit1Vit4U

γi
it2
U
γ0i
it3

i
− ΣV UiT ΣV U 0iT

¯̄̄̄
¯ = O(1)

and the same can be established for the remaining terms in Var(ZiT ). By the Markov inequality it follows

that

Pr

·¯̄̄̄
1

n

Pn
i=1 (ZiT −E [ZiT ])

¯̄̄̄
> η

¸
<
supiVar(ZiT )

nη
→ 0

such that 1
n

Pn
i=1 ZiT = 1

n

Pn
i=1E [ZiT ] + Op(n

−1/2). By applying Lemma 3 to ξ = (V,Uγ), we obtain

supi
¯̄
ΣV U

γ

iT − fV U
γ

i

¯̄
→ 0 and supi

¯̄
ΣV ViT − fV Vi

¯̄
→ 0 as T → ∞. Uniformity of convergence then implies

that joint and iterated limits exist and agree such that 1
n

Pn
i=1E [ZiT ]→ Ψ. Therefore, we have

√
nT
1

2

µ
1√
T

¶2
θ�� (0) = −

r
n

T

Ã
1

n

nX
i=1

Ii

!−1
Ψ+ op (1)

and the result of the Theorem follows immediately upon combining the results for θ� (0) and θ�� (0) .

Proof of Theorem 2:. We note that β̂ depends on the estimators θ̂ and γ̂i. We obtain feasible

versions of γ̂i by substituting θ̂ in the criterion function and maximizing with respect to γi such that γ̂i (�)

solves bγi (�) ≡ argmaxa R ψ ³xit;bθ (�) , a´ dFi (�). Using the same arguments as earlier, we are looking for
the expansion bγi (�)−γi0 = 1√

T
bγ�i (0)+ 1

2T bγ��i (�̃) for some �̃ ∈ £0, T−1/2¤, which can be derived from the first
order condition 0 =

R
vi (·, �) dFi (�), where vi (·, �) ≡ Vi (θ (F (�)) , γi (Fi (�))). Considering the expansion forbγi (�)− γi0 is useful in establishing uniform rates of convergence for γ̂i across i which in turn are needed to

prove that β̂ − β = op (1) . Differentiating the first order condition repeatedly with respect to �, we obtain

0 =

Z
dvi (·, �)

d�
dFi (�) +

Z
vi (·, �) d∆iT (20)

0 =

Z
d2vi (·, �)

d�2
dFi (�) + 2

Z
dvi (·, �)

d�
d∆iT (21)

From (20), we obtain

bγ�i (0) = − (E [V γ
i ])
−1
µ
1√
T

PT
t=1

∂ψ (xit; θ0, γi0)

∂γ
+E

£
V θ
i

¤
θ� (0)

¶
(22)

bγ�i (�) = −
µZ

∂vi (·, �)
∂γi

dFi (�)

¶−1 ·Z µ
∂vi (·, �)
∂θ0

¶
dFi (�) θ

� (�) +

Z
vi (·, �) d∆iT

¸
(23)

where θ� (0) is defined in (15). From (21), we also obtain a characterization of bγ��i (�)
0 = θ� (�)0

Z
∂vi (·, �)
∂θ∂θ0

dFi (�) θ
� (�) +

Z
∂vi (·, �)
∂θ0

dFi (�) θ
�� (�)

+2

Z
∂vi (·, �)
∂θ0∂γi

dFi (�) θ
� (�) bγ�i (�) + Z ∂2vi (·, �)

(∂γi)
2 dFi (�) (bγ�i (�))2

+

Z
∂vi (·, �)
∂γi

dFi (�) bγ��i (�) + Z ∂vi (·, �)
∂θ0

d∆iT θ
� (�) +

Z
∂vi (·, �)
∂γi

d∆�
iTbγi (�) (24)
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We use these results to show that bβ−β = op(1). First consider bE £V γi
i

¤
= 1

T

PT
t=1 V

γi
it

³
xit;bθ, bγi´. We have

°°° bE £V γi
i

¤
−E

£
V
γi
i

¤°°° ≤
°°°°° 1T

TX
t=1

V
γi
it

³
xit;bθ, bγi´− 1

T

TX
t=1

V
γi
it (xit; θ0, γi0)

°°°°°
+

°°°°° 1T
TX
t=1

V
γi
it (xit; θ0, γi0)−E

£
V
γi
it (xit; θ0, γi0)

¤°°°°°
≤

Ã
1

T

TX
t=1

kM(xit)k
!³°°°bθ − θ

°°°+max
i
|bγi − γi0|

´
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i

°°°°° 1T
TX
t=1

V
γi
it (xit; θ0, γi0)−E

£
V
γi
it (xit; θ0, γi0)

¤°°°°°
so that
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i

°°° bE £V γi
i

¤
−E

£
V
γi
i

¤°°° ≤
Ã
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i

1

T

TX
t=1

kM(xit)k
!³°°°bθ − θ

°°°+max
i
|bγi − γi0|

´
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i

°°°°° 1T
TX
t=1

V
γi
it (xit; θ0, γi0)−E

£
V
γi
it (xit; θ0, γi0)

¤°°°°°
By Lemma 4 the second term tends to zero with probability 1−o(T−1). Applying Lemmas 4 and 5 to the first
term, we obtain maxi

°°° bE £V γi
i

¤
−E

£
V
γi
i

¤°°° = op (1). In the same way, we obtain maxi
°°° bE £V θ

i

¤
−E

£
V θ
i

¤°°° =
op (1) and maxi

°°° bE £Uγiγi
i

¤
−E

£
U
γiγi
i

¤°°° = op (1). Let bE £V γi
i

¤
= E

£
V
γi
i

¤
+ op(1), which holds uniformly

in i. Thus, maxi
°°°bIi − Ii°°° ≤ supiE [kM(xit)k]

³°°°bθ − θ
°°°+maxi |bγi − γi0|

´
+ op (1). Since |bγi − γi0| ≤

1√
T
|bγ�i (0)| + 1

2T |bγ��i (�̃)| with maxi T− 1
10 |bγ�i (0)| = op(1) and maxi T−

2
10 |bγ��i (�̃)| = op(1) by Lemma 5, it

follows that maxi
°°°bIi − Ii°°° = op(1) such that n−1

Pn
i=1

bIi − I = op(1).

Using these results we now have

1

n

nX
i=1

" bfV Uγ

ibE £V γi
it

¤ − bfV Uγ

i

E
£
V
γi
it

¤# = op (1) ,

1

n

nX
i=1

 bE £Uγiγi
i (xit; θ, γi)

¤ bfV Vi

2
³ bE £V γi

it

¤´2 −
E
£
U
γiγi
i (xit; θ, γi)

¤ bfV Vi

2
¡
E
£
V
γi
it

¤¢2
 = op (1) .

In order to establish the result we thus need to apply Lemma 6 to show that

1

n

nX
i=1

" bfV Uγ

i − fV U
γ

i

E
£
V
γi
it

¤ #
= op (1) ,

1

n

nX
i=1

E £Uγiγi
i (xit; θ, γi)

¤ ³ bfV Vi − fV Vi

´
¡
E
£
V
γi
it

¤¢2
 = op (1) .

The result follows by Lemma 6 since inf
¯̄
E
£
V
γi
it

¤¯̄
> 0 by Condition 6 and

°°E £Uγiγi
i (xit; θ, γi)

¤°° ≤
E [M (xit)] <∞.
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