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NOTES AND COMMENTS

A UNIFORM LAW OF LARGE NUMBERS FOR DEPENDENT
AND HETEROGENEOUS DATA PROCESSES

By BENEDIKT M. POTSCHER AND INGMAR R. PRUCHA!

1. INTRODUCTION

UNIFORM LAWS OF LARGE NUMBERS (ULLNs) constitute important tools in proving
consistency of estimators in nonlinear econometric models. ULLNs consider sums of the
form: n~'Lr_,[q,(z,0) — Eq,(z,,0)], where (z,) denotes a stochastic data generating
process that takes its values in a space Z, 0 is an element of the parameter space ©, and
q,: Z X © - R. ULLNS provide conditions under which the above sum converges to zero
uniformly over the parameter space.

Hoadley (1971) introduced a ULLN that allows for non-ii.d. data processes. This
ULLN (or some modified version of it) has been used widely in the recent econometric
literature, see e.g. Bates and White (1985), Domowitz and White (1982), Levine (1983),
White (1980), and White and Domowitz (1984). However, Andrews (1987) and Potscher
and Prucha (1986a,b) point out that the uniform continuity assumption maintained by
this ULLN is severe. It precludes the analysis of many estimators and models of interest
in economics. This suggests the need for alternative ULLNs. We note that in the above
papers by Bates, Domowitz, Levine, and White the proofs of theorems regarding consis-
tency are such that Hoadley’s ULLN can be replaced by some alternative ULLN. Hence
the theorems can be readily rectified and/or restored to their intended generality by the
use of an alternative ULLN accompanied by a corresponding change in the catalogs of
assumptions. For a detailed discussion of this issue see, e.g., Potscher and Prucha (1986b).

The purpose of the present note is to introduce an alternative generic ULLN. The
ULLN is generic in the sense that it transforms pointwise laws of large numbers into
corresponding uniform ones. It maintains a set of assumptions that is relatively easy to
verify and allows at the same time the analysis of a wide variety of estimators and models
of interest in economics. The ULLN allows for temporal dependence and heterogeneity of
the data process (z,) as well as for heterogeneity in the functions g,.> In addition to giving
conditions under which n~Y"_,[q,(z,,0) — Eq,(z,,9)] converges to zero uniformly, we
also give additional conditions which guarantee that n~'¥7_,4,(z,,8) converges uniformly
to a finite limit. This latter ULLN is essentially a generic generalization of ULLNSs given
in Bierens (1981, 1984), Potscher and Prucha (1986a), and is closely related to results in
Hansen (1982).

In a recent paper, Andrews (1987) introduces an alternative generic ULLN based on the
assumption that g,(z, 0) satisfies a Lipschitz-type smoothness condition with respect to 6.
In contrast, the generic ULLN presented in this paper assumes that g,(z,8) satisfies a
continuity-type condition jointly in z and 0. Therefore, the two ULLNs complement each
other. Practically, Andrews’ ULLN imposes more of a smoothness condition on the
parameters, while the ULLN introduced here imposes more of a smoothness condition on
the data. As an illustration of the difference between the two ULLNSs, we note that the

'We would like to thank Charles Bates, Manfred Deistler, lan Domowitz, Ronald Gallant, Nanhua
Hu, Harry Kelejian, Whitney Newey, Ching-Zong Wei, Halbert White, Ernest Zampelli, the referees
and co-editor for helpful comments. We assume responsibility, however, for any errors. The research
was supported by the Max Kade Foundation and by the C. V. Starr Center’s Focus Program for
Capital Formation, Technological Change, Financial Structure, and Tax Policy.

2In Potscher and Prucha (1986b), we derive also a more general generic ULLN than that presented
here, at the expense of a more complex catalog of assumptions and a more complex proof.
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former ULLN does not, e.g., readily apply to all functions g,(z, 8) = q(z, §) where g(z, 8)
is jointly continuous, whereas the latter ULLN does. We also observe that our continuity-
type smoothness condition should be easy to verify.

As a technical observation we note that the proofs of most ULLNs, including those
mentioned above, are based on an approximation technique dating back to Wald (1949).
This technique reduces the proof essentially to a verification of a single condition. Several
authors refer to this condition (formulated within contexts of varying generality) as the
first moment continuity condition; see e.g. Amemiya (1985), Andrews (1987), Hansen
(1982), and Newey (1987). Therefore all of the above mentioned ULLNS differ in essence
only in the way this first moment continuity condition is verified from basic assumptions.

2. A UNIFORM LAW OF LARGE NUMBERS

Let (£2,%, P) be a probability space and (O, p) a (nonempty) metric space with metric
p. (We note that none of the subsequent results and conditions depend on the metric
structure of (O, p); they only depend on the topology induced on @ by the metric p. The
choice of a fixed metric is only made for convenience.) Let (z,: ¢t €N) be a stochastic
process defined on (£, %, P) with values in a (nonempty) measurable space (Z, #). For
ease of exposition we first take Z to be a closed subset of R® and # to be the
corresponding Borel o-field; more general choices for Z will be discussed later. Our
generic ULLN is based on the following assumptions:

ASSUMPTION 1: O is compact.

ASSUMPTION 2 (Smoothness Condition): ¢,(z,0)=XK_,r,,(2)s,,(z,0) where the r,,
are %-measurable real functions for all teN and 1< k<K, and the family {s,,(z,0):
t €N} of real functions is equicontinuous on Z X O for all 1 < k <K, i.e., sup, < n|5:,(2, 9)
— 5,,(2°,8%)| = 0 for (2,0) > (2°,68°) for all (z°,6°) € Z X © and each 1 < k < K.

Equicontinuity on Z X @ is, of course, defined w.r.t. the product topology on Z X ©,
where Z carries the standard Euclidean topology. Observe that Assumption 2 allows for
discontinuities in the data z, given those discontinuities can be “separated” from the
parameters 6. (As a consequence, this assumption covers, e.g., the case of the Tobit
log-likelihood function where the r,, represent indicator functions.) Assumption 2 is
weaker than the assumption that the family { ¢,(z, 8): ¢ € N} is equicontinuous. The latter
assumption is contained as a special case and corresponds to, say, K=1 and r,=1.
However, as Newey (1987) points out, equicontinuity can often be obtained through a
suitable redefinition of the data.?

We introduce the following notation: D,(z) = sup{|q,(z,0)|: 0 € ©} and ¢*(z,0,7) =
sup{q,(z,0'): p(0,0")<7}, qu(z,0,7)=inf{q,(2,0'): p(0,0") <7} for r>0. Under
Assumptions 1 and 2 the functions D,(z), ¢,*(z,0,7) and ¢,.(z, 0, ) are real valued and
%-measurable. (Note that © is separable and ¢,(z, 8) is continuous in 6.)

AssuMPTION 3 (Dominance Condition): (i) sup, n™'X"_, E[D,(z,)'*%]< 0o for some
8> 0. (i) sup, n7 12" E|r,(2,)| < o for 1 <k < K.

E.g., a set of functions g, on ZX 0, ZC R’ satisfying Assumption 2 can be written as an
equicontinuous set of functions in new variables if the s,, satisfy an additional condition: Define
Z, = (Wyys- -5 Wy» 2,) With wy, =1, (2,); then g,(Z,,0) = q,(z,,0) with g,(Z, ) =Zl’((=1wkskl(zi 0) and
zZ=(wy,..., Wk, z). Then g,(Z,0) is equicontinuous if the s,, are equicontinuous and sup,|s,,(z,0)|
< 0.



UNIFORM LAW OF LARGE NUMBERS 677

If the r,, represent, e.g., indicator functions, Assumption 3(ii) is trivially satisfied. More
primitive conditions implying Assumption 3 are

n
supn™' Y Elr (2) 4 < o0
n =1
and
n

supn~ 'Y E( sup |s;,(z,,0) |q(1+8)) < o0
fe®

n t=1

for some 8 > 0 and some p>1, p~! + 471 =1, and 1 < k < K. (This follows via Holder’s
inequality.)

AsSSUMPTION 4 (Pointwise Laws of Large Numbers): For all 6 € © there exists a
sequence of positive numbers 1,= 7,(0), 7. — 0, such that for each 7, the random variables
q*(z,,0,7) and q,4(z,,0, 7)) satisfy a strong law of large numbers, i.e., as n — oo

n
n! Z [q,*(z,,a,'ri) _eq*(zno’ 'r,)] -0, Pas,
t=1

n
n! E [q,*(z,,ﬂ, Ti) - eq*(zno’ T:)] -0, P-a.s.
=1

Since |g*(z,,0,7)| <D,(z,) and |q,4(2,,0,7)| < D,(z,), Assumption 4 is clearly im-
plied by the following stronger condition: Each sequence of random variables ( f,(z,)), f;
Z%-measurable, with |f,(z,)| < D,(z,) satisfies a strong law of large numbers. We note that
even this stronger condition is satisfied for large classes of processes (z,), e.g. for large
classes of a- and ¢-mixing processes. (For a discussion and definition of a- and ¢-mixing
processes, see e.g. Domowitz and White (1982); for laws of large numbers for such
processes, see McLeish (1975).) We furthermore need the following assumption:

ASSUMPTION 5: The family { H": n €N} is tight where H" = n~'L"_, H, and H, denotes
the distribution of z, on Z; i.e., lim,, _,  sup, n”'L"_, P(z, & K,,) = 0 for some sequence of
compact sets K,, C Z.

Either one of the following two assumptions is sufficient for Assumption 5 to hold.
(This is demonstrated in the proof of Theorem 1 given below.)

ASSUMPTION 5A: There exists a monotone function h: [0, 0c0) — [0, 00) with h(x) — oo as
X — oo such that sup, n"'Xr_ Eh(||z,|]) < co.

ASSUMPTION 5B: The process (z,) is asymptotically stationary in the sense that H" =
n~¥"_, H, converges weakly to some probability measure H on Z.

Clearly Assumption 5 (and Assumption 5A) are automatically satisfied if Z is compact.
Assumption 5A is a rather mild moment condition. A typical choice for A is h(x) = x?
where p > 0 can be arbitrarily small. Another example for 4 is A(x) =In(1 + x). Clearly
Assumption 5B is satisfied for any identically distributed process. Assumption 5B also
holds for Markov processes with stationary transition probabilities if (i) Doblin’s condi-
tion holds (see Doob (1953, Ch. 5.5) or Futia (1982, Th. 3.2, 3.4, 4.9)) or (ii) Feller’s
condition holds, a unique invariant distribution exists and Z is compact (see Breiman
(1960)).
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The common feature of Assumptions 5, 5A, and 5B is that they exclude situations
where some mass of the average probability distributions H" escapes a sequence of
compact sets K, in Z. This is achieved by Assumption 5A by placing bounds on
moments of certain functions of z,, and by Assumption 5B by requiring that the H”
converge to H.

Given the above catalog of assumptions, we have the following ULLN:

THEOREM 1: If Assumptions 1-4 hold, and Assumption 5 or 5A or 5B holds, then
Eq,(z,,0) exists, is finite and is continuous on O, and

n
(2) lim sup|n~ 1Y [q,(z,0) —Eq,(z,,ﬂ)]‘=0 P-a.s.,
n—® e t=1
(b) {n_1 Y Eq(z,0):ne N} is equicontinuous on 6.
=1

All proofs are given in the Appendix. Theorem 1 may be viewed as a generic ULLN in
the sense that it postulates in Assumption 4 only the existence of pointwise laws of large
numbers for g* and g,, rather than to postulate sufficient conditions that imply those
pointwise laws of large numbers. Specific ULLNs can now be obtained simply by verifying
Assumption 4 from more primitive conditions on the process (z,) as, e.g., a-mixing or
¢-mixing conditions. Those mixing conditions have been frequently used in the recent
econometric literature. The following corollary corresponds to these mixing conditions.

COROLLARY 1: Given Assumptions 1, 2, 3(ii) hold, and Assumption 5 (or 54 or 5B)
holds, and if, furthermore, the process (z,) is ¢-mixing [a-mixing] with mixing coefficients
of size —r/(2r — 1) with r>1[of size —r/(r—1) with r> 1), and sup, E[D,(z,)"*®] < 0
for some 8 > 0, then the conclusions of Theorem 1 hold.

Theorem 1 only ensures that n~'Y’_,[q,(z,0) — Eq,(z,,0)] converges to zero uni-
formly on ©. In certain cases a stronger result, namely that also n~'Y’_,g,(z,0)
converges to some finite limit uniformly on O, is useful. Clearly, in order to obtain this
stronger result we need some kind of asymptotic stationarity of the process. The following
generic ULLN generalizes results in Bierens (1981, 1984), Potscher and Prucha (1986a),
and is closely related to results in Hansen (1982).

THEOREM 2: Given Assumptions 1, 3(i), 4, 5B hold and q,(z,0) = q(z, 8) is continuous on
Z X O, then the conclusions of Theorem 1 hold. Furthermore (q(z,0) dH(z) exists and is
finite, is continuous on ©, and

lim sup =0, P-a.s.

n—® ged

W% al5,0) - [a(2.0) i (2)

Again, specific ULLNs can be obtained from Theorem 2 if Assumption 4 is replaced
by, e.g., mixing conditions as in Corollary 1. Assumption 4 in Theorem 2 (as well as in
Theorem 1 if g, = ¢g) could also be replaced by strict stationarity and ergodicity. Of course,
in this case it is possible to derive a ULLN under weaker conditions than those
maintained here; see Hansen (1982).

The following corollary applies Theorems 1 and 2 to Markov processes. For a discus-
sion of Markov processes, see e.g. Doob (1953, Ch. 5) and Futia (1982).
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COROLLARY 2: Let Assumption 1 hold, let q,(z,0)= q(z,0), and let (z,) be a Markov
process with stationary transition probabilities. If (a) Assumptions 2 and 3 hold and the
transition probabilities satisfy Doblin’s condition and possess only one ergodic class, or if (b)
Z is compact, q(z,0) is continuous on Z X O, the transition probabilities satisfy Feller’s
condition and have a unique invariant distribution, then the conclusions of Theorem 2 hold.

We note that given Doblin’s and Feller’s conditions are satisfied by the transition
probabilities, then the assumption that only one ergodic class exists is equivalent to the
usual uniqueness condition for the invariant distribution as, e.g., given in Futia (1982, p.
385). This follows immediately from Theorem 5.7 in Doob (1953) and Theorems 2.12, 3.3,
and 4.9 in Futia (1982).

REMARK 1:* (a) So far we have assumed that the functions g,(z,8) are defined on
Z X © with Z a closed subset of R*. Now, more generally, let Z be a metrizable space
with corresponding Borel o-field. Then Theorem 1 and Corollary 1 still hold under
Assumption 5 or if Assumption SA [5B] is replaced by Assumption 5A’ [5B’] presented
below, and Theorem 2 remains valid if Assumption 5B is replaced by Assumption 5B’.

ASSUMPTION 5A’: There exists a sequence of compact sets K,, C Z, a %B-measurable
function g: Z — [0, 0], and real numbers r,, = oo such that: (i) {z€ Z: g(z)<r,} K,
and (ii) sup, n~'X"_, Eg(z,) < .

ASSUMPTION 5B’: The process (z,) is asymptotically stationary in the sense that the
probability measures H" = n='L"_| H, converge weakly to some probability measure H on Z.
Furthermore, H and each of the H" are tight (i.e., H and each of the H" have a a-compact
support).

If, moreover, Z is a Borel subset of a separable and completely metrizable space, then
Assumption 5B’ reduces to Assumption 5B in view of Theorem 3.2 in Parthasarathy (1967,
p. 29). Clearly, if Z is a closed subset of R*, then Assumption SA implies Assumption 5A’
upon choosing K, =Z N {z €R’: ||z||< m}, g(z) =h(||z|) and r,, = h(m).

(b) Corollary 2 remains valid for any metrizable space Z that is a Borel subset of a
separable, completely metrizable space. (Of course, for part (b) Z has also to be compact.)

(c) If the functions g,(z, #) can be extended to W X ©, Z C W, such that Assumption 2
holds on W, we can substitute W for Z and try to perform the analysis on W rather than
Z. This may be helpful if the results presented in this paper apply to W but not to Z.

REMARK 2: (a) Theorem 1 remains valid if the random variables z, and the functions g,
are allowed to depend on ¢ and n, given the following modifications are made: In
Assumption 2 the functions g,(z, #) are replaced by ¢"(z,0) =XX_,r.(2)s},(z, ) and the
families {s;;: t<n, t€N, neN} are assumed to be equicontinuous; furthermore
Assumptions 3, 4, 5, 5A, and 5B (or more generally SA’, 5B’) are to be applied to the
double indexed random variables and functions accordingly.

(b) “Weak” ULLNSs corresponding to the “strong” ULLNs derived in this paper can
be obtained by replacing almost sure convergence in Assumption 4 by convergence in
probability.

Department of Econometrics, University of Technology Vienna, 1040, Vienna, Austria
and
Department of Economics, University of Maryland, College Park, MD 20742, U.S.A.

Manuscript received April, 1987; final revision received May, 1988.

“For a proof of the subsequent results see the Appendix.
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APPENDIX

LEMMA Al: Let s5,(z,0) be a sequence of equicontinuous, real functions on Z X ® where Z is a
metrizable space and (O, p) is a metric space; let @ # K C Z be compact. Then for each 8 € © and each
sequence 7,— 0, 17,> 0, we have:

sup sup sup |s,(z,8") —5,(2,0)|=>0 as i— o,
teN zeK0’eB(d,1,)

where B(0,1,)= {0’ €0: p(0,0")<n}.

ProOF: First note that the sup operators can be interchanged. Suppose the lemma is not true; then
for some &> 0 and some §° € © we can find a sequence 6' — 6° for which sup, sup, e |s,(z, ] )—
5,(z,8%)| > ¢. But then there exists for each i €N a point z' € K such that sup,|s,(z’,8") — 5,(z',0°)|
>¢. Since K is compact we can find a subsequence z'X) converging to some 2%€ K. The last
inequality then implies

e < sup |s,(z'("),0’(k)) —5,(2'%),0%) } < sup|s, (2K, 010)) —5,(2°,6°)|
t t
+ sup's,(zo, 0°) —5,(2'®©,60%) |
t

Since under equicontinuity both expressions on the r.h.s. converge to zero as k — oo, this yields a
contradiction. Q.E.D.

PROOF OF THEOREM 1: Clearly, Eq*(z,,0,7), Eq.(z,,0,1,), and Eq,(z,,0) exist by Assumption
3; the latter expectation is also continuous by Assumptions 2 and 3 and dominated convergence. Let
K,, be any sequence of compact sets in Z and B,(6)= {0’ € 0O: p(0,0’) <1} with 7,=17,(0) as in
Assumption 4. We first verify the first moment continuity condition, i.e., we show that for each § € O,

(A1) 11m supn-IZEsup{|q,(z,,e) 4,(z,,0)|: 0’ € B;(6)} =0.

t=1

Clearly, the Lh.s. of (A1) is (for m €N) not greater than 4,, + B,, where

= Tm supn IZE[lx (z)sup{|4,(z,6") — 4,(2,,0)|: 0’ € B,(6)}] and

1—00 N

= Tim supn lZE[lz K., (z )Sup{lq,(z,,o) ql(zl’o)l 9'€B(0)}]

i—»o0 n

If K,, = @, then A,, =0. Otherwise, using the definition of g, it is readily seen that

Z im supn IZ E[IK (z,)|rk,(z,)|

k=1i—o0 n

xsup{ sz (2,0") = s, (2,,0)|: " € B,(6)}]

K
<Y [ m sup sup sup{ |5, (2,0") = 5, (2,0)|: 0'€B,(9)}

k=1|li—»o t z€eK,

X[SUP”_I Z E(ll(,,,(zl)l"kr(zr)l) .
n =1
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The first expression in brackets on the r.h.s. of the last inequality is zero by Lemma A1l; the second
expression is bounded by Assumptlon 3(ii); hence A4,,=0. By Assumption 3(i) and the triangle

inequality we see that B, <2sup,n”'L" | E[1,_ K, (z,)D (z,)]- Applying twice Holder’s inequality
with p=1+46 and g= 146! we get further:

1/q

B, <2 supn 1ZE[D(z,) ]] [supn 1ZP(Z,EK )

The first term in brackets is finite by Assumption 3(i). Under Assumption 5, choosing the sets K,,, as
in this assumption, we have B,, — 0 as m — co0. To see that Assumption 5A implies Assumption 5, put
K, = {z€ Z: ||z]| < m}, which is compact since Z is closed; by Markov’s inequality eventually

n
supn~! Z P(z,¢K,)< supn_1 Z P(llzll>m) < supn_1 Z Eh(llzll)/h(m) = 0.
n t=1 =1 =1

Furthermore, Assumption 5B implies Assumption 5 as is seen from Theorem 6.2 in Billingsley (1968)
observing that Z, as a closed subset of R’, is separable and complete. Hence we have shown (A.1)
under each set of assumptions, which in turn implies part (b) of Theorem 1. Given (A.1) the proof of
part (a) is now standard: Observe that (A.1) implies for ¢ > 0 and all # € © the existence of an index
i(0, €) such that for i =i(0, ¢):

(A.2a) sup

n

<eg,

n~! Z E(q*(z,0,7)—q,(z2,9))
=1

(A.2b) sup |n _IZE(‘I:*(ZHG ) —4,(z,0))

t=1

<e.

The family { B,y ,(f): 0 €0} is an open cover of ©; hence by Assumption 1 there exist finitely
many 0(u) 1<»<L, such that the corresponding balls B(v) = B, (4, ., (8(»)) cover ©. It then
follows using (A.2) that for all § € ©:

—2e+ m,,inn_l ;[q,*(z,,ﬂ(v),'r(u)) — Eqia(2,0(v), T(,’))]
n1 Zl[q,(z,,o) - Eq,(2,,9)]

< m:at.xn_l ;[q,*(z,,e(v),'r(v)) - Eq,*(z,,ﬂ(u),'r(u))] + 2¢

where 7(¥) = 7,5(,).(8(»)). Part (a) of the theorem now follows from Assumption 4 since ¢ is
arbitrary. Q.E.D.

PROOF OF COROLLARY 1: Assumption 3(i) is directly implied by the assumptions of the corollary.
Assumption 4 is readily seen to follow from Theorem 2.10 of McLeish (1975): Observe that ¢* and
qr» are .@-measurable; hence q,*(z,, 0» T,) - qu*(zn 0) Tz) and qt*(zu 0’ T:) - eq*(zn 0’ Tz) are q-mix-
ing (¢-mixing) processes with mixing coefficients no greater than those of (z,). Note that McLeish’s
definition of mixing coefficients is slightly weaker than the usual definition employed here. Q.E.D.

PROOF OF THEOREM 2: Clearly, the third set of assumptions of Theorem 1 is satisfied (taking
K=1 and r,=1). It hence suffices to prove that [q(z,0)dH exists, is finite, and that it is the
uniform limit of n~!T"_,Eq(z,,0) = [q(z,0) dH". Assumption 3 implies that
sup, f19(z,0)|**®dH" < 0 for all 6 €O. Since H" - H weakly, it follows analogously as in
Theorem 5.4 of Billingsley (1968) that fq(z, 8) dH exists, is finite, and that [q(z,0) dH" = [q(z,0) dH
for each 6 € O; part (b) of Theorem 1 implies that the family { f¢(z,0) dH": n € N} is equicontinu-
ous on @. The uniform convergence now follows from the theorem of Ascoli-Arzela. Q.E.D.
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PROOF OF COROLLARY 2: To prove part (a) we show that Assumptions 4 and 5B hold (hence
Theorem 1 applies), and that n~'E"_ Eq(z,,0) > [q(z,0) dH (where uniform convergence follows
from the theorem of Ascoli-Arzela). Since D&blin’s condition holds it follows from Futia (1982,
Theorems 3.2, 3.4, 4.9) that H" converges to some invariant distribution H in the variation norm and
hence also weakly. Thus Assumption 5B is satisfied. Since only one ergodic class is assumed to exist,
H is then the unique invariant distribution; cp. Doob (1953, Theorem 5.7). By Assumption 3(i) we
have sup, f|q(z,0)|'*® dH" < co. Since furthermore H" converges to H in variation norm it follows
similarily as in the proof of Theorem 2 that [|q(z,0)| dH < o0 and n~'L"_, Eq(z,,0) = [q(z,0) dH"
= [q(z,0) dH. An analogous result holds for ¢* and g,. It now follows from Doob (1953, Theorem
6.2) applied to the functions ¢*(z,,0, ) and g4(z,,0, 7;) that Assumption 4 is satisfied. This proves
part (a). To prove part (b) note first that Assumption 3(i) trivially holds since Z X @ is compact. Now
Assumption 5B follows from Proposition 1 in Breiman (1960) after integrating w.r.t. the initial
distribution. Assumption 4 follows from the Theorem in Breiman (1960) (which also holds for
arbitrary initial distributions) since g* and g, are continuous on Z and since Assumption 5B implies

n
n' Y Eq*(2,,0,1) > [¢*(2,0,7) dH and
t=1

n
n~1 Z Eqi(z,,0,7) > fq,(z,ﬂ, 1,) dH.
t=1
Applying Theorem 2 proves part (b). Q.E.D.

We note that the proofs of Theorem 1, 2, and Corollary 1 do not utilize the structure of Z beyond
the fact that it is a metrizable space—except in the verification of Assumption 5 from Assumptions
5A or 5B. Therefore the following lemma proves the nontrivial portions of Remark 1(a). Remark 1(b)
follows from Remark 1(a) upon observing that the results from Doob (1953) and Futia (1982) used in
the proof of Corollary 2 apply to Borel subsets of separable and completely metrizable spaces and
that the results in Breiman (1960) hold for compact metrizable spaces.

LEMMA A2: Let Z be a metrizable space and % its Borel o-field. Then Assumption 54’ as well as
Assumption 5B’ imply Assumption 5.

PROOF: For the sets K, of Assumption 5A’ we have r,, > 0 eventually and that

n n
supn! Y P(z,¢K,,) < supn! Y P(g(z)=r,)
n t=1

n t=1

n
< supn! E Eg(z,)/1-
n

t=1

This proves the first claim. Under Assumption 5B’, Theorem 8 in Appendix III of Billingsley (1968)
implies that { H": n € N} is tight. This proves the second claim. Q.E.D.
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