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THE STRUCTURE OF SIMULTANEOUS EQUATION
ESTIMATORS: A GENERALIZATION TOWARDS
NONNORMAL DISTURBANCES

By INGMAR R. PRUCHA AND HARRY H. KELEJIAN

A general linear simultaneous equation system with a multivariate Student ¢ disturbance
vector is considered. The normal equations of the corresponding maximum likelihood
estimator are used as estimator generating equations to introduce a new class of estimators.
Properties of large subclasses of these estimators are determined for disturbance vectors
other than the multivariate Student 7.

1. INTRODUCTION!

IN A SEMINAL PAPER Hendry [9] unified nearly all existing estimation theory for
linear simultaneous equation systems. The starting point of his analysis was the
full information maximum likelihood estimator derived under the assumption of
normally distributed disturbances, henceforth the NFIML estimator. Hendry
then used the normal equations of the NFIML estimator as estimator generating
equations to define a wide class of estimators, henceforth NFIML, estimators.
The NFIML, estimators can be interpreted as numerical approximations to the
NFIML estimator. Hendry then showed that virtually all known estimators for
linear systems belong to the NFIML, class; furthermore, based on easily
determined characteristics of the approximation, the NFIML, class can be
subdivided into asymptotically equivalent classes. Thus Hendry’s [9] approach
both unified and simplified existing estimation theory in that it made case by
case analysis of large sample properties of estimators unnecessary.

Despite the wide use of NFIML, estimators typical arguments supporting the
assumption of normally distributed disturbances are not fully convincing.? Even
if one assumes that the disturbance terms are composed as a sum of independent
and additive variables the usual appeal to a central limit theorem can at most
imply that the distribution of the disturbances is approximately normal—the
stress is on the word approximately.® Observed disturbance distributions exhibit,
in fact, often thicker tails than is consistent with normality.4

The possibility of nonnormal disturbances is consequential. As has been

Certain parts of this paper were first derived in Kelejian and Prucha [14], and have been
presented at the 4th World Congress of the Econometric Society in Aix-en-Provence, 1980. We would
like to thank Benedikt Poetscher and the Editor and referees of this journal for helpful comments. We
also benefited from discussions with Manfred Deistler, Phoebus Dhrymes, and James Ramsey at an
early stage of our research. We retain, however, full responsibility for any shortcomings. The support
of computer time through the facilities of the Computer Science Center of the University of
Maryland is gratefully acknowledged. Detailed proofs are suppressed at the suggestion of the Editor,
but are available on request from the authors.

2See Bartels [2] and Goldfeld and Quandt [6] on this account.

3See Huber [10, p. 74].

4See Judge er al. [13, pp. 297-321] and the references cited therein.
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pointed out in the robustness literature the (asymptotic) efficiency of estimators
derived under the assumption of normally distributed disturbances is generally
sensitive to deviations from this assumption.’ In particular, if the actual distur-
bance distribution has thick tails “outliers” are more frequent; estimators which
correspond to the normality assumption tend to place too much weight on those
“outliers.”® In addition, the normal distribution is completely defined by the first
two moments; thus, estimators which correspond to it also fail to utilize sample
information beyond those moments.

The above considerations motivate interest in estimators which correspond to
a more general disturbance distribution which allows for thicker tails and,
preferably, contains the normal distribution as a special case. The multivariate ¢
is such a distribution. The thickness of the tails of the ¢ distribution is character-
ized by the degrees of freedom parameter. The normal distribution is obtained as
a limiting case as the degrees of freedom parameter tends to infinity.

In general terms, we first derive the maximum likelihood estimator correspond-
ing to a disturbance distribution which is more general than the normal; we then
determine the large sample properties of feasible counterparts to this estimator
when the disturbance distribution is only taken to be symmetric given the
existence of certain moments.

More specifically, we first derive the full information maximum likelihood
estimator, henceforth the TFIML estimator, for a system of linear simultaneous
equations under the assumption that the disturbance distribution is multivariate ¢
with known degrees of freedom. As expected, the NFIML estimator corresponds
to the limiting case of this estimator as the degrees of freedom parameter tends to
infinity. Somewhat less expectedly, it turns out that the TFIML estimator has an
instrumental variable form, a result which generalizes Hausman’s [7, 8] findings
for the multivariate normal case. It also turns out that the TFIML estimator is a
robust estimator in that it places less weight on large disturbance values than
does the NFIML estimator.

After obtaining and interpreting the TFIML estimator we drop the multivari-
ate ¢ assumption. In doing so, we redefine the degrees of freedom parameter such
that it has meaning as a measure of the thickness of the tails for general
disturbance distributions without, however, changing its original interpretation in
case the disturbance distribution is in fact multivariate z.” We then use the

SSee Huber [11] and the references cited therein. For a nice review of the robustness literature, see
Judge et al. [13, pp. 303-308], and Maddala [15, pp. 305-314]. In the single equation case various
robust procedures have been proposed as an alternative to OLS. In the simultaneous equation context
the literature on robust procedures is rather limited. Amemiya [1] considers the two-stage-least-
absolute-deviation estimator. Fair [3] introduced a very general class of robust estimators and
performed several (specific) Monte Carlo experiments. Analytically the (asymptotic) properties of the
latter estimators have not yet been derived.

6As a consequence such estimators will vary substantially from sample to sample and so their
variances will be large.

"In particular we define the degrees of freedom parameter as a function of second and first
absolute moments. It should however be noted that our analysis is also valid for alternative
(reasonable) definitions.
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normal equations of the TFIML estimator as estimator generating equations to
define a class of feasible estimators, henceforth TFIML, estimators, which can
be viewed as numerical approximations to the TFIML estimator. The (redefined)
degrees of freedom parameter is replaced by an estimator so that a priori
knowledge of this parameter is no longer required. Somewhat expectedly, the
TFIML, class contains the NFIML, class as a subclass; it therefore includes not
only virtually all known estimators, but corresponding generalizations as well,
e.g., generalized three stage least squares.

We prove the consistency of a large subclass of TFIML, estimators and derive
the asymptotic distribution of a somewhat smaller subclass of linearized
TFIML, estimators for symmetric disturbance distributions with, respectively,
finite fourth and fifth moments.® The members of the latter subclass are shown to
be asymptotically efficient for the case in which the disturbance distribution is
multivariate ¢ or multivariate normal; we henceforth refer to those estimators as
linearized TFIML estimators. This implies that in case of multivariate ¢ or
normal disturbances (feasible) linearized TFIML estimators use sample infor-
mation which relates to both the first two moments as well as the thickness of the
tails of the disturbance distribution in a fully efficient manner.

We hypothesize that linearized TFIML;, estimators are asymptotically efficient
relative to the NFIML, class (including the NFIML estimator) for a wide class
of symmetric disturbance distributions. At this point a formal general description
of this class is not available. We do, however, calculate for the single equation
case the relative efficiency of linearized TFIML estimators as compared to the
NFIML or OLS estimator for various disturbance distributions. In all cases
considered linearized TFIML  estimators are efficient relative to the OLS estima-
tor, except when the disturbance distribution is normal, in which case linearized
TFIML; estimators and the OLS estimator are asymptotically equivalent. In-
deed, in some cases we find the asymptotic variances of the OLS estimator to be
one hundred times larger than those of linearized TFIMLg estimators.

Clearly our choice of the multivariate ¢ family as a “generating” distribution is
not the only possible one. Other long-tailed distributions may serve as well and
further research in that direction is needed. Our results suggest however that the
choice of the multivariate ¢ family was a reasonable one.

The paper is organized as follows: Section 2 gives the specification of the
model. The TFIML estimator and its large sample distribution are given in
Section 3. In Section 4 the class of TFIML, estimators is defined. The asymp-
totic properties of wide subclasses of those estimators are analyzed for general
symmetric disturbance distributions. Concluding remarks and suggestions for
further research are given in Section 5.

8We conjecture that the present moment requirements can be reduced by using more elaborate
proofs. For such a reduction in the single equation case see Poetscher and Prucha [16]. We note that
the present moment requirements are satisfied by, e.g., e-contaminated normal distributions often
used to model the existence of outliers.
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2. MODEL ASSUMPTIONS AND NOTATION

We consider the following linear simultaneous equation model:

1) Y=YB+ZC+U

where Y and Z are T X M and T X K matrices of the M endogenous and K
exogenous variables of the model over T periods; U is the T X M matrix of
disturbances; B and C are M X M and K X M matrices of parameters. As a
normalization rule the diagonal elements of B are taken to be zero. We further
assume that I — B is nonsingular so that (2.1) has the reduced form representa-
tion

2 Y=zI+V, T=CcU-B)' V=Ul-B)"

It will be convenient to adopt the following notation: Let N be some matrix;
then n; and n; denote the ith row and jth column respectively. Similarly n" and
n? denote the ith row and jth column of the inverse matrix N ~'. The (i, j)th
elements of N and N ~' will be denoted by n; and n” respectively.

We assume that the vectors of disturbances u, are distributed i.i.d. with zero
mean and nonsingular bounded covariance matrix =. We further assume that the
distribution of the disturbances is symmetric with finite fourth moments. The
exogenous variables are taken to be nonstochastic and uniformly bounded, i.e.
sup, (z,) < . Further we assume lim,,,Z'Z/T = Q where Q is a finite
positive definite matrix.

We assume that every equation is identified subject to zero-type parameter
restrictions. Hence the ith structural equation of (2.1) can be expressed as

(2.3) y,=Yb, v+ Zc,*tu; =Y+ Zy +u, (i=1..., M),

where Y, and Z, denote, respectively, the 7 X M; and T X K; matrices of
observations on the endogenous and exogenous variables that appear as regres-
sors in the ith equation; B, and v, are the corresponding M; X 1 and K; X 1
vectors of unrestricted (nonzero) parameters.

It will be convenient for our later discussion to introduce selector matrices L;,
and L, such that Y,=YL,, Z,=ZL,, b,=L,B;, and c,= Ly, for i=
1, ..., M. The selector matrices L;, and L, are of order M X M; and K X K,
respectively; their elements are zeros and ones in appropriate places.

It will also be convenient to adopt notation concerning block diagonal matri-
ces and the vectorization of matrices. Let the matrices N;, i=1,..., M, be of
order r, X s;; then we define diag,,(N,) = diag(N,, ..., Ny,) as the 3r; X 3,
block diagonal matrix whose ith block is N;. Let N be an r X s matrix; then we
define vec(N) = [n,, . . ., n’;]’. Given this notation, the equations of (2.1) can be
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written as
24 y=Xé+u

where p =vec(Y), X =diag,(X,), X,=[Y;,Z], u=vec(U), and §=[B],
Y1 - - - » Bu>Yu]'- The elements of B and C relate to those of & as vec[(B’, C’)']
= diag,, (L;)6 where L, = diag(L;,, L;).

3. MAXIMUM LIKELIHOOD ESTIMATION FOR STUDENT ¢ DISTURBANCES

In this section we give and interpret the full information maximum likelihood
(TFIML) estimator of 8 and = under the assumption that the disturbances are
distributed multivariate ¢ with known degrees of freedom v > 5. This distribu-
tional assumption will not be maintained in the subsequent sections of the paper.

Assume the disturbances are multivariate ¢, and so their density is given by

v*’T[(M + v)/2]|©]'/?
"/°Tv/2]

—(M+v)/2
s

G fu)=

[v + u,Qu,’_]

__v -1
0= p— =7,
where T'(-) denotes the Gamma function.” Note that the density of the multivari-
ate normal distribution represents a limiting case of (3.1) as v — co. The sample
log-likelihood function of (2.1) subject to (3.1) is given by

(32) £(B,C,Z;Y,Z) = constant + glogIE_'l + Tlog|I — B

T
+ % > log(w,),

(=1
_ -1
w,=[l +u,‘[(v—2)2] lu,’.] , u=y —y,B—zC.

The TFIML estimators of § and =, say 8 and ﬁ, are defined as the maximizing
values of (3.2) for given observations on Y and Z. The proofs of the following
two theorems are available on request from the authors.'°

THEOREM 3.1: Consider the model of Section 2 and assume (3.1). Then the

®Compare Raiffa and Schlaifer [17, pp. 256-258]. For ease of notation we do not distinguish
between the random variables and the values they assume.

'9The manipulations involved in proving Theorem 3.1 are somewhat similar to those of Hausman
[7,8]. In proving Theorem 3.2 we use standard results on the ﬁ-consistency of maximum likelihood
estimators. The exact asymptotic distribution is derived via an expansion of the normal equations
using standard central limit theorems. An alternative derivation of the asymptotic variance covari-
ance matrix via the information matrix is given in Kelejian and Prucha [14].
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TFIML estimators 8 and £ satisfy the following system of normal equations:

§=[X'E'@w)x] XS W)y,

X =diag,(X,), X,=[Y,.z], Y,=z0, 1,=1L,,

(3.3a) . . . . .
S—r'Mrory yg - zCyWw[y - vB-2z(l),
v—2
W= diag +(W,),
@33b) b =[1+a37%/(v-2)] ", =y -ypB-zC
(33c) I= 6‘(1 - é)_l, vec[(l?’,é’)’] = diagM(Li)SA.

THEOREM 3.2: Under the assumptions of Theorem 3.1 the TFIML estimators 8
and 2 are consistent; further VT (6A -6 )L>¢ N[0, ®3(v, M)] where

G4 Os(oM)=2"2 ot MA2 Rz 1@ o)R]",

R = diag,,(I1L;, Ly,).
That is, the asymptotic distribution of 8 is N [8, ®3(v, M)/ T]."

REMARK 3.1: The normal equations of the full information maximum likeli-
hood (NFIML) estimators, say § and 3, for normally distributed disturbances
can be obtained by replacing W, and (M + v)/(v — 2) by unity everywhere in
(3.3)."? This result corresponds to the fact that the multivariate normal distribu-
tion is a limiting case of the multivariate # as v — oo.

REMARK 3.2: Define the instrument matrix P = (ﬁ“ ® Vf/))? , and note that
the TFIML estimator can be expressed as §= (I;’X)_'ﬁ’y. Hence the TFIML
estimator can be viewed as an instrumental variable estimator of the stacked
model (2.4). This generalizes a similar result of Hausman [7, 8] obtained for the
NFIML estimator.

'Note that in (3.4) the asymptotic covariance matrix of & involves the number of equations M
furthermore, M does not cancel even if = is diagonal. The reason for this is that if the disturbances
are distributed multivariate ¢ they are stochastically dependent even if Z is diagonal. It may also
appear that formula (3.4) does not involve moments of w,. This is not the case. We have calculated
those moments under density (3.1) explicitly as functions of v and Z—compare also Corollary 4.1. A
simple consistent estimator for ®g(v, M) is

v—2 v+ M+2
v v+ M

[T-X@E'ern)x] "

2Compare Hausman [7, 8] and Hendry [9]. Note that Hendry’s normal equations are written in
implicit rather than explicit form.
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REMARK 3.3: The asymptotic distribution of the NFIML estimator is N [J,
®;(M)/ T] with ®5(M)=[R' (S~ '® Q)R] for all disturbance distributions
satisfying the assumptions of Section 2.'* Note that the multivariate ¢ distribution
specified above satisfies those conditions. Upon comparing the asymptotic co-
variance matrices of the TFIML and NFIML estimator we see that they are
proportional:

v—2 v+ M+2
v v+ M

®s(0,M) = k(v, M)Ps5(M) with k(v,M) =

We note that for finite degrees of freedom, v, the proportionality factor is less
than unity so that there is gain in efficiency with the use of the TFIML estimator.
We also note that the proportionality factor decreases as the numbers of
equations increases. Since v > 5, for large models a 40 per cent increase in
efficiency constitutes the upper bound. However, note that the above formula for
the asymptotic variance covariance matrix of the TFIML estimator and hence
the gain factor is specific to the distributional assumption (3.1). For distributions
other than the multivariate ¢ the gain in efficiency may be significantly higher, as
shown in the subsequent sections.

REMARK 3.4: Premultiplying the sth value of the endogenous and exogenous
variables and the disturbances of our model with w}/2 = [(M + v)/(v — 2))w,]'/?
where w, =[1 + 4, =~ 'u/ /(v — 2)]" ! yields the following transformed model

(3.5) V= Xib + u,

with o= (I, ® Wiy, Xo=U, @ WIHX, uy=,® Wy Hu, Wi/'*=
diag -(w)/?). Observe that w, is an even function of u, and 0 < w, < 1. A typical
element of the transformed disturbance vector is u,, =[(M + v)/(v —2))
w,]"/ 2u,j. It is not difficult to show that the transformed disturbances have the
same first two moments as the disturbances of the original model: E(uy,;) =0
and E(uy,ux,) = o,.'"* However despite this fact, inspection of the structure of w,
shows that in the transformed model relatively less weight is given to observa-
tions in time periods with large disturbances (or outliers). This is particularly true
for small values of the degrees of freedom parameter v, i.e. for distributions that
have relatively fat tails as compared to the normal distribution. An observable
form of the transformed model (3.5) is obtained by defining wl/?> = [(M + v)/
(v —2))W,]'/? where W, is based on the TFIML estimator defined in (3.3). We
may now apply the NFIML formula to this model. It turns out (as can easily be
checked) that the TFIML estimator of the original model and the NFIML
estimator of the transformed model are identical.'” In interpreting this result

!3This well known result follows easily from Schonfeld’s [19] central limit theorem, for example.

14See Kelejian and Prucha [14, p. 26].

13Similarly we can view the TFIML estimator as a minimum distance estimator of the transformed
model (3.5) or as a generalized minimum distance estimator of the original model. Also, the TFIML
estimator can be shown to be a member of the class of robust estimators suggested by Fair [3]; see
Kelejian and Prucha [14] for details. For an interpretation of the single equation TFIML estimator as
a member of Huber’s [10] class of M estimators, see Poetscher and Prucha [16].
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observe that the distribution of the transformed disturbances has relatively
thinner tails than that of the original disturbances and that correspondingly the
NFIML formula is based on a distribution with relatively thinner tails than that
underlying the TFIML formula.

4. A CLASS OF ESTIMATORS INTERPRETABLE AS
NUMERICAL APPROXIMATIONS TO TFIML

In the following we use the normal equations of the TFIML estimator to
generate a wide class of estimators, say TFIML, estimators, that can be
interpreted as numerical approximations to the TFIML estimator. In particular
the assumption of multivariate ¢ distributed disturbances is no longer main-
tained; rather the analysis is performed under the general distributional assump-
tions of Section 2. As a consequence we have to redefine the degrees of freedom
parameter v such that the class of TFIML, estimators remains well specified
even for general disturbance distributions. It seems desirable to define v in such a
way that if the disturbance distribution is multivariate ¢ the interpretation of v as
a degrees of freedom parameter still holds.

For the case in which the disturbance distribution is multivariate ¢ the ratio of
the second to the squared first absolute momentis (i=1,..., M)

@l o/mP=g(v), g(v)={mT(v/2)’}/{(v = 2)T[(v = 1)/2]*),

where m, = E[|u,|]. Denote the average of these ratios as a = M ~'S™ 0, /m?;
then a = g(v). The function g(v) is strictly monotone decreasing with g(v = 2)
= o0 and g(v = o) = 7 /2. This last value corresponds to the normal distribu-
tion. We now use the above relationship to define p = v~"' for general distur-
bance distributions as the following function of first absolute and second mo-
ments:

42) "={(1)/[g“(a)] if a>w/2,

if a<w/2.

For all disturbance distributions with “fatter” tails than the normal @ > /2 and
so u = 1/v(a) where v(a) = g_'(a) is the solution value of g(v) — a = 0. Since
g(+) is strictly monotone decreasing this value is unique.'® For disturbance
distributions with “thinner” tails than the normal p = 0.

The above definition of v is not the only possible one. In principle we could
define v as a function of any two moments, or quantiles, or set v equal to some
fixed number.!” Our results below hold for any definition of v as long as its
estimator has certain (reasonable) properties.

16 Practically we may find the solution value of g(v) — a = 0 by pretabulating g(v) for different
values of v or by applying some of the readily available solution algorithms for implicit equations.

7An interesting generalization of this class could be obtained by allowing v to differ over
equations. We conjecture that asymptotic results similar to the ones given below could also be derived
for this more general class. However, this is a subject of future research.
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4.1. The Estimator Generating Equations: A Generalization

We now use the normal equations of the TFIML estimator (3.3) as estimator
generating equations in defining the following general class of estimators.

DEFINITION 4.1: Let IT, 37!, 25, &, and ji be any estimators of IT, 7!, =71,
8, and p = v~ !, respectively, where 37! and 2; ' need not be the same; then any
instrumental variable estimator of the form (4.3) is said to be a TFIML,
estimator:

-1~

432) 8, =[X'E'®@W)X] X' E'®@W)y,

X = diag,(X,), )?i=[)",.,z.], Y,=2zI,, II,=IIL,

. . y . . e Boles ) ]
(4.3b) W =diag(W,), W, = {1 + [ i/ —24) a2, } ,
=y —y,B—zC, vec[(é’, C"’)’] = diag,,(L;)

For a given set of data the estimator s , can be viewed as a function of ﬁ, po !

v

3;', 8, and ji. We denote this dependence more compactly as

43) 8, =F(I,2718,3.", ).

REMARK 4.1: Note that we define TFIML, estimators as a function of an
estimator of u = 1/v. Hence a priori knowledge of v (as required in Section 3) is
no longer assumed. Hendry’s [9] NFIML, class results as a special subclass of
the TFIML, class for W= I, or equivalently £;'=0: §,=[X'C'®I,)
X" X'E'® I)y = FAL,271,.,0,.). Hendry showed that virtually all known
estimators belong to the NFIML, class; hence they also belong to the TFIML,
class. In addition the TFIML, class contains generalizations of virtually all
known estimators. As an illustration, the 3SLS estimator is, using obvious
notation, given by 8,55 = F(Ilgs, =515 -5 0, ). The estimator 8355 = F(Ilops,
Sistss Oasiss Zosis» MasLs), Where pyg s is the moment estimator of p based on
2SLS residuals, would be a typical example for a generalized version of the 3SLS
estimator.

4.2. Consistency of TFIML, Estimator

We now give a general theorem concerning the consistency of TFIML,
estimators.'®

THEOREM 4.1: Consider the model (2.1) subject to the (general distribution)
assumptions of Section 2. Let 8. be any consistent estimator for 8. Let TI, 2!, 3,

"8Roughly speaking, in proving the theorem we first show that plim(BAC— c) =0 where &

= F(plim I, plim £~ ', 8, plim = !, plim 1). We then prove the consistency of §.. The detailed proof
is available on request.
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and [i. be any (possibly inconsistent) estimators for 11, >~ and p, respectively, with
bounded probability limits and in particular plim i < 1/2. Let 3, be a positive
semidefinite matrix and plim T ~'X'(2~' ® I;)X a finite nonsingular matrix. Then
the TFIML,, estimator 8. = F(I1,S~",8.,3; ", ji) is consistent for 8.

REMARK 4.2: The above theorem essentially makes case by case studies of the
consistency of TFIML, estimators superfluous. Roughly speaking, the theorem
states that TFIML, estimators (as instrumental variable estimators) are consis-
tent even if inconsistent estimators are used in the construction of the instru-
ments. There is one exception: The disturbances entering the weighting matrix W
must be estimated consistently. This ensures that plim 7 ~'Z’ WU = 0. Since the
variances are bounded, this implies that there exists some p >0 such that
p<1/2 — p (compare (4.1) and (4.2)). Hence any i that is consistent satisfies the
assumptions of the Theorem. A sufficient but not necessary condition for
plim7'X(2"'® I;)X to be finite and nonsingular is that IT and 3 are
consistent (see, e.g., Schmidt [18, p. 205]).

4.3. Asymptotic Distribution of Linearized TFIML, Estimators

Consider the subclass of TFIML, estimators defined as fixpoints of the form
@4) 8= F(I,27,8,, 57", ).

Clearly the TFIML estimator (3.3) is a member of this class. We are particularly
interested in linearized versions of certain members of this class. To derive those
estimators we rewrite (4.4’), using the explicit notation of (4.3), as

@44  G[8]=XC'@W)i=0, ii=veq(U)=y— X,

- . . . R
W =diag(#,), W, = [l —(A/(1 = 2)), 25 'u,_]

A linearized version of ¢§F can be defined in terms of the first step of a
Gauss—Newton iteration scheme designed to find a solution to (4.4). In gen-
eral, starting at &, such a linearized estimator is given by <§FL =5 [aG(S)/
38]7'G(8). The following subclass of linearized estimators will be of particular
interest.

DEFINITION 4.2: Conside'r the model of Section 2. Let IT, =1, 2; ! and i be
cpnsistgnt estimators with X! positive semidefinite; further, let the elements of
8-6,2,"—32""and i — p be of O,(T~'/?)."” Then in the notation of (4.3) any

9These speed of convergence assumptions are not restrictive at all. Any of the usual estimators
will satisfy these conditions. See Remark 4.4 for further details.
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estimator of the form

(452) S=8+|X'C '@ W)X - 1 3“2’1 Xvx| XE'® W

(4.5b) 17=[17 lij=r

7 — diacT (% v xivry2e i
) V= dlag,=](v,-jv,), Oy, = 6" W1t 67,

with & = y — X§ is called a linearized TFIMLE estimator (the subscript E stands
for efficient—the exact meaning of which will become clear below).

The inverse matrix on the right-hand side of (4.5a) is readily seen to be equal
to —[G(8) /988]7". We now give a general theorem concerning the consistency
and asymptotic distribution of linearized TFIML;, estimators.?’

THEOREM 4.2: Consider the model (2.1) subject to the general distribution
assumptions of Section 2. Assume further that the fifth moment of the disturbance
distribution exists and that the matrix 2 — AQ is nonsingular where Q = E(u; w;u,),
A=2u/[(1 —2p)8), and 0 = E(w,). Let 8 be any linearized TFIML; estimator;

then 6 is consistent and T (8 ) )—) N(O, ;) where
(46) ®;=H '[R(Z7'Q="'® Q)R|H"'/6?,

H=R[ZT'E-M)Z"'®Q]R

REMARK 4.3: According to the above theorem the whole class of linearized
TFIML; estimators has the same asymptotic distribution. Hence, case by case
discussions of the large sample distributions of those estimators are unnecessary.
Note also that while it is possible to iterate on the formula (4.5) those iterations
will not affect the large sample distribution and hence will not lead to more
efficient estimators.

REMARK 4.4: For practical purposes we need, for general disturbance distribu-
tions, a consistent estimator of the variance covariance matrix ®;. In introducing
such an estimator we shall for later reference also consider issues concern-
ing the speed of convergence. Let U be based on any consistent estimator
of the structural parameters, say 5, such that § = 8 + OP(T"/ 2.2 It is then
readily seen that 3=7"'0'U=3+ 0O ,(T~'/?) and therefore S-l=3"14
0,(T ~'/%).2* Similarly we have , "ET il =m; + 0 (T"/z) as an esti-
mator for the first absolute moment. As a consequence a =M'SM 5./ m}
=a+ O0,(T" 1/2). Further, because the Gamma function is continuously differ-

20The proof is tedious, and involves a second order Taylor series expansion of w, around the true
parameter values. The second order terms are found to be asymptotically negligible. Details are
available on request.

2! Note that virtually all known estimators, as the 2SLS estimator, converge of O (T ~'/2).

22The latter and several of the subsequent results follow immediately from Lemma 5.1.4. and
Corollary 5.1.6 in Fuller [4, p. 184 and p. 192].
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entiable so is the function p = u(a) defined in (4.2) at all possible argument
values, except at the “normal” point @ = 7 /2. At that point p(a) is continuous
with finite left and right hand first order derivatives. It therefore follows that
fi=p(@=p+ 0, (T 7. Let W = diag(,) based on §, 27, and fi. As a
byproduct of the proof of Theorem 4.2 it is readily seen via a Taylor expansion
of W, around the true parameter values that =T 'ST_w,=0+o (T_'/4)
and Q=T 'UWU=Q+o ,(T~"/%); hence also X=21/[(1- 2,t)0]

0, (T~ 1/4). Assume further that I1 is a consistent estimator. Then in the notation
of (4.3) the following estimator is consistent for ®:

@7  S;=H YT X[ETOET'Q L)X |H /6,
H=T"X[E'E-A)E'® [;]X

For practical purposes it is hence not necessary to evaluate E(w,) or E(u, wiu,)
analytically for different disturbance distributions.

REMARK 4.5: The assumption that the matrix 2 — AQ = E(u,(1 — Aw))uy,) is
nonsingular is satisifed for both the Normal and the Student ¢ distribution.”* We
think that the assumption is satisfied for all symmetric unimodal distributions
with differentiable density; however this remains to be shown for the systems
case.?® As a safety strategy we may use a sort of “pretest” estimator: Clearly
S — AQ is nonsingular if A = {det(/ — A2=~ ")}/ is not equal to zero. Consider
the estimator A = {det(/ —X22~")}"/* and suppose £~'=3""+ o, (T '/,
Q=Q+0,(T""*, and A=A+o0 (T ~'/*).2* Then also A=A+o (T‘l/“)
Now the basw idea of the ¢ pretest estimator is to choose an 1nterva1 for A
around zero. If A falls into the interval we select the NFIML estimator § (or any
other asymptotically equivalent estimator); otherwise we select one of the linear-
ized TFIMLg estimators, say 8 Consider, e.g., the interval [—5/InT,5/InT]
with § = 5 + 9,(1) and 5 > 0.? Observe that the limits of the interval converge of
slower order to zero that A converges to the true value A. Consequently the
probability limit of the indicator function

48) D)= { 1 if |A|>35/InT,
0 otherwise,

is ong if A # 0 and zero if A = 0. Now suppose we define the “pretest” estimator,
say 0, as

(4.9) §= DB)8; + (1 — D(A))8;

2In particular we have = — AQ = pZ with p = 1 for the normal and p = (v + M)/(v + M + 2) for
the Student ¢ distribution. Compare Corollary 4.1.

24For a verification of this assertion in the single equation case, see Poetscher and Prucha [16].

25For the existence of such estimators, see Remark 4.4.

26The subsequent results do not depend on the particular choice of s as long as s > 0. One
possibility would be to choose s to be some fraction of the asymptotic standard deviation of A.
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then clearly VT (§ — 8)1'—>d' N(0,®;) where ®; = ®; if A # 0 and &; = Oz if A=0.
®; denotes the asymptotic covariance matrix of the NFIML estimator given in
Section 3. Suppose (I)s and <I> are consistent estimators for ®; and ®; respec-
tively; then fl)a = D(A)(I)a + (1 - D(A))(I>5 is a consistent estimator for ®;.

In case the disturbances are distributed multivariate ¢ with v = p~! degrees of
freedom it is readily seen that

E(w,) = and  E(wiu,u,) = v

v
v+ M v + M o+ M+2°

In case the disturbances are multivariate normal we have p = 0 and consequently
Ew)=1land E (w,zu,,u,j) = o;. This implies the following corollary.

COROLLARY 4.1: Consider the model (2.1) subject to the assumptions of Theorem
4.2. Assume that the disturbance distribution is multivariate t with v degrees of

freedom. Let 8 be any linearized TFIMLy estimator. Then T (8 - 8)—~>
N(0, D) where ®; defined in (4.6) simplifies to

_v—2 0+ M+2 s -1 -1
by == S [R(ETI@ Q)R]

If in particular the disturbance distribution is multivariate normal, then ®;
=[R'C'® Q)R]™".

REMARK 4.6: The corollary implies that linearized TFIMLg estimators have, in
case of multivariate ¢ distributed disturbances, the same asymptotic distribution
as the TFIML estimator and in case of multivariate normal distributed distur-
bances the same as the NFIML estimator (compare Section 3 for the covariance
matrices of the TFIML and NFIML estimator). Hence linearized TFIML,
estimators are efficient in both cases. Asymptotically no penalty is imposed for
not knowing v a priori. Clearly the NFIML estimator is inefficient in the
multivariate ¢ case.

4.4. Gain in Efficiency: The Single Equation Case

In the following we compare for the single equation model, y = Z8 + u, the
asymptotic covariance matrix of linearized TFIML; estimators to that of the
NFIML (i.e. OLS) estimator. We consider a variety of disturbance distributions.

Let § be the OLS estimator; then for all disturbance distributions satisfying the

conditions of Section 2 VT (§ — 8)——) N(0,®;) with ®; = 0?0 ' (compare Re-
mark 3.3). Let 8 be any hnearlzed TFIML estimator; then under the assump-
tions of Theorem 4.2 YT (8 - 6)——) N (0, ®;). The variance covariance matrix @
is defined in (4.6) and reduces to

2
4.10)  &; = ks, x=[E(w,2u,")/02]/[E(W,)—1 “2“ E(wu)/o®
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The parameter p is implicitly defined by (4.2) with a = E(u?)/[E(|u,|)]>. Hence,
for the single equation case, the asymptotic covariance matrix of linearized
TFIML estimators is seen to be proportional to that of the OLS estimator. We
shall refer to the proportionality factor k as the efficiency parameter.

In computing the efficiency parameter k for a particular disturbance distribu-
tion we first have to calculate E(|u,|) and E(u?). This implies a certain value for
u. This value is then used to calculate E(w,) and E(w?u?). Rather than evaluate
the above expectations analytically, we calculate them by numerical integration
techniques. The accuracy of the numerical procedure was checked for the
Student ¢ distribution against the analytically implied value k = (v — 2)(v + 3)
/(v(v + 1)). It was found that the numerical results were accurate up to the first
five decimal places.

Table I gives the values of the efficiency parameter k for the Student ¢, the
Normal, the Laplace, and the Logistic distribution.”’” We also evaluate « for the
case in which those distributions are “contaminated” by an e-fraction of a
Normal distribution with relatively fat tails. Such distributions are typically
considered in the literature on robust estimators; see, e.g., Huber [10]. The
contamination may model the occurrence of outliers. Table II gives the efficiency

TABLE I

EFFICIENCY PARAMETER k OF TFIMLg ESTIMATORS RELATIVE TO THE OLS ESTIMATOR.
Disturbance Density: f(u) = (1 — €)f, (u| m) + ¢fy(u| cm).

f.(u|m) e=0 €=0.05 e=0.1
c=2 c=4 c=10 c=2 c=4 c=10

fr(u|v="5m) .800 a1 54 17 75 43 .10
fr(u|v=10,m) .945 90 .63 19 .86 49 11
friu|v=15m) 975 93 .65 20 .89 .50 12
fu(u| m) 1 .96 .69 21 93 53 12
Finplu| m) 66 65 .45 14 65 37 09
frog(u| m) 91 87 .60 19 84 47 11

NoOTE: fy(u | m), fiap(u | m), foc(u | m), and fr(u | v, m) denote, respectively, the probability den-
sity functions of the Normal, Laplace, Logistic, and Student 7(v) distribution with zero mean and first
absolute moment m. Note that in all cases the densities are completely characterized by specifying m. In
using the first absolute moment as a measure of spread we follow an often used convention in the
roubustness literature. In the actual calculation we set m equal to one. Note however that the above
results are independent of the particular value of m.

TABLE II

EFFICIENCY PARAMETER k OF TFIMLg ESTIMATORS
RELATIVE TO THE OLS ESTIMATOR.

Disturbance Density: f(u) o [(1 + bu?)®*3/2 4 cy?]71,

b=v—-2.
c=1 c=10 c=100 ¢ = 1000
v=>5 66 .26 .05 01
v=10 81 33 08 02
v=15 .85 35 .09 03

27See Johnson and Kotz [12].
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parameter k for a “generalized” version of the Student ¢ distribution (the latter
distribution is obtained for ¢ = 0). The results of Tables I and II are quite
encouraging. We note that in case of normally distributed disturbances linearized
TFIML estimators are asymptotically equivalent to the OLS estimator. In all
other cases we observe gains in efficiency due to the use of linearized TFIMLg
estimators. In a variety of cases those gains are very substantial.

5. CONCLUSIONS

A number of issues remain to be considered. First, the paper should be viewed
as a pilot study in the analysis of a general class of simultaneous equation
estimators that, as indicated by large sample results, are less sensitive to devia-
tions from the usual normality assumption, and provide the potential for substan-
tial gains in efficiency. The effects of different definitions of the ‘“degrees of
freedom” parameter (including different definitions for different equations) on
the efficiency of linearized TFIML; estimators needs further analysis. Monte
Carlo studies may be particularly useful in that respect.

Second, we may try to reduce the present moment requirements by using more
elaborate techniques of proof. Progress along these lines has already been made
in the single equation case; see Poetcher and Prucha [16].

Third, we believe that the matrix 2 — AQ is nonsingular for all symmetric
unimodal distributions which have a differentiable density. However this remains
to be determined. If this does not hold, the concept of “pretest” estimators needs
further consideration.

Finally, it would be interesting to derive classes of estimators from other
families of multivariate distributions and compare their properties to those of
TFIML, estimators.

University of Maryland
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