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A B S T R A C T

We discuss two approaches to estimating the air quality impacts of public transit projects, focusing on
Metro projects in the context of developing countries: air quality modeling and reduced-form econometric
methods. As we illustrate, pollution reductions due to Metro projects implied by pollutant chemistry, vehicle
emissions factors, and modal shifts may differ from econometric estimates of the impact of transit projects on
ambient pollution concentrations. We discuss both approaches and illustrate how economics researchers can
use estimated emissions reductions associated with a transit project and pollutant chemistry as a check on
their estimates of changes in ambient concentrations.
1. Introduction

Throughout the world, road transport is an important source of local
and global air pollution. Vehicle exhaust produces carbon monoxide
(CO), volatile organic compounds (VOCs), oxides of nitrogen (NO𝑥),
sulfur dioxide (SO2) and particulate matter (PM). These pollutants have
health effects in their primary form (i.e., when emitted directly) and
when they combine to form secondary pollutants—both particulate
matter (e.g., ammonium nitrate and ammonium sulfate) and ozone
(WHO, 2013; HEI, 2010). In 2018, the transport sector accounted for
25% of global CO2 emissions from fuel combustion (IEA, 2019). A
substantial portion of the CO2 transport emissions is attributable to
road transportation: 72% for the EU, 81% for the US and 90% for
India.1

When public transport projects are planned, reductions in air pol-
lution are often cited as benefits of the project, in addition to time
savings and reduced congestion. The magnitude of pollution reduction
depends on the size of modal shifts from private to public transport,
the difference in emissions per passenger kilometer traveled between
private and public transport and the number of kilometers traveled.
This determines the reduction in emissions due to a project. In the
case of CO2, the reduction in emissions is what matters: the impact
on climate of CO2 is independent of where it is emitted. In the case of
local air pollution, the impact of a change in emissions on ambient air

✩ This paper has greatly benefited from discussions with Joshua Apte, Sarath Guttikunda, and Russell Dickerson.
∗ Corresponding author.
E-mail addresses: mcropper@umd.edu (M. Cropper), palak.suri@mail.wvu.edu (P. Suri).

1 In the EU in 2019, 28.5% of CO2 emissions came from transport and 20% of CO2 emissions came from road transport (European Parliament, 2022). In the
US in 2021, 29% of greenhouse gas (GHG) emissions came from transport; 81% of transport emissions came from road transport (EPA, 2023). In India in 2020,
transportation was the third largest emitter of GHGs; 90% of transport emissions were from road transport (Singh et al., 2022).

quality depends on where the change occurs, and it is the change in
ambient air quality that affects human health and welfare.

In this paper we focus on the impact of public transit projects on
ambient air quality. The rapidly expanding economics literature on this
topic uses reduced-form econometric methods to estimate the impact
of projects on ambient CO, NO𝑥, PM and ozone. One group of studies
examines how air quality changes when a public transit strike occurs.
Other studies look at how air quality changes after a Metro system
is introduced or expanded. These studies are often executed using
a regression discontinuity (RD) in time or a difference-in-differences
approach. Both sets of studies are capable of providing causal estimates
of the impact of public transit on ambient air quality; however, they
are ex post studies and measure impacts of inherently different policies.
Reduced-form studies face the challenge of controlling for other factors
that may affect ambient air quality, such as emissions from other
sources and changes in meteorology that also vary over time.

Another approach to estimating the impact of transit projects on
ambient air quality is to calculate emission changes at a fine geographic
scale and use atmospheric chemistry to calculate their impacts on
ambient air quality. Translating emissions reductions into impacts on
ambient air quality requires dispersion models that track the transport
of pollutants through the atmosphere using information on weather,
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topography, and pollutant chemistry.2 The advantage of these models,
which have been used to model the impact of road transport emissions
on fine particle formation, is that they can hold constant factors that
are difficult to control in reduced-form econometric models, such as
weather and pollution emissions from other sources. They can also
be used to estimate the air pollution impacts of a transit projects ex
ante. Atmospheric chemistry models are validated by comparing model
predictions to measurements of air quality at ground-level monitors.

In this paper we discuss the strengths, limitations and comple-
mentarities of two approaches used to measure the local air pollution
benefits of public transit: reduced-form econometric models and air-
quality modeling. We begin in Section 2 by discussing the atmospheric
chemistry of ambient air quality associated with local air pollutants:
CO, NO𝑥, PM and ozone. This has important implications for the
selection of data and monitoring sites in econometric studies, and the
geographic scale at which air quality modeling is conducted. Atmo-
spheric chemistry can also be used to provide an order of magnitude
estimate of the reduction in air pollution from a transit project by exam-
ining the percentage reduction in emissions it delivers in a particular
location. This can provide a check on the plausibility of econometric
results and is particularly relevant given the sensitivity of econometric
estimates to model specification.

In Section 3 we review the results of econometric studies of the
air quality benefits of transport projects, discussing the methods used
and the sensitivity of results to modeling assumptions. We concentrate
on the literature in developing countries, focusing on China, India and
Taiwan, and studies that examine the air quality benefits of Metro rail.
We illustrate the emissions inventory/air quality modeling approach in
Section 4, using the Delhi Metro as an example. Section 5 concludes.

2. How public transit can reduce emissions

If a public transit project produces fewer emissions per passenger
kilometer traveled than existing transport modes, modal shifts can
reduce pollution emissions.3 In the case of Metro rail, the emissions
reductions generated when Metro riders shift from private vehicles
to Metro usually occur along roads that parallel the Metro lines, for
example, in the downtown or central business district of a city. It
is there that empirical studies should focus to estimate reductions in
ambient air pollution caused by the transit project. The electricity used
to run the trains and provide auxiliary power is usually generated in
other areas, where fewer people are exposed to emissions. In most
studies, the impact of these emissions is not measured.

What pollutants are reduced when passengers shift to Metro? Pri-
mary pollutants emitted by petrol and diesel powered vehicles are CO,
VOCs, NO𝑥, PM and SO2. Secondary pollutants include ammonium
nitrate and ammonium sulfate, which form when NO𝑥 and SO2 combine
with ammonia, respectively, and ozone, which is formed when NO𝑥 and
VOCs combine in the presence of sunlight.

The impacts of emissions reductions on ambient air quality depend
on where emissions reductions occur. Since most emissions reductions
associated with a Metro will occur along roads that are alternatives to
riding the Metro, peak reductions in ambient concentrations of primary
pollutants will occur along these roads. To understand the magnitude
of air quality improvements across space, it is important to understand
how fast ambient pollution concentrations from road transport decline

2 Dispersion models may be either process-based or reduced form (NRC,
010). Process-based models (e.g., CAMx, CMAQ) use detailed atmospheric
hemistry to simulate interactions among pollutants and gases in the at-
osphere and thus account for nonlinearity in the dispersion process.
educed-form models (e.g., ATMoS, CALPUFF, HYSPLIT) use simplified
ispersion calculations to predict concentration changes.

3 This is definitely true if kilometers traveled remain constant, but may not
old if there is a rebound effect—i.e. if passengers travel farther on public
2

ransit. (
with distance from a road. Research has shown that ambient concentra-
tions of nonreactive pollutants (e.g., directly emitted PM and CO) decay
rapidly 100–400 m from a major road: concentrations fall to < 20% of
peak concentrations in this range (Zhou and Levy, 2007). NO converts
rapidly to NO2, which declines to < 20% of peak concentrations within
200–500 m from the emissions source. So, the biggest reductions in
ambient pollution from CO, NO2 and directly emitted PM are likely
to occur close to roads. This implies that, depending on their location,
ground-level monitors may not capture all of the reductions in ambient
air pollution due to a transport project.4

As noted above, road transport also creates secondary pollutants.
Fine particles (PM2.5) and ozone are especially important because of
their impacts on human health (WHO, 2013; HEI, 2010). Fine particles
(PM2.5) and ozone travel much longer distances, hence focusing on
monitors near traffic intersections may not capture all of the impact
of a transport project on secondary PM and ozone. These effects can be
captured through air quality modeling.

What magnitude of reductions in ambient air pollution is a transport
project likely to cause? For primary pollutants, a rough rule is that
the percentage reduction in emissions in a given area results in an
equivalent percentage reduction in ambient concentrations (Small and
Kazimi, 1995; Nagpure and Gurjar, 2012). To estimate the air quality
reductions from transport projects, econometric studies often measure
the change in primary pollutant concentrations (e.g., CO, NO2 and
PM10) at ground level monitors. Note that ambient concentrations of
primary pollutants at a monitor will reflect mainly emissions within
a radius of approx. 2–4 km of the monitor, based on the decay rates
cited above. If passenger transport constitutes 40% of CO emissions
within this area, and if 10% of CO emissions from passenger transport
in the area are reduced by a Metro project, ambient CO should fall by
4%. The important question for evaluating the air quality impact of a
Metro project is what percent of pollutant emissions in a given location
come from passenger transport and what percent of these emissions is
reduced by modal shifts. This can be used as a reality check on the
magnitude of results found in econometric studies.

3. Econometric studies estimating the impact of transport projects
on air pollution

There have been many studies in the economics literature attempt-
ing to estimate the air pollution consequences of transport policies,
including expansions of Bus Rapid Transit (BRT), Metro rail, light
rail and intercity rail projects, strikes affecting transportation services,
and various driving restrictions. While these are all based on similar
approaches and have the common aim of understanding the environ-
mental impacts of public transit, we focus on studies conducted to
measure the air quality effects of Metro rail projects. We also focus
on developing countries since many developing countries have Metro
projects underway. These studies are summarized in Table 1. Other
studies analyzing the importance of public transit are in Appendix
Table A.1.

Empirical papers studying the influence of Metro transit projects on
air quality often rely on event study approaches, such as regression
discontinuity (RD) in time or difference-in-differences (DiD). The RD
in time approach allows researchers to estimate the change in the level
of a pollutant potentially caused by the introduction of a project. The
implicit assumption is that in the absence of the project, pollution levels
would have changed smoothly, without any discontinuous jumps.

This approach has been used to study the air quality impacts of
Metro systems by Chen and Whalley (2012) in Taipei, by Goel and

4 Reductions in road transport emissions will, nevertheless, have significant
uman health benefits given the number of people directly exposed to them
see Brunekreef et al., 2009; HEI, 2010; WHO, 2013).



Regional Science and Urban Economics xxx (xxxx) xxxM. Cropper and P. Suri

m

3

t
m

a

e

Table 1
Published studies examining the effects of subways or commuter rail on air pollution using econometric methods (Economics or Transportation Journals).

Study Context Empirical approach Pollutants examined Results

Chen and
Whalley (2012)

Introduction of the first
Metro line in Taipei in
1996

Main: RD in time for 1 year before and
after the policy; Robustness: DiD
comparing two cities

CO, O3, NO𝑥, PM10, SO2 5%–15% reduction in CO, a statistically
insignificant reduction of 8% in NO𝑥, an
unclear effect on O3, no effects on PM10
and SO2

Goel and Gupta
(2017)

Two early extensions to
the Delhi Metro in 2005
and 2006

RD in time for about 18 months before
and after the policy

NO2, CO, and PM2.5 34% decline in CO measured at the ITO
monitoring station; weak or no effects
on other pollutants

Gendron-Carrier
et al. (2022)

Subway openings in 58
cities from 2001–16,
mostly in developing
countries

RD in time, 18 month before and 18
months after

AOD data measured
monthly at 3 × 3 km
resolution

No average effects of subway openings
within a radius of 10 km around the
city center, but a 4% average reduction
in cities with above-median baseline
levels of AOD

Li et al. (2019) Beijing Metro expansion Main: Historical routes as an
instrumental variable for subway
density; Robustness: spatial DiD
comparing monitors within 2 km of a
subway station with locations farther
than 20 km away

Daily AQI based on SO2,
NO2, PM10 for a part of
the period and one based
on CO, SO2, NO2, PM10,
PM2.5, O3 for the
remainder

Reduction in pollution ranging from
0.02% from the opening of Line 16
(20 km length) to 0.24% from the
opening of Line 6 (78 km length);
aggregate decline of 1%; 7.7% decline in
pollution from DiD

Guo and Chen
(2019)

Beijing Metro expansion RD in time, 50–80 days before and after
the policy

PM2.5, PM10, SO2, NO2,
CO, O3, AQI

Reductions in PM2.5, PM10, SO2, NO2,
CO, AQI by more than 155%, 125%,
78%, 110%, 109%, 112%, respectively.
Over 100% increase in O3.

Zheng et al.
(2019)

Changsha Metro DiD, one year before and 1 year after Hourly CO, O3 and PM2.5 18% reduction in CO, no effects on O3
and PM2.5

Guo et al.
(2020)

23 Inter-city high-speed
railway lines in China
opened during 2015–16

DiD comparing stations within 10 km of
highways affected by new HSR lines v.
those within 10 km of old HSR lines

CO, O3, PM2.5 4.3% reduction in CO. No effect on
other pollutants

Lee et al. (2023) Opening of a high-speed
rail line connecting two
megacities in China in
2015: Chengdu and
Chongqing

Main: Two-step approach with random
forest in the first stage and an
augmented RD in time approach in the
second stage; Robustness: DID
comparing affected roads with randomly
chosen roads

Hourly PM2.5, PM10, SO2,
NO2, CO and O3 from an
AQM at 15 km resolution

6.4% reduction in CO along the main
affected highway, 7.1% decrease in
PM2.5, 2.2% decrease in PM10 levels. No
effect on NO2 and O3. DiD estimates are
larger and NO2 declines significant, O3
shows significant increase.

Note: Main empirical approach is described unless otherwise noted.
Gupta (2017) in Delhi, by Guo and Chen (2019) in Beijing, by Gendron-
Carrier et al. (2022) in 58 cities, and by Cropper and Suri (2022) in
Mumbai. Some papers also feature a DiD approach, which estimates
the change in the level of a pollutant due to the transit project in a
location that received the transit project relative to a location that did
not: for example, Chen and Whalley (2012) in Taipei, Li et al. (2019)
in the context of the Beijing Metro expansion, and, Zheng et al. (2019)
in Changsha. This method assumes parallel trends in pollution levels in
the treatment and control locations in the absence of the project.

These approaches have also been used to study the air quality
impacts of other public transit projects in developing countries, such
as the expansion of BRT in Mexico city (Bel and Holst, 2018), the re-
organization of bus routing and scheduling in Santiago, Chile (Gallego
et al., 2013), and the introduction of high-speed inter-city rail in China
(Guo et al., 2020; Lee et al., 2023).5 In this paper, we focus only on the

easurement of air quality impacts of Metro projects.

.1. Pollution measurement units and locations

In all of the studies in Tables 1 and A.1, the goal is to estimate
he effect of a policy on ambient air quality measured by ground level
onitors or aerosol optical depth (AOD).6 Researchers have studied the

5 For studies examining other transportation policies in both developing
nd developed countries, see Li et al. (2020).

6 AOD is a measure of aerosols present in the atmosphere based on the
xtinction rate of a ray of light passing through the atmosphere. It is often used
3

effects of Metro rail on both primary (CO, NO𝑥, PM10) and secondary
pollutants (PM2.5), for time spans ranging from 30 days to 2 years
before and after the policy. In terms of primary pollutants, studies
estimating the impacts on CO have found wide-ranging reductions: 5%–
15% in Chen and Whalley (2012), 34% in Goel and Gupta (2017), 78%
in Guo and Chen (2019), and 18% in Zheng et al. (2019). Evidence
about the effects on NO𝑥 or NO2 is weaker: Chen and Whalley (2012)
and Goel and Gupta (2017) find reductions in NO𝑥 and NO2 that are not
stable across specifications.7 Chen and Whalley (2012) and Cropper and
Suri (2022) also do not find significant reductions in PM10. Of studies
that evaluate PM2.5, Goel and Gupta (2017), and Zheng et al. (2019)
do not find significant reductions. Guo and Chen (2019) document
reductions in PM10 and PM2.5, but their estimated reductions exceed
100%, and are likely confounded by other factors. Gendron-Carrier
et al. (2022) find no average effects across 58 cities on AOD, a proxy for
PM, however, there is a reduction in cities with above-median baseline
levels of AOD and substantial ridership.

Changes in air quality are expected to arise due to modal substitu-
tions, which, for primary pollutants, will occur on roads close to the
Metro network. Many researchers, therefore, restrict their treatment

to proxy surface-level PM, but the relationship varies based on meteorological
conditions and atmospheric chemistry.

7 Guo and Chen (2019) find reductions in NO2 ranging from 78% to over
100%. Cropper and Suri (2022) find reductions in NO2, that represent the
effect of the opening of Metro Line 1 and a highway expansion project that

opened during the same month.
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locations to areas in the vicinity of Metro projects, where traffic is most
likely to be affected (Goel and Gupta, 2017; Gendron-Carrier et al.,
2022; Li et al., 2019).8 But sometimes, for practical reasons, researchers
analyze ambient air pollution reductions averaged over a very large
area.

While it is true that pollutants travel and are persistent, it would be
naïve to claim that econometric studies estimate the pollution reduction
due to the policy, without accounting for the chemistry of dispersion
and persistence of a pollutant between the location of emission and the
location of measurement. Gendron-Carrier et al. (2022), for example,
document a spatial decay in the effect of Metro openings on AOD as
the treatment area is expanded beyond the city center.

Additionally, when hourly pollution data is used, the level of data
aggregation and analysis can also affect the results. For example, should
data be aggregated at the hourly level or daily level using measure-
ments from rush hour times? Which are the relevant summary statistics
to be examined: mean, median, maximum, or standard deviation?
Generally, pollutants emitted by light passenger vehicles peak during
rush hour and stabilize during nighttime. Similarly, levels of pollutants
emitted by heavy freight vehicles would be higher during the hours
they are allowed to operate. Appropriate measurement duration would
depend upon the policy in question and the temporal persistence of the
pollutants. Fig. 1 for Delhi, for example, emphasizes diurnal patterns for
three pollutants: PM2.5, CO, and NO𝑥. PM2.5 peaks at night and stays
high during the morning rush hours. NO𝑥 and CO peak at night and
are lower during the day. This is likely due to heavy vehicles that are
allowed to operate only at night.

Some of the variation in econometric estimates across contexts is
expected due to differences in the importance of passenger vehicles
in the emissions inventories of various pollutants. But, sometimes, the
effect sizes estimated within a study are wide ranging, calling into
question the reliability of the estimates. Most researchers attempt to
use contextual knowledge to explain the sensitivity of estimates, but
this varies across contexts and journals. In the following subsection, we
describe the reduced form approaches commonly used for estimating
the impact of a Metro project on air pollution, highlighting the impli-
cations of specification choices that may lead to unstable estimates of
impacts on air pollution.

3.2. Methodological approaches

Regression Discontinuity: Given data on ambient pollutant con-
centrations before and after the opening of a project, most papers using
an RD in time regress the log of a pollutant concentration, measured
hourly or daily at a ground-level monitor, on an indicator variable
for the period after the project opening, a flexible polynomial time
trend, controls for meteorological conditions, and a combination of
fixed effects for hour of the day, day of the week, month, and year.
The rationale is to identify the effect of the policy on pollution levels
while accounting for trends in observed ambient levels regardless of the
emission source, i.e., including non-transport sources, which may vary
by time of day, day of the week and season of the year.

To illustrate the need for these controls, Fig. 2 plots the average
hourly levels of PM10 for a 30-day period before and after the opening
of the first Taipei Metro Line using data from Chen and Whalley
(2012). PM10 levels peak during Wednesday–Friday and are lower
during morning hours. Over a longer period, we would also observe
a pattern based on climate conditions during different seasons. The
pattern in hourly variation is also seen in Fig. 1 for Delhi. Addition-
ally, pollution levels are affected by meteorological conditions such as
humidity, temperature, and wind conditions, but given the complexity
of this dependence, there is variation in how different studies control
for these factors.

8 Other studies examine the heterogeneity in estimates using information
from different monitoring stations (Chen and Whalley, 2012).
4

Fig. 1. Delhi pollution averages by hour of the day.
Note: This graph shows the average hourly pollution levels for the period 2013–2023 at
the ITO Monitor calculated using data from the Central Pollution Control Board of India.

The estimation equation for the RD in time approach generally takes
the following form.

log(Pollutant)𝑡 = 𝛼0 + 𝛿 ∗ Post Policy𝑡 + 𝛼𝑥 ∗ 𝑋𝑡 (1)
+ 𝛽𝑘 ∗ 𝑓 (𝑡; 𝑘) + 𝛽𝑝𝑜𝑠𝑡𝑘 ∗ 𝑓 (𝑡; 𝑘) ∗ Post Policy𝑡 + 𝜖𝑡

For example, in Chen and Whalley (2012), the authors regress the log
of the average hourly pollutant level on an indicator variable for the
post-Metro period (Post Policy𝑡), a third-order polynomial time trend
in days (𝑓 (𝑡; 𝑘)), an interaction of this polynomial trend with the post-
Metro indicator allowing the trend to be different in the pre-period and
post-period, a vector of covariates (𝑋𝑡) accounting for meteorological
conditions, and fixed effects for month, day of the week, hour, and hour
multiplied by day of the week. They also include indicators for other
confounding events such as gas content regulations: two before the
Metro opening and two after. Meteorological variables include current
and 1-hour lags of quartic functions of temperature, wind speed, and
humidity. Other papers in the literature follow similar approaches with
some variations: for example, in the order of polynomials, choice of
controls, and by allowing a differential time trend in the pre and post
periods.

Note that this approach is different from a typical RD design, as
explained in Hausman and Rapson (2018), but is to a great extent
compatible with current RD methods (Lee and Lemieux, 2010; Cattaneo
and Titiunik, 2022). Therefore, many of the same issues apply here.
Most of the papers using the RD in time approach employ parametric
estimation, but given the sensitivity of this approach to polynomial
order and controls, it is advisable to employ non-parametric methods as
well for robustness.9 Most notably, including a higher order polynomial
time trend can lead to overfitting and inconsistent estimates of the
treatment effect (Hausman and Rapson, 2018), but this point has often
been ignored in the literature.10,11

9 Calonico et al. (2017) discusses estimation procedures in Stata. See https:
//rdpackages.github.io/rdrobust/ for details on latest available estimation
programs.

10 Sensitivity to the order of polynomial trend is noted in the Appendix
of Chen and Whalley (2012).

11 Lee et al. (2023) is an exception in that the authors use a local linear
regression to estimate the effects of the opening on high-speed rail. However,
they follow a different approach by first using the random forest algorithm
with the pre-period data to find the best predictors of pollution levels and
then obtaining predictions for the entire sample. The prediction errors are the
dependent variable in the local linear regression.

https://rdpackages.github.io/rdrobust/
https://rdpackages.github.io/rdrobust/
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Fig. 2. Trends in Hourly PM10.
Note: This graph shows the emissions of PM10 at the hourly level averaged across all monitoring stations used in the analysis of Chen and Whalley (2012) for one month before
and after the opening of the first Taipei Metro line. For ease of identifying patterns, 𝑥-axis labels are shown for each Tuesday at 1am.
To illustrate the issue of overfitting, we use data on two monitoring
stations close to the Taipei Metro Line provided by Chen and Whalley
(2012) in their replication files. We show scatterplots using hourly data
from 7am to 7pm with fitted polynomial trends of orders 1 through
4 at the hourly level in the left panel of Fig. 3. In a general RD in
time specification the polynomial time trend captures secular trends in
the level of pollution unexplained by other covariates. If the researcher
does not include any covariates, the estimated effect of the policy on
pollution is the magnitude of the discontinuity in the polynomial. It
is clear from the graphs that fitting polynomials of different orders
can have vastly different implications. The magnifications in the plots
also make it clear that ex ante there would be no reason to prefer one
specification over another.12

Estimates from RD in time studies are sometimes sensitive to the
choice of sample window around the transit project opening date.
Therefore, researchers use multiple samples to test the robustness of
their estimates. For example, in Chen and Whalley (2012) the main
sample is restricted to one year before and one year after the Metro
opening; however, they also use a smaller 30-day window around the
opening date to obtain local effects. Goel and Gupta (2017) consider
samples of roughly 2.5 weeks, 4.5 weeks, and 18 months before and
after the opening date, while Gendron-Carrier et al. (2022)’s main anal-
ysis considers a period of 18 months before and after the policy. Fig. 3
shows a comparison of estimates derived using windows of one year v.
30 days before and after the policy without any covariates other than
the time trend. The differences in the magnitude of the discontinuity
across graphs highlights the influence of polynomial order and sample
window on estimates obtained using an RD in time approach.

Smaller windows lead to estimates of the effect closer to the opening
and may be less susceptible to the influence of temporal unobserved

12 With covariates included in the model, the estimated policy effect takes
into account the relationship between the covariates and pollution as well
as the relationship between time and the covariates (Frisch–Waugh–Lovell
theorem). So, in almost every context, the results will likely be different from
those implied by the graphs in Fig. 3.
5

factors. Therefore, in these analyses, controls for meteorological con-
ditions or polynomial trends are not included. This is similar to a
local randomization framework (Cattaneo and Titiunik, 2022): the
implicit assumption is that the treatment timing in this short window
is random and that potential outcomes are not affected by time.13

For this approach to be valid, the assumption of random assignment
to treatment in time needs to be carefully examined. For example,
if a transit project opens at the beginning of the monsoon season or
the holiday season, the use of local randomization will likely not be
appropriate. Given the sensitivity of the sign and magnitude of RD
estimates to bandwidth selections and covariates, researchers must
justify these methodological choices and provide results from a variety
of sensitivity tests. Additionally, researchers must also use contextual
knowledge to check if the estimated policy effect is confounded by the
occurrence of another event.

Difference-in-Differences (DiD): Some studies use a DiD approach,
comparing changes in the level of a pollutant after the transit project
in locations that received the project with the corresponding change in
suitable comparison locations. A two-way fixed effects equation with
standard errors clustered at the unit level, but preferably at the unit
and time levels, is the commonly used estimation approach,14

log(Pollutant)𝑖𝑡 = 𝛼0 + 𝛼1 ∗ Post Policy𝑡 + 𝛼2 ∗ Treatment Group𝑖 (2)
+ 𝛿 ∗ Post Policy𝑡 ∗ Treatment Group𝑖 + 𝛾𝑖 + 𝛽𝑡 + 𝜖𝑖𝑡

where 𝛾𝑖 and 𝛽𝑡 represent unit and time fixed effects, respectively and
𝛿 represents the main parameter of interest.

Researchers have used different treatment and control groups across
projects. For example, as a robustness check, Chen and Whalley (2012)
compare Taipei with the city of Kaohsiung in a 30-day window around

13 This assumption is stronger than the continuity assumption implicit in the
usual polynomial approach since it assumes that inside the window time does
not affect potential outcomes.

14 See Cameron et al. (2011) on a discussion of clustering standard errors at
the unit level v. two-way at the unit and time levels.
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Fig. 3. Scatterplots of CO with varying polynomial trends and sample periods.
Note: These graphs show scatterplots of CO levels at 2 of the 5 monitoring stations that are classified as being near the Taipei Metro line in the dataset of Chen and Whalley
(2012) for periods of 1 year (left panel) and 30 days (right panel) before and after the opening. Graph scale is restricted to emphasize the difference in the magnitude of the
discontinuity on treatment date. Polynomial trends are fitted on raw data without controls.
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Fig. 3. (continued).
-
the date of Taipei Metro opening. Some researchers use spatial difference
in-differences to compare areas in the vicinity of a transport project to
areas beyond the treatment areas before and after project implemen-
tation. For example, Li et al. (2019) compare monitors within 2 km of
the Metro station with those that are farther than 20 km from it. Lee
et al. (2023) also use difference-in-differences in a robustness check,
comparing pollution levels along road segments affected by high-speed
intercity rail and randomly selected segments of unaffected roads in the
same geographical area.

The chosen comparison location in the DiD approach is assumed to
mimic the pollution change in the treatment location in the absence
of the policy (parallel trends assumption). That is, it is assumed that
there would have been a constant difference in pollution levels between
treatment and control locations in the absence of the transit project.
This is an assumption that must be made by the researcher and is
inherently untestable. It is problematic because transit projects are
strategically placed to maximize use, and the locations that have them
are inherently special. Therefore, researchers should carefully use pre-
period data to test for possible violations of parallel trends and account
for the magnitude of bias that may be present (Rambachan and Roth,
2023; Roth et al., 2023).

In the absence of any appropriate comparison locations, researchers
can combine multiple locations to construct a synthetic comparison
7

group. The change in pollution in the treatment location is computed
relative to the change in pollution in the synthetic comparison loca-
tion. One way to execute this is to use the synthetic DiD estimator
in Arkhangelsky et al. (2021), which constructs the synthetic control
group by weighting observations based on both cross-sectional and
temporal similarity criteria.15 A common issue with the DiD approach
is the presence of spillovers from the treatment to the control group,
leading to a violation of the Stable Unit Treatment Value Assumption
(SUTVA), and incorrect estimates of the transit project impact. Li et al.
(2019) deal with this possibility in the context of the Beijing Metro
by making sure that the treatment and control location monitors are
spatially separated by a buffer of at least 18 km. In the presence of
spillovers, the synthetic DiD estimator reduces the severity of bias of
the two-way fixed effects estimator used in the literature (Arkhangelsky
et al., 2021).16

15 Traditional approaches construct the synthetic control group based mainly
on cross-sectional similarity.

16 This is due to the inclusion of both unit and time weights. More weight is
assigned to pre-treatment periods where control group outcomes more closely
resemble post-treatment control group outcomes and more weight is assigned
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Fig. 4. Vehicle exhaust emissions of PM10 in tons/year/grid.
Note: This map shows the emissions of PM10 from vehicle exhaust at the 1 km grid
level estimated by Guttikunda and Calori (2013).
Source: From Guttikunda and Calori (2013).

Summary: Quasi-experimental econometric methods can be used to
estimate the causal impacts of transit projects on air quality, but face
several challenges. First, researchers must select measurement locations
that are most likely to capture emission changes from the transit policy
in question. Second, measurements should be considered for the time
period during which modal substitutions due to the transit project are
most likely to affect air quality. Third, the influence of the polynomial
order, sample period, and control variables on regression discontinuity
estimates should be carefully analyzed and reported. Fourth, the selec-
tion of treatment and control locations should be carefully justified and
sensitivity of results to the exact definitions explored.

Additionally, for the event study approaches outlined above to
causally identify the impact of a transit project on pollution, it must be
the case that no other policies affecting pollution occur simultaneously
with the transit project. This is difficult to verify in practice, but
most researchers attempt to use contextual information to investigate
this possibility.17 These challenges underscore why it is advisable, if
possible, to compare econometric estimates with the magnitude of
emissions reductions one might expect from modal shifts. We do this in
the next section in analyzing the air quality impacts of the Delhi Metro.

to control units where the growth in pre-period outcomes is similar to that of
treated units.

17 For example, dummy variables may be included in an RD equation to
record the timing of relevant policies. This has been done to capture the
introduction of gas content regulations in Taipei (Chen and Whalley, 2012),
the opening of different Metro routes in Delhi (Goel and Gupta, 2017), and
the imposition of driving restrictions in Beijing (Li et al., 2019). Some studies
estimate the impact of such events on pollution as a placebo test, for example,
in Cropper and Suri (2022), the opening of the first two phases of Eastern
Freeway in Mumbai are placebo events for the opening of Metro Line 1.
8

4. An emissions/air quality modeling approach to estimating the
impacts of a public transit project on air quality: The case of the
Delhi Metro

To use an air quality modeling approach to evaluating the impacts
of a Metro project requires parameterizing an air quality model at a fine
spatial scale (e.g., 1 km × 1 km). This entails obtaining an emissions
inventory – based on all sources of the criteria pollutants – at this
scale, and appropriate meteorological inputs. After the model is run to
obtain ambient concentrations of the pollutants, results (e.g., ambient
concentrations of PM10) are compared with monitoring readings to
validate the emissions inventory.18

Guttikunda and Calori (2013) have developed an emissions inven-
tory for Delhi for 2010 at a 1 km × 1 km scale. Their model covers
the National Capital Territory and surrounding areas, a total area of
80 km × 80 km. Table 2 shows their estimates of emissions of PM2.5,
PM10, SO2, NO𝑥, CO and VOCs from the transport sector in 2010 and
the percent of emissions of each pollutant contributed by transport.
Transport accounts for over half of the emissions of NO𝑥 and VOCs in
Delhi, 18% of CO emissions, 13% of PM10 emissions and 17% of PM2.5.
Fig. 4 shows the spatial pattern of PM10 emissions from transport:
Most emissions are concentrated along major roads. This represents
all forms of road transport, including heavy duty and light duty goods
vehicles. Indeed, over half of PM10 was estimated to come from goods
vehicles rather than passenger vehicles (Goel and Guttikunda, 2015).
The majority of NO𝑥 emissions were also estimated to come from goods
vehicles rather than passenger vehicles, although the reverse was true
for CO emissions (Goel and Guttikunda, 2015).

The Delhi Metro first opened in 2002. By November of 2006, Phase
I of the Metro, consisting of 59 stations and 65 km of track had been
completed (see Fig. 5). By September of 2011, Phase II, consisting of
123 km of track had opened, yielding the network pictured in Fig. 6.
The area occupied by the network in 2011 covered 1100 km2–most of
the National Capital Territory of Delhi.

Evaluating the impact of the Delhi Metro using air quality modeling
begins with an evaluation of the georeferenced reduction in emissions
that is likely to result from the project. Ignoring the local pollutants
generated by the electricity which powers the Delhi Metro, the sum of
reductions in pollutant i from passengers who shift to the Metro from
mode m can be calculated as:

Emissions reduced𝑖 =
∑

𝑚
Passengers shifted from mode m ∗ e𝑖𝑚 ∗ l𝑚

(3)

where e𝑖𝑚 is grams of pollutant 𝑖 emitted per passenger km traveled
(pkt) on mode 𝑚 and l𝑚 is average trip length on mode 𝑚 in km/day.

After a transit project opens, modal shifts can be estimated by
surveying users to find out the modes of transport previously used.
In the case of the Delhi Metro, Sharma et al. (2014) estimate that in
2011, 55% of the 2 million daily Metro riders had previously used the
bus, 20% had traveled by two-wheeler, 20% by car and 5% by three-
wheeler. Doll and Balaban (2013) estimate that 44% of Metro riders
shifted to Metro from bus, 25% from two-wheelers, 22% from car, 4%
from taxis and 5% from three-wheelers.19

18 Note that for this purpose, models are usually run at a fine (e.g., 1 h) time
scale. Emissions inventories also vary by hour of the day, day of the week and
month of the year.

19 Together with occupancy rates, these data can be used to calculate
the number of vehicles removed from the road for purposes of calculating
congestion impacts. If 400,000 passengers on the Delhi Metro would have
ridden two-wheelers, and the occupancy factor is 1.5 passengers per two-
wheeler, 266,667 two-wheelers have been removed from the road—at least
near Metro lines. Sharma et al. (2014) estimated that in 2011, the Delhi Metro
removed over 500,000 vehicles from the roads: 27,800 buses, 267,000 two-
wheelers, 167,000 cars and 40,000 three-wheelers–approximately 1.5% of the
vehicle fleet.
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Table 2
Delhi transport emissions inventory in 2010 and estimated reductions due to the Delhi Metro (tons/year).

Pollutant PM2.5 PM10 SO2 NO𝑥 CO Study

Transport Emissions 10,900 14,600 700 198,900 256,200 Guttikunda and Calori (2013)
Percent of Total 17% 13% 2% 53% 18%

Reduced by 2011 Metro 107 1,320 3,882 Sharma et al. (2014)
Reduced by 2011 Metro 163 1,443 6,545 Doll and Balaban (2013)
Reduced by 2006 Metro 23 299 1,097 Sharma et al. (2014)

Estimates of transport emissions by pollutant are from (Guttikunda and Calori, 2013) and pertain to the NCT and surrounding
areas, an area of 80 km × 80 km. The percent of total emissions of each pollutant attributable to transport (row 2) also
pertain to this area. Estimates of emissions reduced by the Delhi Metro, as of 2011, are bottom-up estimates, provided by
Sharma et al. (2014) and Doll and Balaban (2013). They reflect the authors’ estimates of changes in modal shares, average
km driven, by mode, emissions factors for different classes of vehicles and vehicle occupancy rates.
Fig. 5. Delhi Metro 2006.
Fig. 6. Delhi Metro 2011.
9
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To calculate emissions per pkt requires estimates of emissions in
g/km, for each mode and pollutant, as well as vehicle occupancy
rates. Emission factors per km depend on the type of fuel burned
(diesel, petrol, CNG), vehicle fuel economy, and use of pollution control
equipment. Because these factors vary by vintage of vehicle, calculating
emissions reductions requires information, by mode, on the vintage of
vehicle fleet. Emissions in g/km may be based on emissions testing
information (and adjusted for deterioration factors) or information on
emissions in real-world situations (Raparthi et al., 2021). Together with
average occupancy factors, g/pkt can be calculated.

Table 2 presents estimates of the annual tons of PM10, NO𝑥, CO
and VOCs emissions reduced by the Delhi Metro in 2011. Estimates
by Sharma et al. (2014) are very similar to those of Doll and Balaban
(2013) for PM10, NO𝑥 and VOCs, but differ for CO. This is due in part to
the higher share of riders estimated by Doll and Balaban (2013) to come
from two-and four-wheelers. Estimates of tons of emissions reduced by
Phase I of the Metro in 2006 (Sharma et al., 2014), when daily ridership
was approximately 451,000 per day, are also in Table 2.

To use atmospheric chemistry to estimate the impact of the re-
ductions in emissions associated with the Metro requires that an at-
mospheric chemistry model be run with and without the emissions
reductions in Table 2, both georeferenced. This has not been done for
Delhi; however, the information in Table 2 can be used to place bounds
on the magnitude of the air quality improvements associated with the
Delhi Metro.

The air quality monitoring station at the Income Tax Office (ITO)
in central Delhi has been the focus of air quality analyses for many
years (Guttikunda and Calori, 2013; Nagpure and Gurjar, 2012) given
its location at a major traffic intersection. The ITO is also located
near the intersection of Yellow and Blue lines of the Delhi Metro
(see Figs. 5 and 6). As noted in Section 3, Goel and Gupta (2017)
have used a regression discontinuity design to examine the impact
of the extension of the Yellow line in July of 2005 on air quality
at the ITO monitoring station. They find that this extension reduced
CO at the ITO by 34% between 2004 and 2006. A 34% reduction in
CO concentrations at the ITO would require a 34% reduction in CO
emissions near the ITO monitor. Nagpure and Gurjar (2012) estimate
only a 4% reduction in CO emissions within a km2 of the ITO between
004 and 2006 based on traffic counts and estimates of CO emissions
y type of vehicle. The information in Table 2 also suggests that
34% reduction is highly unlikely. Sharma et al. (2014) estimate

otal reductions in CO associated with the Delhi Metro to be 1027
ons/year in 2006. Even if the 256,200 tons/year of CO transport
missions were evenly distributed over the NCT, virtually all of the
stimated CO reduction due to the Metro would have to occur in the
icinity of the air quality monitor (i.e. within a 2.5 km radius of the
TO monitor) to equal the 34% reduction in ambient CO documented
n Goel and Gupta (2017).20

Modeling the air quality impacts of the estimated changes in pol-
utants in Table 2, including the formation of secondary pollutants,
equires running a model with full atmospheric chemistry. To our
nowledge, this has not been done for Delhi. Guttikunda and Calori
2013) do, however, run a Lagrangian plume model to identify the
hare of transport emissions in ambient PM2.5 in six areas of Delhi
n 2010. In South Delhi, a residential area which encompasses Delhi’s
wo ring roads, the authors estimate that 42% of ambient PM2.5 in
010 was due to transport emissions. The Metro was extended to South
elhi in 2018. No study has yet been conducted of the impact of

his Metro extension on ambient PM2.5 using an air quality model.

20 If the CO emissions due to transport in Table 2 were evenly distributed
ver the area of the NCT (approx. 1500 km2), there would be approximately
358 tons emitted within a 2.5 km radius of the ITO. For a 34% reduction in
O to occur at the ITO, all of the 1027 tons of CO reduced due to the Metro
ould have to occur within a 2.5 km radius of the ITO.
10
n the interim, it is important to ground truth econometric estimates
y determining (a) what proportion of transport emissions are due to
assenger transport; (b) calculating the reduction in emissions from
assenger vehicles associated with the Metro.

. Conclusion

The economics literature on the local air quality impacts of public
ransport projects is growing rapidly. In this paper we have summarized
he econometric methods used to estimate these effects. We have also
iscussed the approach used by engineers and air quality modelers
o estimate the emissions reductions associated with public transport
rojects, and the likely impact of these emissions reductions on ambient
ir quality. There are two key insights.

Atmospheric chemistry has important implications for estimating
he impact of a transport project, such as Metro rail, on ambient air
uality. Reductions in primary pollutants from private or other forms of
ublic transport occur along the road network, as people shift to riding
he Metro. The rapid decay of primary pollutants with distance from
oads implies that air quality monitors may not capture all the impacts
f pollution reductions due to Metro rail (Zhou and Levy, 2007; Karner
t al., 2010). This also implies that, for primary pollutants, monitors
ar from a transit project should be analyzed separately or used for
obustness checks but should not be averaged with the readings of
onitors near the project. This does not apply to secondary pollutants

uch as PM2.5 or ozone, which travel long distances. This guidance has
been applied in the econometric literature to some extent.

It is also important to calculate the likely reduction in emissions
resulting from the shift to Metro from other forms of transportation,
and to determine in a particular area what percent of total emissions
this reduction constitutes. For primary pollutants, a rough rule is that
the percentage reduction in emissions in a given area results in an
equivalent percentage reduction in ambient concentrations. This should
be used as a rough check on whether econometric results of reductions
in pollution concentration are reasonable.
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Table A.1
Additional published studies on the importance of public transit for air quality using econometric methods (Economics or Transportation Journals).

Study Context Empirical approach Pollutants examined Results

Bel and Holst
(2018)

Introduction of Line 1 of BRT
Metrobus in Mexico City in 2005

DiD (main) and RD in time
(robustness)

Daily averages of CO, NO𝑥,
PM10, SO2

Decline in CO and NO𝑥 by 6%–7% and in
PM10 by 8%–9% within 2.5 and 5 km of
the BRT corridor compared to 10–30 km
away; no effect on SO2; more rapid decline
in CO with distance relative to NO𝑥 and
PM10; larger and noisier RD estimates

Gallego et al.
(2013)

Transantiago bus routing and
scheduling system reform in
Santiago, Chile in 2007

Dynamic event study and RD
in time

Hourly CO No immediate effect but a substantial
increase in 7 months, likely due to the
documented increases in inconvenience
under the new system

Bauernschuster
et al. (2017)

Strikes affecting Germany’s five
largest cities’ local suburban train
connections and the
subway-tram-bus network from
2002–11

DiD comparing outcomes in
affected and non-affected
cities before, during, and after
strike episodes

SO2, CO (examined in a
previous version of the paper),
PM10, NO2

Increase in NO2 by 4.3% of the strike-free
level and in PM10 by 13.3–14.8%; no effects
on SO2 or CO

Lalive et al.
(2018)

Service improvement of regional
rail in Germany between 1994
and 2004

Procurement mode
(competitiveness) as an
instrumental variable for
service growth

Annual means of CO, NO𝑥
(estimated by averaging NO
and NO2), SO2, O3

10% increase in frequency leads to a
weakly significant reduction of 1.9% in
NO𝑥, insignificant reduction in CO, and no
effect on SO2 and O3

Fageda (2021) Light rail, tram extensions and
introductions in about 98
mid-size European cities across 13
countries between 2008–2016

DiD continuous and binary
treatments, rail length and
policy indicators respectively

Estimated annual mean PM2.5
from AOD data combined with
GEOS-Chem AQM

0.5% decrease in annual estimated PM2.5
due to 1% increase in rail coverage; 3%
decline in PM2.5 in cities due to new rail
relative to cities with no rail

Rivers et al.
(2020)

Transit strikes in 18 Canadian
cities between 1974 and 2011
lasting between 1 to 87 days
(average 19)

Event study Daily and hourly NO𝑥, CO,
PM2.5

10% decline in NO𝑥 and no effect on PM2.5
and CO due to strikes; likely due to higher
NO𝑥 emissions from transit than passenger
vehicles

González et al.
(2021)

Barcelona Public Transit strikes
during 2008–16

Event study Hourly CO, NO𝑥, O3, PM10,
and SO2

Bus strikes lead to higher CO, but no effect
on other pollutants, Metro strikes lead to an
increase in all pollutants except O3; regional
rail services strikes have ambiguous effects

Note: Main empirical approach is described unless otherwise noted.
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