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Abstract

The purpose of this paper is two-fold. First, on a theoretical level we in-
troduce a series-type instrumental variable (IV ) estimator of the parameters
of a spatial first order autoregressive model with first order autoregressive
disturbances. We demonstrate that our estimator is asymptotically efficient
within the class of IV estimators, and has a lower computational count than
an efficient IV estimator that was introduced by Lee (2003). Second, via
Monte Carlo techniques we give small sample results relating to our sug-
gested estimator, the maximum likelihood (ML) estimator, and other IV
estimators suggested in the literature. Among other things we find that the
ML estimator, both of the asymptotically efficient IV estimators, as well
as an IV estimator introduced in Kelejian and Prucha (1998), have quite
similar small sample properties. Our results also suggest the use of iterated
versions of the IV estimators.



1 Introduction1

Spatial models are important tools in economics, regional science and geog-
raphy in analyzing a wide range of empirical issues. For example, in recent
years these models have been applied to contagion problems relating to bank
performance as well as international finance issues, various categories of local
public expenditures, vote seeking and tax setting behavior, population and
employment growth, and the determinants of welfare expenditures, among
others.2

By far the most widely used spatial models are variants of the one sug-
gested by Cliff and Ord (1973, 1981) for modeling a single spatial relationship.
One method of estimation of these models is maximum likelihood; another is
the instrumental variable (IV ) procedure suggested by Kelejian and Prucha
(1998). The Kelejian and Prucha (1998) procedure relates to the parameters
of a spatial first order autoregressive model with first order autoregressive
disturbances, or, for short, a SARAR(1,1) model, and is based on a gener-
alized moments (GM) estimator of a parameter in the disturbance process.
TheGM estimator was suggested by Kelejian and Prucha (1999) in an earlier
paper.3 The Kelejian and Prucha (1998, 1999) procedures do not require spe-
cific distributional assumptions. They are also easily extended to a systems
framework.
However, the IV estimator in Kelejian and Prucha (1998) is based on an

approximation to the ideal instruments and, therefore does not fully attain
the asymptotic efficiency bound of IV estimators. In a recent paper Lee
(2003) extends their approach in terms of the ideal instruments and gives an
asymptotically efficient IV estimator.
The purpose of this paper is two-fold. First, on a theoretical level we

introduce a series-type IV estimator for the SARAR(1,1) model. This es-
timator is a natural extension of the one proposed in Kelejian and Prucha

1Harry Kelejian and Ingmar Prucha gratefully acknowledge financial support from the
National Science Foundation through grant SES-0001780. We would like to thank Kelley
Pace and a referee for constructive comments on an earlier version of this paper. We, of
course, assume full responsibility for any shortcomings.

2For example, see Yuzefovich (2003), Kapoor (2003), Pinkse, Slade, and Brett (2002),
Allen and Gale (2000), Bell and Bockstael (2000), Bruecker (1998), Calvo and Reinhart
(1997), Bollinger and Ihlanfeld (1997), Kelejian and Robinson (2000), Besley and Case
(1995), Shroder (1995), and Case, Hines, and Rosen (1993).

3Due to publication lags, Kelejian and Prucha (1999) was published at a later date
than Kelejian and Prucha (1998) even though it was written at an earlier point in time.
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(1998) concerning the selection of instruments. We show that our series-type
IV estimator is asymptotically normal and efficient. It is also computation-
ally simple.
Second, via Monte Carlo techniques we give small sample results relating

to our suggested estimator, the IV estimators of Lee (2003) and Kelejian and
Prucha (1998), iterated versions of those estimators, as well as the maximum
likelihood (ML) estimator for purposes of comparison. Among other things
we find that the ML estimator, both of the asymptotically efficient IV es-
timators, as well as the IV estimator of Kelejian and Prucha (1998), have
quite similar small sample properties. We also find that iterated versions of
the IV estimators typically do not lead to increases in the root mean squared
errors, but for certain parameter values, the root mean squared errors are
lower. Therefore, the use of such iterated estimators is suggested.

2 Model

Consider the following (cross sectional) first order autoregressive spatial model
with first order autoregressive disturbances (n ∈ N):

yn = Xnβ + λWnyn + un, |λ| < 1, (1)

un = ρMnun + εn, |ρ| < 1,

where yn is the n × 1 vector of observations on the dependent variable, Xn

is the n × k matrix of observations on k exogenous variables, Wn and Mn

are n × n spatial weighting matrices of known constants and zero diagonal
elements, β is the k × 1 vector of regression parameters, λ and ρ are scalar
autoregressive parameters, un is the n× 1 vector of regression disturbances,
and εn is an n × 1 vector of innovations. As remarked, and consistent with
the terminology of Anselin (1988), we refer to this model as an SARAR(1,1,)
model. The variablesWnyn andMnun are typically referred to as spatial lags
of yn and un, respectively. For reasons of generality we permit the elements
of yn, Xn, Wn, Mn, un and εn to depend on n, i.e., to form triangular arrays.
We condition our analysis on the realized values of the exogenous variables
and so, henceforth, the matricesXn will be viewed as a matrices of constants.
With a minor exception, we make the same assumptions as in Kelejian

and Prucha (1998), along with an additional (technical) assumption which
was also assumed by Lee (2003). For the convenience of the reader these
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assumptions, labeled Assumptions 1-8, are given in the appendix. For a
further discussion of these assumptions see Kelejian and Prucha (1998).
Given Assumption 2, the roots of aWn and of aMn are less than one in

absolute value for all |a| < 1; see, e.g., Horn and Johnson (1985, p. 344).
Therefore, for |λ| < 1 and |ρ| < 1 the matrices In − λWn and In − ρMn are
nonsingular and furthermore

(In − λWn)
−1 =

∞X
k=0

λkW k
n , (2)

(In − ρMn)
−1 =

∞X
k=0

ρkMk
n .

It follows from (1) that

yn = (In − λWn)
−1Xnβ + (In − λWn)

−1un, (3)

un = (In − ρMn)
−1εn.

In light of Assumption 4 we have E(un) = 0 and therefore

E(yn) = (In − λWn)
−1Xnβ =

∞X
k=0

λkW k
nXnβ. (4)

The variance-covariance matrix of un is given by

E(unu
0
n) = σ2ε(In − ρMn)

−1(In − ρM 0
n)
−1. (5)

We also note from (3) that

E(ynu
0
n) = σ2ε(In − λWn)

−1(In − ρMn)
−1(In − ρM 0

n)
−1

6= 0

so that, in general, the elements of the spatially lagged dependent vector,
Wnyn, are correlated with those of the disturbance vector. One implication of
this is that the parameters of (1) can not generally be consistently estimated
by ordinary least squares.4

4For a set of conditions under which the ordinary least squares estimator is consistent
see Lee (2002). Among other things, those conditions specify that the spatial weights tend
to zero as the sample size increases.
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In the following discussion it is helpful to rewrite (1) more compactly as

yn = Znδ + un, (6)

un = ρMnun + εn,

where Zn = (Xn,Wnyn) and δ = (β0, λ)0. Applying a Cochrane-Orcutt type
transformation to this model yields

yn∗ = Zn∗δ + εn, (7)

where yn∗ = yn − ρMnyn and Zn∗ = Zn − ρMnZn. In the following we may
also express yn∗ and Zn∗ as yn∗(ρ) and Zn∗(ρ) to indicate the dependence of
the transformed variables on ρ.

3 IV Estimators

3.1 IV Estimators in the Literature

In the following let bρn be any consistent estimator for ρ, and let bδn = (bβ0n, bλn)0
be any n1/2-consistent estimator for δ. As one example, bδn could be the two
stage least squares estimator of δ, and bρn could be the corresponding GM
estimator of ρ, which was suggested in the first and second steps of the
estimation procedure introduced in Kelejian and Prucha (1998).
Recalling (4), the optimal instruments for estimating δ from (7) are

Zn∗ = E(Zn∗) = (In − ρMn)E(Zn) (8)

= (In − ρMn)(Xn,WnE(yn))

= (In − ρMn)
£
Xn,Wn(In − λWn)

−1Xnβ
¤
.

In the following we will also express Zn∗ as Zn∗(ρ, δ). In light of (4) we have

Zn∗ = (In − ρMn)

"
Xn,

∞X
k=0

λkW k+1
n Xnβ

#
, (9)

which shows that the optimal instruments are linear combinations of the
columns of {Xn,WnXn,W

2
nXn, . . . ,MnXn,MnWnXn,MnW

2
nXn, . . .}. Moti-

vated by this observation, Kelejian and Prucha (1998) introduced their feasi-
ble general spatial two stage least squares estimator (FGS2SLS) estimator
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in terms of an approximation to these optimal instruments. Specifically, their
approximation to Zn∗ is in terms of fitted values obtained from regressing
Zn∗(bρn) against a set of instruments Hn, which are taken to be a fixed subset
of the linearly independent columns of

{Xn,WnXn,W
2
nXn, . . . ,MnXn,MnWnXn,MnW

2
nXn, . . . ,MnW

q
nXn}

where q is a pre-selected constant, and the subset is required to contain at
least the linearly independent columns of {Xn,MnXn}. Typically, one would
take q ≤ 2, see e.g., Rey and Boarnet (1999), and Das, Kelejian, and Prucha
(2003). Let bZn∗ denote those fitted values; thenbZn∗ = PHnZn∗(bρn) (10)

= ([Xn − bρnMnXn, PHn(Wnyn − bρnMnWnyn)])

where PHn = Hn(HnHN)
−1H 0

n denotes the projection matrix corresponding
to Hn. In the following we will also express bZn∗ as bZn∗(bρn) to signify its
dependence on bρn. Given this notation, the FGS2SLS estimator of Kelejian
and Prucha (1998), say bδF,n, is defined as

bδF,n =
h bZn∗(bρn)0Zn∗(bρn)i−1 bZn∗(bρn)0yn∗(bρn) (11)

=
h bZn∗(bρn)0 bZn∗(bρn)i−1 bZn∗(bρn)0yn∗(bρn)

In our discussion below, we will also express bδF,n as bδF,n(bρn) in order to signify
its dependence on bρn.
Kelejian and Prucha (1998) showed that

n1/2(bδF,n − δ)
d→ N(0,Ψ) (12)

where
Ψ = σ2ε

h
lim
n→∞

n−1 bZn∗(ρ)
0 bZn∗(ρ)

i−1
. (13)

The FGS2SLS estimator uses a fixed set of instruments and hence in generalbZn∗(bρn) will not approximate the optimal instruments arbitrarily close even
as the sample size tends to infinity. For future reference we note that the
computation of W q

nXn in their procedure could be be determined recursively
as Wn(W

q−1
n Xn) and so the operational count of their procedure is O(n2).
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In a recent paper Lee (2003) introduced the following IV estimator

bδB,n = hZn∗(bρn,bδn)0Zn∗(bρn)i−1
n∗

Zn(bρn,bδn)0yn∗(bρn) (14)

where the optimal instrument is approximated by

Zn∗(bρn,bδn) = (In − bρnMn)
h
Xn,Wn(In − bλnWn)

−1Xn
bβni , (15)

which is obtained by replacing the true parameters values in (8) by the esti-
mators bρn and bδn. In our discussion below we will also express bδB,n as bδB,n(bρn,bδn) in order to signify its dependence on bρn and bδn.
Lee (2003) showed that

n1/2(bδB,n − δ)
d→ N(0,Ψ) (16)

with
Ψ = σ2ε

h
lim
n→∞

n−1Zn∗(ρ, δ)
0Zn∗(ρ, δ)

i−1
. (17)

Lee also demonstrated, as is expected from the literature on optimal in-
struments, that Ψ is a lower bound for the asymptotic variance-covariance
matrix of any IV estimator for δ. Lee therefore calls his estimator the Best
FGS2SLS estimator.

3.2 A Series-Type Efficient IV Estimator

The computation of Lee’s (2003) optimal instrument Zn∗(bρn,bδn) involves the
calculation ofWn(In−bλnWn)

−1Xn
bβn. Lee (2003) designed a numerical algo-

rithm which simplifies this computation but, never-the-less, the operational
count of his procedure is still O(n3) and, furthermore, requires special pro-
gramming of the algorithm. Therefore it seems of interest to have available
an alternative optimal IV estimator that is computationally simpler and can
be readily computed in standard packages such as TSP without the need of
further programming.
Towards this end, let rn be some sequence of natural numbers with rn ↑

∞, and in light of (9) consider the following series estimator for Zn∗:

eZn∗ = (In − bρnMn)

"
Xn,

rnX
k=0

bλknW k+1
n Xn

bβn.
#

(18)
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In the following we also express eZn∗ as eZn∗(bρn,bδn). Using eZn∗ we define the
following IV estimator for δ:

bδS,n = h eZn∗(bρn,bδn)0Zn∗(bρn)i−1 eZn(bρn,bδn)0yn∗(bρn). (19)

We will refer to the estimator in (19) as the Best Series FGS2SLS estimator.
In our discussion below we will also express bδS,n as bδS,n(bρn,bδn, rn) in order
to signify its dependence on bρn, bδn and rn. In the appendix we prove the
following theorem.

Theorem 1 Let rn be some sequence of natural numbers with 0 ≤ rn ≤ n,
rn ↑ ∞, and rn = o(n1/2). Then under the maintained assumptions

n1/2(bδS,n − δ)
d→ N(0,Ψ). (20)

The theorem demonstrates that bδS,n is also an asymptotically efficient es-
timator within the class of IV estimators. In addition, recalling thatW k+1

n Xn

can be computed recursively as Wn(W
k
nXn), and noting that rn = o(n1/2),

the operational count of the series estimator is O(n2rn), which is o(n2+1/2),
and therefore is less than that of Lee’s estimator, but will exceed that of the
GS2SLS estimator.
.

4 Small Sample Properties of IV Estimators

4.1 The Monte Carlo Model

In this section we study the small sample properties of the IV estimators
discussed in Section 3, as well as iterated versions of those estimators using
Monte Carlo techniques. For purposes of comparison we also consider the
maximum likelihood estimator as well as the least squares estimator.
The Monte Carlo model is

yn = Xnβ + λWnyn + un, |λ| < 1 (21)

un = ρWnun + εn, |ρ| < 1

where yn is n × 1 vector of observations on the dependent variable, Xn =
[x1n, x2n] is an n × 2 matrix of constants containing two n × 1 vectors of
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observations on the exogenous explanatory variables x1n and x2n, Wn is the
n× n spatial weighting matrix of known constants, β = [β1, β2]

0 is the 2× 1
vector of regression parameters, un is n× 1 vector of disturbances, and εn is
an n×1 stochastic vector of innovations whose elements are i.i.d. as N(0, σ2ε).
Essentially, (21) is identical to (1) except that k = 2 and Wn =Mn. Finally,
let Zn = (Xn,Wnyn) and δ0 = (λ, β0). Then, it will again be convenient to
express the first equation in (21) as

yn = Znδ + un. (22)

For future reference and definiteness we note that, given the normality of εn,
the log-likelihood of the model in (21) is

lnLn(β1, β2, λ, ρ, σ
2
ε) = const− 1

2
ln (|Ωyn|) (23)

−1
2
(yn − [(I − λWn)

−1Xnβ]
0Ω−1yn [yn − (I − λWn)

−1Xnβ],

Ωyn = σ2ε(I − λWn)
−1(I − ρWn)

−1(I − ρW 0
n)
−1(I − λW 0

n)
−1.

We note that the expression for the log-likelihood can, of course, be fur-
ther simplified for purposes of computation. We will denote the maximum
likelihood estimators for δ and ρ as bδMLE,n and bρMLE,n, respectively.
The Monte Carlo experiments in this study are designed in a way that

makes their results comparable to the previous studies, and, in particular,
to the results given in Das, Kelejian and Prucha (2003). We also extend
that study in two aspects. First, we consider more experiments involving
“extreme” values of the spatial autoregressive parameters λ and ρ, namely
the values of 0.9 and -0.9, and, second, we considered estimators which were
not considered in Das, Kelejian, and Prucha (2003).
We consider two values of the sample size, n namely 100 and 400. For each

of these values we consider a weighting matrixWn which Kelejian and Prucha
(1999) refer to as “3 ahead and 3 behind”. The reason for their designation
is that the non-zero elements in the i-th row of Wn are in positions i + 1,
i+ 2, i+3, and i− 1, i− 2, i− 3, for i = 4, ..., n− 3. Thus, e.g., via (21), in
these rows the j-th element of un is directly related to the three elements of
un directly after it and to the three directly before. The matrixWn is defined
in a circular world so that, e.g., in the first row the non-zero elements are in
positions 2, 3, 4 (i.e., three ahead) and n, n−1, and n−2 (i.e., three behind).
The positioning of the non-zero elements in rows 2, 3, n, n − 1, and n − 2
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are determined analogously. Furthermore, Wn is row normalized and all of
its non-zero elements are equal. Thus, each non-zero element of Wn is 1/6.
We consider seven values of the autoregressive parameters λ and ρ, namely

−0.9,−0.8,−0.4, 0.0, 0.4, 0.8, 0.9. We also consider three values of σ2ε, namely
0.25, 0.5, 1.0. These three values of σ2ε, in the following for short σ

2, are
related to the values of λ and n, and, thus, are woven into the experimental
design in the same fashion as in Das, Kelejian, and Prucha (2003). Table 1
describes these values of σ2.

Table 1. Design values of σ2

–––––––––––
n = 100 n = 400
–––––––––––
λ σ2 λ σ2

-0.9 0.5 -0.9 0.5
-0.8 0.25 -0.8 0.5
-0.4 1.0 -0.4 1.0
0.0 0.5 0.0 0.25
0.4 0.25 0.4 0.5
0.8 1.0 0.8 1.0
0.9 0.5 0.9 0.5
––––––––––—

The combinations of λ, n and σ2 are such that the average squared sam-
ple correlation coefficient between yn and its mean vector, E[yn] = (I −
λWn)

−1Xnβ, over all the experiments corresponding to a given value of λ
and n is between 0.60 and 0.90.
The values of the exogenous regressors Xn = [x1n, x2n] are based on data

described Kelejian and Robinson (1992) which relate to income per capita
and the percent of rental housing in 1980 in 760 counties in the US mid-
western states. The 760 observations on the income and rental variables were
normalized to have zero mean and unit variance. For experiments in which
the sample size is 100 the first 100 observations on these variables were used;
the first 400 observations were used in experiments in which the sample size is
400. The same vectors of exogenous variables were used in all the experiments
of a given sample size n. Finally, the Monte Carlo experiments are based on
the regression parameter values (β1, β2) =(1,1).
All in all, the seven values of ρ, the seven values of λ, and the two values

of the sample size n lead to a total of 98 experiments since only one form
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of the weighting matrix is considered, and the values for σ2 are, in all cases,
related to those of λ and n. Each Monte Carlo experiment consists of 5000
trials which are based on 5000 different vectors of innovations. The elements
of these vectors of innovations are determined from the normal distribution.
The same set of 5000 vectors of innovations is used in all experiments that
correspond to the same sample size n. Furthermore, the vectors of innova-
tions for experiments in which the sample size is 100 is taken to be the vector
of the first 100 elements of the corresponding vector of innovations for the
sample size 400.

4.2 The Considered Estimators

Estimators of the Regression Coefficients

In our Monte Carlo study we will consider the Best Series FGS2SLS
estimator bδS,n(bρn,bδn, rn) for different sequences of rn. More specifically, we
will take rn to be the nearest integer to nα for different values of α, and
signify this dependence by using the notation bδS,n(bρn,bδn, α). A list of all the
estimators considered in our Monte Carlo Study is given below.

1. The Least Squares (OLS) Estimator:

δ̂OLS,n = (Z 0nZn)
−1Z 0nyn

2. The Two Stage Least Squares (2SLS) Estimator:

δ̂2SLS,n = (Ẑ 0nẐn)
−1Ẑ 0nyn

Ẑn = Hn(H
0
nHn)

−1H 0
nZn

Hn = (Xn,WnXn,W
2
nXn)

3. The Maximum Likelihood (ML) Estimator: δ̂MLE,n

based on (23).

4. The FGS2SLS Estimator: δ̂F,n(ρ̃n), where ρ̃n is the GM estimator
of ρ given in Kelejian and Prucha (1999) based on 2SLS
residuals, and δ̂F,n(.) is defined in (11).

5. The True General Spatial Two Stage Least Squares
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(GS2SLS) Estimator: δ̂F,n(ρ), where δ̂F,n(.) is described in 4 above.

6. The Iterated FGS2SLS (IF) Estimator: δ̂F,n(ρ̆n), where
ρ̆n is the GM estimator of ρ based on FGS2SLS residuals,
and where the GM estimator and δ̂F,n(.) are described
in 4 above.

7. The Best FGS2SLS (LEE) Estimator: δ̂B,n(ρ̃n, δ̂2SLS,n), where
δ̂B,n(., .) is defined in (14), and ρ̃n and δ̂n2SLS are defined
in 2 and 4 above.

8. The Iterated Best FGS2SLS (ILEE) Estimator : δ̂Bn(ρ̈n, δ̈n)
where ρ̈n is the GM estimator of ρ based on Best FGS2SLS
residuals, δ̈n = δ̂B,n(ρ̃n, δ̂n2SLS), and where the GM estimator,
δ̂n2SLS, and δ̂B,n(., .) are described in 2, 4 and 7 above.

9. The Best Series FGS2SLS (SERj) Estimators:

δ̂S,n(ρ̃n, δ̂2SLS,n, αj), j = 1, 2, 3,

where α1 = .25, α2 = .35, α3 = .45, ρ̃n and δ̂2SLS,n are defined
in 2 and 4 above, δ̂S,n(., ., .) is defined in (19), and where
rn in (19) is taken to be the nearest integer to nαj .

10. The Iterated Best Series FGS2SLS (ISERj) Estimators:

δ̂S,n(ρ̌
(j)
n , δ̌

(j)

n , αj), j = 1, 2, 3,

where α1 = .25, α2 = .35, α3 = .45, and where ρ̌(j)n is the GM estimator
of ρ defined in 4 above which is based on δ̌

(j)

n residuals where

δ̌
(j)

n = δ̂S,n(ρ̃n, δ̂2SLS,n, αj), and where δ̂S,n(., ., .) is defined in (19).

11. Estimators of ρ:
We also report results for seven estimators of ρ. These are the
ML estimator which is based on (23), and the GM estimators
of ρ based on the residuals obtained from the 2SLS, FGS2SLS,
LEE, SER1, SER2, and SER3.
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4.3 The Efficiency Measure

Our efficiency measure of the estimators for each experiments is based on the
empirical distribution over the 5000 Monte Carlo trials. For each trial the co-
efficient are estimated, and the empirical distribution is defined with respect
to these 5000 trials. Following Kelejian and Prucha (1998), our efficiency
measure is a variation of the root mean squared error, specifically,

RMSE∗ =
£
bias2 + [IQ/1.35]2

¤1/2
(24)

where bias is an absolute difference between the median of the empirical
distribution and the true parameter value, and IQ is an interquantile range.
That is IQ = c1− c2 where c1 is the 0.75 quantile and c2 is the 0.25 quantile.
Note that if the distribution is normal, the median is equal to the mean and
IQ/1.35 is approximately equal to the standard deviation. An important
feature of the measure in (24) is that it is based on quantiles which always
exist. The standard measure of the root mean square error is based on the
first and second moments which, as pointed out by Kelejian and Prucha
(1999) among others, may not always exist, and so that measure may not
be well defined. However, for simplicity of presentation we will refer to our
measure of efficiency as the RMSE.

4.4 Monte Carlo Results

Tables 2-5 report the RMSEs of the considered estimators of the parameters
λ, β1, β2, and ρ corresponding to 49 sets of experimental parameter values.
All of these tables relate to a sample size of n = 400. Corresponding tables
for the case in which the sample size is n = 100 are not given due to space
limitations, although certain results from these tables are discussed. These
tables can be obtained by writing to the authors.
As a starting point observe that if the experiments involving the values 0.9

and -0.9 of λ and ρ are omitted, the sets of parameter values of the remaining
experiments are identical to those considered by Das, Kelejian and Prucha
(2003). Therefore, as a check of programs, we note that the results in our
tables below which correspond to this subset of experiments are virtually the
same as corresponding results reported in Das, Kelejian and Prucha (2003).
The minor differences, which are within the range of the statistical error,
stem from differences in the vectors of innovations used in the two Monte
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Carlo studies.5

Somewhat similar to results given in Das, Kelejian and Prucha (2003), it
is clear from the tables relating to the parameters λ, β1, and β2 that typically
RMSEs of the OLS estimator are the largest. This relates to theoretical
notions concerning the inconsistency of the OLS estimator. Note that the
RMSEs of the 2SLS estimator are typically lower than those of the OLS
estimator, but typically larger than that of the other estimators under con-
sideration. The rationalization of this result is that, although the 2SLS
estimator is consistent, it does not account for the spatial structure of the
error term. The RMSEs of the ML estimator for λ are typically somewhat
lower than those of the other estimators, but for β1 and β2 there is little
difference between the RMSEs of the ML and those of the IV estimators
that account for spatial correlation.
Consider now the results relating to the FGS2SLS, Lee’s Best FGS2SLS

and the Best Series FGS2SLS estimators. Theory indicates that the latter
two estimators are asymptotically more efficient than the FGS2SLS estima-
tor. However, our results suggest that in finite samples efficiency differences
between these estimators may be limited. Specifically, in our tables RMSE
differences between these estimators average to just 2% for the parameter
λ. The RMSEs of these estimators of β1 and β2 are, on average, virtually
the same. These finding are important because of the computational and
programming simplicity of FGS2SLS estimator.
In comparing Lee’s Best FGS2SLS and the Best Series FGS2SLS esti-

mators it is clear that their RMSEs are virtually the same. On average, the
difference between the RMSEs of the Best FGS2SLS and the Best Series
FGS2SLS estimators do not exceed 1% for the parameter λ, and 0.5% for
the parameters β1 and β2. The performance of these estimators is similar
not only in terms of averages but also over the whole parameter space. More
specifically, the difference between the RMSEs of the Best FGS2SLS and
the Best Series FGS2SLS estimator (based on α = 0.45) typically does
not exceed 5% in any of the experimental sets of parameter values when
the sample size is 100 and 3% when the sample size is 400. The result that
the differences between the RMSEs of these two estimators decrease as the
sample size increases is consistent with their asymptotic equivalence.
Another result of interest concerning the Best Series FGS2SLS estimator

5For example, we ran our programs using the same vectors of innovations that were
used in Das, Kelejian and Prucha (2003). The resulting RMSEs turned out to be identical.
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relates to its efficiency as a function of α. Specifically, for the sample sizes
considered, the efficiency of the Best Series FGS2SLS estimators does not
seem to be sensitive to the considered values of α. For example, the Best
Series FGS2SLS estimator based on α = .45 does not dominate those based
on α = .25 and α = .35. Similarly, the Best Series FGS2SLS estimator
based on α = .35 does not dominate that based on α = .25. Therefore,
one may conjecture that in moderate to reasonably large samples a series
estimator based on α = 0.25 is adequate.
We now compare the RMSEs of the ML estimator and those of the

FGS2SLS, Lee’s Best FGS2SLS and the Best Series FGS2SLS estimators
in more detail. Consider first the set of the experiments that do not contain
ρ = 0.9. Over these experiments the gain in efficiency of the ML estimator
relative to these other estimators averages to just 6− 7% for the parameter
λ. For the parameters β1 and β2, the ML and these other estimators are
roughly equivalent in terms of average RMSEs over this set of experiments.
Therefore, the suggestion is that if the value of ρ is not close to 1.0, the loss
of efficiency of these spatial IV estimators relative to the ML estimator is
generally small or nonexistent.6

If all the experiments are considered the difference between RMSE av-
erages of the ML and the FGS2SLS, Lee’s Best FGS2SLS and the Best
Series FGS2SLS rises up to 16−18% for λ and between 2−4% for β1 and β2.
The reason for such a disparity is that for certain combinations of the true
values of the parameters λ and ρ, namely those involving a negative value
of λ and a large and positive value of ρ, the RMSEs of spatial IV estima-
tors are considerably larger than those of the ML estimator. One reason for
this is that such combinations of parameter values of ρ and λ are associated
with large RMSEs of the 2SLS estimator, whose residuals are used in the
FGS2SLS, Lee’s Best FGS2SLS and the Best Series FGS2SLS procedures
for estimation of ρ. Therefore, it is reasonable to believe that iterating on
the spatial IV estimators would improve their performance. In fact, for the
parameter λ, the average difference between RMSEs of the ML and the
iterated FGS2SLS estimators decreases to 14%, and between the ML and
the iterated Best FGS2SLS and the Best Series FGS2SLS estimators to
11 − 12%. For the parameters β1 and β2 these differences decrease to just

6For purpose of comparison to Das, Kelejian and Prucha (2003) we are also reporting
averages over the experiments not involving values 0.9 and −0.9 of λ and ρ. These averages
are almost identical to the averages over the experiments not involving ρ = 0.9.
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2− 3%. These results suggest that the advantage of the ML over the spatial
IV estimators is relatively small even though the experiments are conducted
under the most favorable conditions for theML procedure, namely normally
distributed disturbances.
As a general observation we note that iterating on the spatial IV pro-

cedures typically does not reduce the efficiency of the estimators, but it
substantially improves that efficiency in cases involving a negative value of λ
and a large positive value of ρ. The suggestion therefore is that, in practice,
it may be advisable to use the iterated version of the FGS2SLS, Lee’s Best
FGS2SLS and the Best Series FGS2SLS estimators.
The average difference between the RMSEs of the (true) GS2SLS and

FGS2SLS estimators of λ is 13% for n = 100 and 8% for n = 400. This
difference decreases to 5% and 2%, respectively, if the experiments which
involve ρ = 0.9 are not considered. Furthermore, the RMSEs of the iterated
FGS2SLS estimators of λ are, on average, higher than those of the G2SLS
by 8% for the sample size 100 and by 3% for samples of size 400. For the
parameters β1 and β2 the RMSEs of FGS2SLS and iterated FGS2SLS
estimators are, on average, higher than those of the GS2SLS estimator by
at most 2.7% if the sample size is 100, and by 2.4% if the sample size is
400. Among other things, these results suggest that the loss in finite sample
efficiency resulting from the use of the GM estimator of ρ, as compared to
its true value, is small in moderate to large samples.
Tables 8-9 relate to the estimators of ρ. Generally the ML estimator is

somewhat better than the others, while the performance of the GM estima-
tors based on the residuals of the FGS2SLS, the Best FGS2SLS and the
Best Series FGS2SLS estimators are very similar throughout the parameter
space. The efficiency of the GM estimator of ρ based on the 2SLS resid-
uals is similar to that of the other GM estimators if experiments involving
ρ = 0.9 are not considered. Over these experiments the GM estimators are,
on average, roughly 8% worse than theML estimator. If all the experiments
are considered this average difference increases to roughly 16% for the 2SLS
estimator, and to 10% for the others.
As a final remark we note that the values of the RMSEs of almost all

the considered estimators corresponding to λ, β1 and β2 generally decrease as
the sample size increases. An exception to this is the OLS estimator which
is not consistent, and whose RMSEs, as a result, often increase with the
sample size. These findings are in accordance with the asymptotic properties
of these estimators.
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5 Conclusion

The focus of this paper was two-fold. First, we introduced a series-type IV
estimator of the regression parameters of a SARAR(1,1) model. We showed
that this estimator is asymptotically normal and efficient, and referred to it
as the Best Series FGS2SLS estimator. These large sample properties do
not require a distributional assumption, and our estimator does not require
special programming for its implementation. Second, we undertook a Monte
Carlo study in order to gain insights concerning the small sample properties
of our suggested estimator, the Best FGS2SLS estimator of Lee (2003),
the FGS2SLS estimator of Kelejian and Prucha (1998), iterated versions of
those estimators, as well as the maximum likelihood (ML) estimator.
Our findings indicate that our Best Series FGS2SLS estimator, Lee’s

(2003) Best FGS2SLS estimator andKelejian and Prucha’s (1999) FGS2SLS
estimator have quite similar small sample properties. We also found that it-
erations of those estimators rarely lead to a loss of efficiency but, for certain
extreme values of the disturbance autoregressive parameter, lead to an in-
crease in efficiency. Therefore the suggestion is to iterate on these estimators.
We also found that theML estimator was generally somewhat more efficient
than the IV estimators considered but, except for certain extreme values of
the parameters, its benefits were limited. Also, all simulations were based on
normally distributed innovations, which favors the ML estimator.
Finally, we explored the finite sample efficiency of the ML and GM esti-

mators of the autoregressive parameter in the disturbance process, ρ. Again,
the ML estimator has usually a somewhat smaller RMSE than the GM
estimators, but its benefit seems modest especially for, say, |ρ| ≤ .8 . The
RMSE’s of the GM estimators based on the residuals of the Best Series
FGS2SLS estimator, the Best FGS2SLS estimator and the FGS2SLS es-
timator are generally similar and, as one might expect, are less than those
based on 2SLS residuals.
Finally, one avenue of possible further research relating to small sample

issues that would be of interest relates to the development of (suggested)
optimality rules for the number of instruments underlying the FGS2SLS
procedure, and to the number of terms in the expansion for the Best Series
FGS2SLS estimator. On a theoretical level, formal results relating to the
estimation of nonlinear spatial models containing spatial lags in both depen-
dent variable and in the disturbance term should certainly be of interest.
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A Appendix

A.1 Assumptions of the Model

Assumption 1 All diagonal elements of the spatial weighting matrices Wn

and Mn are zero.

Assumption 2 The row sums of Wn and Mn are bounded uniformly in ab-
solute value by one; in addition the column sums of Wn and Mn, as well as
the row and column sums of (I − λWn)

−1 and (I − ρMn)
−1 are bounded

uniformly in absolute value by some finite constant, c.

Assumption 3 The regressor matrices Xn have full column rank (for n
large enough). Furthermore, the elements of the matrices Xn are uniformly
bounded in absolute value.

Assumption 4 The innovations {εi,n : 1 ≤ i ≤ n, n ≥ 1} are distributed
identically. Further, the innovations {εi,n : 1 ≤ i ≤ n} are for each n
distributed (jointly) independently with E(εi,n) = 0, E(ε2i,n) = σ2ε, where
0 < σ2ε < b with b <∞. Additionally the innovations are assumed to possess
finite fourth moments.

Assumption 5 The instrument matrices Hn have full column rank p ≥ k+1
(for all n large enough). They are composed of a subset of the linearly inde-
pendent columns of (Xn, WnXn, W 2

nXn, . . ., MnXn, MnWnXn, MnW
2
nXn,

. . .), where the subset contains at least the linearly independent columns of
(Xn,MnXn).

Assumption 6 The instrument matrix Hn is such that
(a)

QHH = lim
n→∞

n−1H 0
nHn

where QHH is finite, and nonsingular.
(b)

QHZ = plim
n→∞

n−1H 0
nZn

and
QHMZ = plim

n→∞
n−1H 0

nMnZn
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where QHZ and QHMZ are finite, and have full column rank. Furthermore

QHZ − ρQHMZ = plim
n→∞

n−1H 0
n(I − ρMn)Zn

has full column rank for all |ρ| < 1.
(c)

Φ = lim
n→∞

n−1H 0
n(I − ρMn)

−1(I − ρM 0
n)
−1Hn

is finite, and nonsingular for all |ρ| < 1.

Assumption 7 The smallest eigenvalue of Γ0
nΓn is bounded away from zero,

i.e., λmin(Γ
0
nΓn) ≥ λ∗ > 0, where

Γn =
1

n

⎛⎝ 2E(u0nun) −E(u0nun) 1

2E(u
0
nun) −E(u0nun) tr(M 0

nMn)
E(u0nun + u0nun) −E(u0nun) 0

⎞⎠ (A.1)

and un =Mnun and un =Mnun =M2
nun.

Assumption 8 Let Zn∗(ρ, δ) = (In−ρMn) [Xn,Wn(In − λWn)
−1Xnβ], then

Ξ = p lim
n→∞

n−1Zn∗(ρ, δ)
0Zn∗(ρ, δ)

where Ξ is finite and nonsingular.

A.2 Proof of Theorem 1

The proof of this theorem will be in terms of a sequence of lemmas. For the
subsequent discussion observe that

Zn∗(ρ, δ) = (In − ρMn) [Xn, Eyn] , (A.2)eZn∗(bρn,bδn) = In − bρnMn)
h
Xn,eyni

where

Eyn = WnEyn =Wn(In − λWn)
−1Xnβ =

∞X
k=0

λkW k+1
n Xnβ, (A.3)

eyn =
rnX
k=0

bλknW k+1
n Xn

bβn.
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The proof will also utilize repeatedly the observations summarized in the
subsequent remark.

Remark: Let An and Bn be two n × n matrices whose row and column
sums are uniformly bounded in absolute value by finite constants cA and
cB, respectively. Furthermore, let an and bn be n × 1 vectors whose ele-
ments are uniformly bounded in absolute value by finite constants ca and
cb, respectively. It is then readily seen that the row and column sums of
AnBn are uniformly bounded in absolute value by the finite constant cAcB,
see, e.g., Kelejian and Prucha (1999). Similarly, the elements of Anbn are
seen to be uniformly bounded in absolute value by cAcb. Since via As-
sumption 2 the row sums of Wn are uniformly bounded in absolute value
by one, it follows that the elements of Wnbn are uniformly bounded in ab-
solute value by cb. By recursive argumentation it follows further that also
the elements of W k

n bn = Wn(W
k−1
n bn) are uniformly bounded in absolute

value by cb for k = 2, 3, . . .. Since by Assumption 3 the elements of Xn

are uniformly bounded in absolute value it follows further that the elements
of AnXn, n−1X 0

nAnXn, n−1a0nW
k+1
n Xnβ, AnW

k+1
n Xnβ, n−1a0nW

k+1
n Xn and

AnW
k+1
n Xn are uniformly bounded in absolute value by some finite constant.

Finally, let Cn be some n× p matrix whose elements are uniformly bounded
in absolute value; then n−1C 0

nεn = op(1), given Assumption 4 holds for εn.

Lemma 1 Let p limn→∞ bλn = λ with |λ| < 1, let eλn = bλn1³¯̄̄bλn ¯̄̄ < 1´,
and let rn be some sequence of natural numbers with rn ↑ ∞ as n → ∞.
Then p limn→∞ eλn = λ, and for any p ≥ 0 we have p limn→∞ rpn

¯̄̄bλn ¯̄̄rn =
p limn→∞ rpn

¯̄̄eλn ¯̄̄rn = 0.
Proof: For arbitrary ε > 0

P
³¯̄̄eλn − λ

¯̄̄
> ε
´
≤ P

³¯̄̄eλn − bλn ¯̄̄+ ¯̄̄bλn − λ
¯̄̄
> ε
´

≤ P
³¯̄̄eλn − bλn ¯̄̄ > ε/2

´
+ P

³¯̄̄bλn − λ
¯̄̄
> ε/2

´
≤ P

³¯̄̄bλn ¯̄̄ ≥ 1´+ P
³¯̄̄bλn − λ

¯̄̄
> ε/2

´
.

observing that eλn − bλn = 0 for
¯̄̄bλn ¯̄̄ < 1 and thus

n¯̄̄eλn − bλn ¯̄̄ > ε/2
o
⊆n¯̄̄bλn ¯̄̄ ≥ 1o. Since p limn→∞ bλn = λ with |λ| < 1 it follows that both prob-
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abilities on the r.h.s. of the last inequality tend to zero, which establishes
that p limn→∞ eλn = λ.
Next choose some δ = (1− |λ|)/2 > 0, then for any ε > 0

P
³
rpn

¯̄̄bλn ¯̄̄rn > ε
´
= P

³
rpn

¯̄̄bλn¯̄̄rn > ε,
¯̄̄bλn − λ

¯̄̄
≤ δ

´
+P

³
rpn

¯̄̄bλn ¯̄̄rn > ε,
¯̄̄bλn − λ

¯̄̄
> δ
´

≤ P (rpn (|λ|+ δ)rn > ε) + P
³¯̄̄bλn − λ

¯̄̄
> δ
´
.

Since |λ|+δ < 1, and since limx→∞ xpax = 0 for all 0 ≤ a < 1, it follows that
limn→∞ rpn (|λ|+ δ)rn = 0, and hence P (rpn (|λ|+ δ)rn > ε) → 0 as n → ∞.
Since bλn is a consistent estimator for λ we also have P ³¯̄̄bλn − λ

¯̄̄
> δ
´
→ 0

as n → ∞. Hence both terms on the r.h.s. of the last inequality limit to
zero as n → ∞, which shows that p limn→∞ rpn

¯̄̄bλn ¯̄̄rn = 0. To show that

p limn→∞ rpn

¯̄̄bλn ¯̄̄rn = 0 we have only used that bλn is a consistent estimator
for λ. Since eλn is a consistent estimator for λ it follows that also the last
claim holds.

Lemma 2 Suppose n1/2
³bλn − λ

´
= Op(1) with |λ| < 1 and define eλn =bλn1³¯̄̄bλn ¯̄̄ < 1´. Then n1/2

³eλn − λ
´
= Op(1), n1/2

³¯̄̄bλn ¯̄̄− |λ|´ = Op(1)

and n1/2
³¯̄̄eλn ¯̄̄− |λ|´ = Op(1).

Proof: Observe that for every ε > 0

P
³
n1/2

¯̄̄eλn − bλn ¯̄̄ ≥ ε
´
≤ P

³¯̄̄bλn ¯̄̄ ≥ 1´ .
Since bλn is a consistent estimator for λ with |λ| < 1, the probability on the
r.h.s. tends to zero as n → ∞ and thus n1/2

³eλn − bλn´ = op(1). Hence

n1/2
³eλn − λ

´
= n1/2

³eλn − bλn´ + n1/2
³bλn − λ

´
= op(1) + Op(1) = Op(1).

Since
¯̄̄¯̄̄bλn ¯̄̄− |λ|¯̄̄ ≤ ¯̄̄bλn − λ

¯̄̄
and

¯̄̄¯̄̄eλn ¯̄̄− |λ|¯̄̄ ≤ ¯̄̄eλn − λ
¯̄̄
the other claims

follow trivially.
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Lemma 3 Let rn be some sequence of natural numbers with 0 ≤ rn ≤ n,
rn ↑ ∞, and rn = o(n1/2). Suppose n1/2

³bλn − λ
´
= Op(1) with |λ| < 1, then

p limn→∞ rn
Prn

k=0

³bλkn − λk
´2
= 0.

Proof: Define eλn = bλn1³¯̄̄bλn ¯̄̄ < 1´, let φn = rn
Prn

k=0

³bλkn − λk
´2
and

ψn = rn
Prn

k=0

³eλkn − λk
´2
. Then for every ε > 0

P (|φn| > ε) = P
³
|φn| > ε,

¯̄̄bλn ¯̄̄ < 1´+ P
³
|φn| > ε,

¯̄̄bλn ¯̄̄ ≥ 1´
≤ P (|ψn| > ε) + P

³¯̄̄bλn ¯̄̄ ≥ 1´
observing that for realizations ω ∈ Ω with

¯̄̄bλn(ω)¯̄̄ < 1 we have φn(ω) =

ψn(ω). Since p limn→∞ bλn = λ with |λ| < 1 it follows immediately that the
second probability on the r.h.s. of the last inequality tends to zero. To
complete the proof of the claim we next show that the first probability of
that r.h.s. tends to zero, i.e., that ψn = op(1). Observe that

ψn = ψ1n + ψ2n,

ψ1n = rn

"
1

1− eλ2n +
1

1− λ2
− 2

1− eλnλ
#

=
rn
n1/2

⎡⎣n1/2
³eλn − λ

´heλn ¡1− λ2
¢
− λ

³
1− eλ2n´i³

1− eλ2n´ ¡1− λ2
¢ ³
1− eλnλ´

⎤⎦
ψ2n = −rn

eλ2(rn+1)n

1− eλ2n − rnλ
2(rn+1)

1− λ2
+ 2

rn
³eλnλ´rn+1
1− eλnλ

Since
¯̄̄eλn ¯̄̄ < 1 all terms are well defined. By Lemma 2 n1/2

³eλn − λ
´
=

Op(1) - and thus, of course, p limn→∞ eλn = λ. By Lemma 1 we have
p limn→∞ rneλrnn = 0 and limn→∞ rnλ

rn = 0. Observing that rn/n1/2 = o(1) it
is then readily seen that ψ1n = op(1) and ψ2n = op(1) and thus ψn = op(1).
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Lemma 4 Suppose n1/2
³bλn − λ

´
= Op(1) with |λ| < 1, then

p lim
n→∞

nκ
nX

k=0

³bλkn − λk
´
= 0

and

p lim
n→∞

nκ
nX

k=0

µ¯̄̄bλn ¯̄̄k − |λ|k¶ = 0
for 0 ≤ κ < 1/2.

Proof: Define eλn = bλn1³¯̄̄bλn ¯̄̄ < 1´ and φn = nκ
Pn

k=0

³bλkn − λk
´
. Consider

the decomposition

φn = φ1n + φ2n,

φ1n = nκ
nX

k=0

³eλkn − λk
´
,

φ2n = nκ
nX

k=0

³bλkn − eλkn´ .
Observe that

φ1n = nκ

"
1− eλn+1n

1− eλn − 1− λn+1

1− λ

#

= nκ−1/2
n1/2(eλn − λ)³
1− eλn´ (1− λ)

−
nκeλn+1n (1− λ)− nκλn+1

³
1− eλn´³

1− eλn´ (1− λ)
.

Since
¯̄̄eλn ¯̄̄ < 1 all expressions on the r.h.s. are well defined. By Lemma 2 we

have n1/2
³eλn − λ

´
= Op(1) and thus p limn→∞ eλn = λ. Hence 1/

h³
1− eλn´ (1− λ)

i
=

Op(1). Observing that nκ−1/2 = o(1) and that in light of Lemma 1 nκeλn+1n =
op(1) and nκλn+1 = o(1) it follows that φ1n = op(1).
Next observe that for every ε > 0

P (|φ2n| > ε) ≤ P
³¯̄̄bλn ¯̄̄ ≥ 1´ .
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Since p limn→∞ bλn = λ with |λ| < 1 it follows that the probability on the r.h.s.
tends to zero, which establishes that also φ2n = op(1), and thus φn = op(1)
as claimed.
By Lemma 2 we have n1/2

³¯̄̄bλn ¯̄̄− |λ|´ = Op(1), and thus the second
claim follows as a special case of the first claim.

Lemma 5 Given the model in (1), suppose Assumptions 1-4 hold and n1/2(bλn−
λ) = Op(1) with |λ| < 1 and bβn − β = op(1). Let rn be some sequence
of natural numbers with 0 ≤ rn ≤ n, rn ↑ ∞ and rn = o(n1/2), and let
an = (a1,n, . . . , an,n)

0 be some sequence of n × 1 constant vectors whose ele-
ments are uniformly bounded in absolute value. Then

n−1a0n

³eyn −Eyn

´
= op(1).

Proof: Recall the expressions for Eyn and eyn in (A.3). Define φn =

n−1a0n

³eyn −Eyn

´
and consider the decomposition

φn = φn1 + φn2 + φn3 (A.4)

φn1 = n−1
rnX
k=0

³bλkn − λk
´
a0nW

k+1
n Xnβ =

rnX
k=0

³bλkn − λk
´
b(k)n ,

φn2 = n−1
rnX
k=0

bλkna0nW k+1
n Xn

³bβn − β
´
=

rnX
k=0

bλkn ¡c(k)n

¢0 ³bβn − β
´
,

φn3 = n−1
∞X

k=rn+1

λka0nW
k+1
n Xnβ =

∞X
k=rn+1

λkb(k)n .

where b(k)n = n−1a0nW
k+1
n Xnβ and c

(k)
n =

£
n−1a0nW

k+1
n Xn

¤0
. Observe that b(k)n

and the elements of c(k)n are uniformly bounded by some finite constant, say
K, in light of the remarks above Lemma 1. To prove the claim we now show
that φni = op(1) for i = 1, 2, 3. Applying the Cauchy-Schwartz and triangle
inequalities to the expression for φn1 in (A.4) yields

|φn1| ≤
"

rnX
k=0

³bλkn − λk
´2#1/2 " rnX

k=0

¡
b(k)n

¢2#1/2

≤ K

"
rn

rnX
k=0

³bλkn − λk
´2#1/2

.
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That φn1 = op(1) now follows directly from Lemma 3.
Applying the triangle inequalities to the expression for φn2 in (A.4) yields

|φn2| ≤
rnX
k=0

¯̄̄bλn ¯̄̄k ¯̄̄¡c(k)n

¢0 ³bβn − β
´¯̄̄

≤
"
K

rnX
k=0

¯̄̄bλn ¯̄̄k#"X
i

¯̄̄bβi,n − βi

¯̄̄#
.

By Lemma 4 with κ = 0 we have p limn→∞
Prn

k=0

¯̄̄bλn ¯̄̄k = limn→∞
Prn

k=0 |λ|
k =

1/(1− |λ|). Since
P

i

¯̄̄bβi,n − βi

¯̄̄
= op(1) it follows that φn2 = op(1).

Applying the triangle inequality to the expression for φn3 in (A.4) yields

|φn3| ≤
∞X

k=rn+1

|λ|k
¯̄
b(k)n

¯̄
≤ K

∞X
k=rn+1

|λ|k = K
|λ|rn+1

1− |λ| .

Since |λ| < 1 it follows that |λ|rn+1 → 0 as n → ∞ and thus φn3 = o(1),
which completes the proof of the lemma.

Lemma 6 Given the model in (1), suppose Assumptions 1-4 hold and n1/2(bλn−
λ) = Op(1) with |λ| < 1 and bβn−β = op(1). Let rn be some sequence of nat-
ural numbers with 0 ≤ rn ≤ n, rn ↑ ∞ and rn = o(n1/2), and let An = (aij,n)
be some sequence of constant n×n matrices whose row and column sums are
uniformly bounded in absolute value . Then

n−1/2ε0nAn

³eyn −Eyn

´
= op(1).

Proof: Recall the expressions for Eyn and eyn in (A.3). Define φn =

n−1/2ε0nAn

³eyn −Eyn

´
and consider the decomposition

φn = φn1 + φn2 + φn3 (A.5)

φn1 = n−1/2
rnX
k=0

³bλkn − λk
´
ε0nAnW

k+1
n Xnβ =

rnX
k=0

³bλkn − λk
´
b(k)n ,

φn2 = n−1/2
rnX
k=0

bλknε0nAnW
k+1
n Xn

³bβn − β
´
=

rnX
k=0

bλkn ¡c(k)n

¢0 ³bβn − β
´
,

φn3 = n−1/2
∞X

k=rn+1

λkε0nAnW
k+1
n Xnβ =

∞X
k=rn+1

λkb(k)n .
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where b(k)n = n−1/2ε0nAnW
k+1
n Xnβ and c

(k)
n =

£
n−1/2ε0nAnW

k+1
n Xn

¤0
. Observe

that expected value of b(k)n and of the elements of c(k)n is zero. Observe further
that the elements of AnW

k+1
n Xnβ and AnW

k+1
n Xn are uniformly bounded by

some finite constant, say K, in light of the remarks above Lemma 1. Since
the εi,n are distributed i.i.d. (0, σ2ε) it follows that the variance of b

(k)
n and

of the elements of c(k)n are uniformly bounded by σ2εK
2. To prove the claim

we now show that φni = op(1) for i = 1, 2, 3. Applying the Cauchy-Schwartz
and triangle inequalities to the expression for φn1 in (A.5) yields

|φn1| ≤
"

rnX
k=0

³bλkn − λk
´2#1/2 " rnX

k=0

¡
b(k)n

¢2#1/2

≤ Op(1)

"
rn

rnX
k=0

³bλkn − λk
´2#1/2

.

observing that r−1n
Prn

k=0

³
b
(k)
n

´2
= Op(1) since r−1n

Prn
k=0E

³
b
(k)
n

´2
≤ σ2εK

2.

That φn1 = op(1) now follows directly from Lemma 3.
Applying the Cauchy-Schwartz inequality twice to the expression for φn2

in (A.5) yields

|φn2| ≤
"

rnX
k=0

¯̄̄bλ2n ¯̄̄k
#1/2 " rnX

k=0

¯̄̄¡
c(k)n

¢0 ³bβn − β
´¯̄̄2#1/2

≤
h rn
n1/2

i1/2 " rnX
k=0

¯̄̄bλ2n ¯̄̄k
#1/2 "

r−1n

rnX
k=0

¡
c(k)n

¢0 ¡
c(k)n

¢#1/2
∙
n1/2

³bβn − β
´0 ³bβn − β

´¸1/2
.

Since the variances of the elements of c(k)n are uniformly bounded it fol-

lows that E
³
c
(k)
n

´0 ³
c
(k)
n

´
and hence r−1n

Prn
k=0E

³
c
(k)
n

´0 ³
c
(k)
n

´
is uniformly

bounded by some finite constant. Thus r−1n
Prn

k=0

³
c
(k)
n

´0 ³
c
(k)
n

´
= Op(1). By

Lemma 4 with κ = 0 we have p limn→∞
Prn

k=0

¯̄̄bλ2n ¯̄̄k = limn→∞
Prn

k=0

¯̄
λ2
¯̄k
=

1/(1−
¯̄
λ2
¯̄
). Since n1/2

³bβn − β
´
= Op(1) and rn/n1/2 = o(1) it follows that

φn2 = op(1).
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Next observe that Eφn3 = 0 since Eb
(k)
n = 0. To show that φn3 = op(1) it

hence suffices to show that limn→∞Eφ2n3 = 0. Now

Eφ2n3 ≤
∞X

k=rn+1

∞X
l=rn+1

|λ|k+lE
¯̄
b(k)n

¯̄ ¯̄
b(l)n
¯̄

≤ σ2εK
2

∞X
k=rn+1

∞X
l=rn+1

|λ|k+l ≤ σ2εK
2

"
|λ|rn+1

1− |λ|

#2
.

since E
¯̄̄
b
(k)
n

¯̄̄ ¯̄̄
b
(l)
n

¯̄̄
≤
∙
E
¯̄̄
b
(k)
n

¯̄̄2¸1/2 ∙
E
¯̄̄
b
(l)
n

¯̄̄2¸1/2
≤ σ2εK

2. Since |λ| < 1 it

follows that |λ|rn+1 → 0 as n → ∞ and thus φn3 = op(1), which completes
the proof of the lemma.

Proof of Theorem 1: Observe that from (6) and (7)

yn∗(bρn) = Zn∗(bρn)δ + un∗(bρn)
with

un∗(bρn) = un − bρnMnun = εn − (bρn − ρ)Mnun.

Substitution of this expression into (19) yields after a standard transforma-
tion

n1/2(bδS,n − δ) =
h
n−1 eZn∗(bρn,bδn)0Zn∗(bρn)i−1 n−1/2 eZn∗(bρn,bδn)0εn (A.6)

−
h
n−1 eZn∗(bρn,bδn)0Zn∗(bρn)i−1 n−1/2(bρn − ρ) eZn∗(bρn,bδn)0Mnun.

We now prove the result in four steps, utilizing the above decomposition.

(Step 1) As our first step we show that

p lim
n→∞

n−1 eZn∗(bρn,bδn)0Zn∗(bρn) = p lim
n→∞

n−1Zn∗(ρ, δ)
0Zn∗(ρ, δ) = Ξ. (A.7)

Observe that

Eyn = WnEyn =Wn(In − λWn)
−1Xnβ =

∞X
k=0

λkW k+1
n Xnβ, (A.8)

yn −Eyn = Wn(In − λWn)
−1un =Wn(In − λWn)

−1(In − ρMn)
−1εn,(A.9)
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where yn =Wnyn. Recall that

eZn∗(bρn,bδn) = (In − bρnMn)
h
Xn,eyni ,

Zn∗(bρn) = (In − bρnMn) [Xn, yn] ,

Zn∗(ρ, δ) = (In − ρMn) [Xn, Eyn] ,

where eyn = rnX
k=0

bλknW k+1
n Xn

bβn.
It is then readily seen that

n−1 eZn∗(bρn,bδn)0Zn∗(bρn) = ∙ G11,n G12,n

G21,n G22,n

¸
with

G11,n = n−1X 0
n(In − bρnM 0

n)(In − bρnMn)Xn,

G12,n = n−1X 0
n(In − bρnM 0

n)(In − bρnMn)yn,

G21,n = n−1ey0n(In − bρnM 0
n)(In − bρnMn)Xn,

G22,n = n−1ey0n(In − bρnM 0
n)(In − bρnMn)yn,

and

n−1Zn∗(ρ, δ)
0Zn∗(ρ, δ) =

∙
H11,n H12,n

H21,n H22,n

¸
with

H11,n = n−1X 0
n(In − ρM 0

n)(In − ρMn)Xn,

H12,n = n−1X 0
n(In − ρM 0

n)(In − ρMn)Eyn,

H21,n = n−1Ey0n(In − ρM 0
n)(In − ρMn)Xn,

H22,n = n−1Ey0n(In − ρM 0
n)(In − ρMn)Eyn.
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From the above expressions we see that

G11,n −H11,n

= n−1X 0
n

£
−(bρn − ρ)(M 0

n +Mn) + (bρ2n − ρ2)M 0
nMn

¤
Xn,

G12,n −H12,n

= n−1X 0
n

£
−(bρn − ρ)(M 0

n +Mn) + (bρ2n − ρ2)M 0
nMn

¤
Eyn

+n−1X 0
n

£
In − bρn(M 0

n +Mn) + bρ2nM 0
nMn

¤
(yn − Eyn),

G21,n −H21,n

= n−1Ey0n
£
−(bρn − ρ)(M 0

n +Mn) + (bρ2n − ρ2)M 0
nMn

¤
Xn

+n−1(ey0n −Ey0n)
£
In − bρn(M 0

n +Mn) + bρ2nM 0
nMn

¤
Xn,

G22,n −H22,n

= n−1Ey0n
£
−(bρn − ρ)(M 0

n +Mn) + (bρ2n − ρ2)M 0
nMn

¤
Eyn

+n−1(ey0n −Ey0n)
£
In − bρn(M 0

n +Mn) + bρ2nM 0
nMn

¤
Eyn

+n−1(ey0n −Ey0n)
£
In − bρn(M 0

n +Mn) + bρ2nM 0
nMn

¤
(yn −Eyn)

+n−1Ey0n
£
In − bρn(M 0

n +Mn) + bρ2nM 0
nMn

¤
(yn −Eyn)

Upon close inspection, recalling the remarks before Lemma 1, and utilizing
(A.8) and (A.9) shows that the terms on the r.h.s. have all either one of the
following basic structures, where An is some matrix whose row and column
sums are uniformly bounded in absolute value:

P1n = op(1) ∗
£
n−1X 0

nAnXn

¤
,

P2n = op(1) ∗
£
n−1X 0

nAnXnβ
¤
,

P3n = op(1) ∗
£
n−1β0X 0

nAnXnβ
¤
,

P4n = Op(1) ∗
£
n−1X 0

nAnεn
¤
,

P5n = Op(1) ∗
£
n−1β0X 0

nAnεn
¤
,

P6n = Op(1) ∗
h
n−1X 0

nAn(eyn − Eyn)
i
,

P7n = Op(1) ∗
h
n−1β0X 0

nAn(eyn −Eyn)
i
,

P8n = Op(1) ∗
h
n−1ε0nAn(eyn −Eyn)

i
Since the elements of Xn are uniformly bounded in absolute value, so are the
elements of n−1X 0

nAnXn, n−1X 0
nAnXnβ, n−1β0X 0

nAnXnβ, n−1X 0
nAn, n−1X 0

nAn

and n−1β0X 0
nAn. Thus clearly P1n = op(1), P2n = op(1), and P3n = op(1).
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Using Chebychev’s inequality we see that also P4n = op(1) and P5n = op(1).
From Lemma 5 and 6 it follows further that P6n = op(1), P7n = op(1) and
P8n = op(1). Thus n−1 eZn∗(bρn,bδn)0Zn∗(bρn) − n−1Zn∗(ρ, δ)

0Zn∗(ρ, δ) = op(1).
Observing that p limn→∞ n−1Zn∗(ρ, δ)

0Zn∗(ρ, δ) = Ξ by assumption com-
pletes this step of the proof.

(Step 2) We next show that

n−1/2 eZn∗(bρn,bδn)0εn − n−1/2Zn∗(ρ, δ)
0εn = op(1). (A.10)

Observe that

n−1/2 eZn∗(bρn,bδn)0εn = ∙ g1n
g2n

¸
with

g1n = n−1/2X 0
n(In − bρnM 0

n)εn,

g2n = n−1/2ey0n(In − bρnM 0
n)εn,

and

n−1/2Zn∗(ρ, δ)
0εn =

∙
h1n
h2n

¸
with

h1n = n−1/2X 0
n(In − ρM 0

n)εn,

h2n = n−1/2 (Eyn)
0 (In − ρM 0

n)εn.

Thus

g1n − h1n = −(bρn − ρ)n−1/2X 0
nM

0
nεn,

g2n − h2n = −(bρn − ρ)n−1/2 (Eyn)
0M 0

nεn

+n−1/2(eyn −Eyn)
0(In − bρnM 0

n)εn.

By arguments analogous to those above it is seen that the elements ofMnXn

andMnEyn are bounded uniformly in absolute value. Because of this we see
that the variances of the elements of n−1/2X 0

nM
0
nεn and n

−1/2 (Eyn)
0M 0

nεn are
uniformly bounded, and hence n−1/2X 0

nM
0
nεn = Op(1) and n−1/2 (Eyn)

0M 0
nεn =

Op(1). Since bρn − ρ = op(1) it follows that the first two terms on the r.h.s.
of the above equations are op(1). The last term is seen to be op(1) in light of
Lemma 6.
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(Step 3) We show further that

n−1/2(bρn − ρ) eZn∗(bρn,bδn)0Mnun = op(1). (A.11)

Observe that

n−1/2 eZn∗(bρn,bδn)0Mnun =

∙
f1n
f2n

¸
with

f1n = n−1/2X 0
n(In − bρnM 0

n)Mn(In − ρMn)
−1εn,

f2n = n−1/2ey0n(In − bρnM 0
n)Mn(In − ρMn)

−1εn

= n−1/2 (Eyn)
0 (In − bρnM 0

n)Mn(In − ρMn)
−1εn

+n−1/2
³eyn −Eyn

´0
(In − bρnM 0

n)Mn(In − ρMn)
−1εn.

In light of the remarks above Lemma 1 we see that f1n is a sum of terms of the
form Op(1) ∗

£
n−1/2Anεn

¤
where An is a matrix whose elements are bounded

uniformly in absolute value. Thus the variances of the elements of n−1/2Anεn
are uniformly bounded, which implies that n−1/2Anεn and thus f1n are Op(1).
By analogous argument we see that also the first term on the r.h.s. of the last
equality for f2n is Op(1). The second term is composed of expressions of the

from Op(1) ∗
∙
n−1/2

³eyn − Eyn

´0
Anεn

¸
, where An is now some n×n matrix

whose row and column sums are uniformly bounded in absolute value. By

Lemma 6 we have n−1/2
³eyn − Eyn

´0
Anεn = op(1), and thus this second term

is op(1), and f2n = Op(1). This shows that n−1/2 eZn∗(bρn,bδn)0Mnun = Op(1),
and thus the claim made at the beginning of this step holds observing thatbρn − ρ = op(1).

(Step 4)Given (A.6), (A.7), (A.10), and (A.11) it follows that

n1/2(bδS,n − δ) = Ξ−1n−1/2Zn∗(ρ, δ)
0εn + op(1)

Observing that the elements of Xn are uniformly bounded in absolute value,
and that the rows and columns sums of a matrix which is obtained as the
product of matrices whose rows and columns sums are uniformly bounded
in absolute value have again the same property, it follow that the elements
of Zn∗(ρ, δ) are uniformly bounded in absolute value. Given the maintained
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assumptions on the innovations εn it then follows immediately from Theorem
A.1 in Kelejian and Prucha (1998) that

n−1/2Zn∗(ρ, δ)
0εn

d→ N(0, σ2εΞ)

and hence n1/2(bδS,n − δ)
d→ N(0,Ψ) observing that Ψ = σ2εΞ

−1.
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Table 2.  Root mean square error of the estimators of λ , N=400
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3 TSLS OLS IF ILEE ISER1 ISER2 ISER3

-0.9 -0.9 0.50 0.057 0.057 0.057 0.057 0.058 0.057 0.057 0.067 0.450 0.057 0.057 0.058 0.058 0.057
-0.9 -0.8 0.50 0.056 0.056 0.056 0.056 0.057 0.056 0.057 0.064 0.411 0.056 0.056 0.058 0.057 0.056
-0.9 -0.4 0.50 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.059 0.280 0.057 0.056 0.057 0.056 0.057
-0.9 0 0.50 0.059 0.060 0.060 0.060 0.061 0.060 0.059 0.060 0.163 0.060 0.060 0.061 0.060 0.061
-0.9 0.4 0.50 0.068 0.072 0.073 0.073 0.073 0.074 0.070 0.078 0.081 0.073 0.073 0.073 0.073 0.074
-0.9 0.8 0.50 0.077 0.092 0.097 0.096 0.096 0.097 0.105 0.192 0.693 0.094 0.090 0.091 0.091 0.094
-0.9 0.9 0.50 0.076 0.095 0.111 0.108 0.107 0.109 0.118 0.353 1.220 0.099 0.094 0.094 0.094 0.096
-0.8 -0.9 0.50 0.055 0.056 0.056 0.056 0.056 0.055 0.056 0.066 0.435 0.056 0.056 0.056 0.056 0.056
-0.8 -0.8 0.50 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.063 0.395 0.055 0.055 0.056 0.055 0.055
-0.8 -0.4 0.50 0.055 0.056 0.056 0.055 0.055 0.055 0.056 0.058 0.264 0.056 0.055 0.055 0.055 0.056
-0.8 0.0 0.50 0.059 0.060 0.060 0.060 0.060 0.060 0.059 0.060 0.148 0.060 0.060 0.060 0.060 0.060
-0.8 0.4 0.50 0.070 0.073 0.074 0.073 0.074 0.074 0.072 0.079 0.089 0.074 0.074 0.074 0.074 0.074
-0.8 0.8 0.50 0.080 0.096 0.101 0.100 0.100 0.101 0.103 0.196 0.711 0.098 0.095 0.095 0.095 0.096
-0.8 0.9 0.50 0.080 0.100 0.119 0.115 0.114 0.114 0.118 0.358 1.204 0.105 0.099 0.099 0.099 0.100
-0.4 -0.9 1.00 0.066 0.068 0.068 0.069 0.069 0.069 0.069 0.080 0.563 0.068 0.069 0.069 0.069 0.069
-0.4 -0.8 1.00 0.067 0.068 0.068 0.069 0.069 0.069 0.069 0.077 0.508 0.068 0.068 0.068 0.068 0.068
-0.4 -0.4 1.00 0.069 0.070 0.070 0.069 0.069 0.069 0.069 0.072 0.316 0.070 0.069 0.069 0.069 0.069
-0.4 0.0 1.00 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.136 0.078 0.078 0.078 0.078 0.078
-0.4 0.4 1.00 0.097 0.101 0.102 0.100 0.101 0.100 0.100 0.107 0.208 0.102 0.102 0.102 0.102 0.102
-0.4 0.8 1.00 0.116 0.152 0.171 0.163 0.163 0.163 0.163 0.268 0.914 0.159 0.151 0.151 0.151 0.151
-0.4 0.9 1.00 0.111 0.166 0.242 0.215 0.215 0.215 0.215 0.470 1.206 0.200 0.174 0.173 0.176 0.177
0.0 -0.9 0.25 0.026 0.027 0.027 0.027 0.027 0.027 0.027 0.030 0.105 0.027 0.027 0.027 0.027 0.027
0.0 -0.8 0.25 0.026 0.027 0.027 0.027 0.027 0.027 0.027 0.029 0.093 0.027 0.027 0.027 0.027 0.027
0.0 -0.4 0.25 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.029 0.053 0.028 0.028 0.028 0.028 0.028
0.0 0.0 0.25 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032
0.0 0.4 0.25 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.046 0.089 0.043 0.043 0.043 0.043 0.043
0.0 0.8 0.25 0.072 0.075 0.079 0.077 0.077 0.077 0.077 0.121 0.418 0.077 0.076 0.076 0.076 0.076
0.0 0.9 0.25 0.076 0.088 0.102 0.097 0.097 0.097 0.097 0.220 0.685 0.093 0.088 0.088 0.088 0.088
0.4 -0.9 0.50 0.023 0.024 0.024 0.024 0.024 0.024 0.024 0.026 0.075 0.024 0.024 0.024 0.024 0.024
0.4 -0.8 0.50 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.026 0.064 0.024 0.024 0.024 0.024 0.024
0.4 -0.4 0.50 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.032 0.026 0.026 0.026 0.026 0.026
0.4 0.0 0.50 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.041 0.030 0.030 0.030 0.030 0.030
0.4 0.4 0.50 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.045 0.123 0.043 0.043 0.043 0.043 0.043
0.4 0.8 0.50 0.084 0.090 0.093 0.090 0.090 0.090 0.090 0.117 0.399 0.092 0.091 0.091 0.091 0.091
0.4 0.9 0.50 0.093 0.118 0.142 0.133 0.131 0.133 0.133 0.197 0.528 0.130 0.121 0.120 0.120 0.121
0.8 -0.9 1.00 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.016 0.012 0.012 0.012 0.012 0.012
0.8 -0.8 1.00 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.014 0.012 0.012 0.012 0.012 0.012
0.8 -0.4 1.00 0.013 0.014 0.014 0.013 0.013 0.013 0.013 0.014 0.016 0.014 0.013 0.013 0.013 0.013
0.8 0.0 1.00 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.035 0.016 0.016 0.016 0.016 0.016
0.8 0.4 1.00 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.079 0.024 0.024 0.024 0.024 0.024
0.8 0.8 1.00 0.059 0.057 0.056 0.056 0.057 0.056 0.056 0.061 0.184 0.058 0.061 0.062 0.061 0.061
0.8 0.9 1.00 0.079 0.092 0.095 0.095 0.098 0.095 0.095 0.099 0.210 0.094 0.098 0.099 0.098 0.098
0.9 -0.9 0.50 0.004 0.005 0.005 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.004 0.004 0.004 0.004
0.9 -0.8 0.50 0.004 0.005 0.005 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.004 0.004 0.004 0.004
0.9 -0.4 0.50 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.005 0.005
0.9 0 0.50 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.010 0.006 0.006 0.006 0.006 0.006
0.9 0.4 0.50 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.023 0.009 0.009 0.009 0.009 0.009
0.9 0.8 0.50 0.024 0.023 0.023 0.024 0.024 0.024 0.024 0.024 0.075 0.023 0.025 0.025 0.025 0.025
0.9 0.9 0.50 0.041 0.039 0.039 0.040 0.043 0.042 0.041 0.040 0.101 0.040 0.043 0.046 0.044 0.043

Column Average 0.050 0.055 0.059 0.057 0.057 0.057 0.058 0.086 0.284 0.056 0.055 0.055 0.055 0.056
Col.Av.w/o |λ|,|ρ|=0.9 0.051 0.054 0.055 0.055 0.055 0.055 0.055 0.068 0.214 0.055 0.054 0.054 0.054 0.054
Col. Av. w/o ρ=0.9 0.045 0.047 0.048 0.048 0.048 0.048 0.048 0.059 0.208 0.048 0.047 0.048 0.047 0.048



Table 3.  Root mean square error of the estimators of B1 , N=400
λ ρ σ2 ML GS2SLSFGS2SLS LEE SER1 SER2 SER3 TSLS OLS IF ILEE ISER1 ISER2 ISER3

-0.9 -0.9 0.50 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.041 0.043 0.034 0.034 0.035 0.035 0.035
-0.9 -0.8 0.50 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.040 0.042 0.034 0.034 0.035 0.035 0.035
-0.9 -0.4 0.50 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.037 0.038 0.035 0.035 0.035 0.035 0.035
-0.9 0 0.50 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037
-0.9 0.4 0.50 0.040 0.040 0.040 0.040 0.039 0.040 0.040 0.043 0.043 0.040 0.040 0.040 0.040 0.040
-0.9 0.8 0.50 0.043 0.046 0.046 0.046 0.046 0.047 0.049 0.084 0.076 0.046 0.045 0.046 0.046 0.047
-0.9 0.9 0.50 0.044 0.047 0.050 0.050 0.050 0.051 0.053 0.150 0.099 0.048 0.047 0.047 0.047 0.047
-0.8 -0.9 0.50 0.035 0.034 0.034 0.035 0.035 0.035 0.034 0.042 0.048 0.035 0.035 0.035 0.035 0.035
-0.8 -0.8 0.50 0.035 0.034 0.034 0.034 0.035 0.034 0.034 0.040 0.046 0.035 0.035 0.035 0.035 0.035
-0.8 -0.4 0.50 0.035 0.035 0.035 0.035 0.036 0.035 0.035 0.037 0.040 0.035 0.035 0.036 0.036 0.035
-0.8 0.0 0.50 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037
-0.8 0.4 0.50 0.039 0.040 0.040 0.039 0.039 0.039 0.039 0.042 0.042 0.040 0.040 0.039 0.039 0.040
-0.8 0.8 0.50 0.043 0.046 0.046 0.046 0.046 0.046 0.047 0.083 0.081 0.046 0.045 0.046 0.045 0.046
-0.8 0.9 0.50 0.043 0.047 0.050 0.051 0.051 0.051 0.051 0.145 0.111 0.048 0.047 0.047 0.047 0.047
-0.4 -0.9 1.00 0.051 0.051 0.051 0.052 0.052 0.052 0.052 0.062 0.098 0.051 0.051 0.051 0.051 0.051
-0.4 -0.8 1.00 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.060 0.091 0.051 0.051 0.051 0.051 0.051
-0.4 -0.4 1.00 0.052 0.051 0.051 0.052 0.052 0.052 0.052 0.054 0.068 0.052 0.052 0.052 0.052 0.052
-0.4 0.0 1.00 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.055 0.053 0.053 0.053 0.053 0.053
-0.4 0.4 1.00 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.058 0.064 0.055 0.055 0.055 0.055 0.055
-0.4 0.8 1.00 0.060 0.063 0.064 0.064 0.064 0.064 0.064 0.104 0.149 0.063 0.063 0.063 0.063 0.063
-0.4 0.9 1.00 0.059 0.065 0.074 0.076 0.075 0.075 0.075 0.177 0.185 0.068 0.067 0.067 0.068 0.068
0.0 -0.9 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.032 0.041 0.027 0.027 0.027 0.027 0.027
0.0 -0.8 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.031 0.038 0.027 0.027 0.027 0.027 0.027
0.0 -0.4 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.028 0.030 0.027 0.027 0.027 0.027 0.027
0.0 0.0 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 0.4 0.25 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.029 0.035 0.028 0.028 0.028 0.028 0.028
0.0 0.8 0.25 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.050 0.115 0.030 0.030 0.030 0.030 0.030
0.0 0.9 0.25 0.031 0.032 0.033 0.033 0.033 0.033 0.033 0.084 0.183 0.032 0.032 0.032 0.032 0.032
0.4 -0.9 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.047 0.057 0.039 0.039 0.039 0.039 0.039
0.4 -0.8 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.046 0.053 0.039 0.039 0.039 0.039 0.039
0.4 -0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.041 0.042 0.039 0.039 0.039 0.039 0.039
0.4 0.0 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.042 0.039 0.039 0.039 0.039 0.039
0.4 0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.042 0.070 0.039 0.039 0.039 0.039 0.039
0.4 0.8 0.50 0.040 0.040 0.041 0.040 0.040 0.040 0.040 0.067 0.198 0.040 0.041 0.041 0.041 0.041
0.4 0.9 0.50 0.041 0.043 0.043 0.044 0.044 0.044 0.044 0.112 0.257 0.043 0.043 0.043 0.043 0.044
0.8 -0.9 1.00 0.054 0.055 0.056 0.055 0.055 0.055 0.055 0.067 0.068 0.056 0.055 0.055 0.055 0.055
0.8 -0.8 1.00 0.054 0.056 0.056 0.056 0.056 0.056 0.056 0.065 0.065 0.056 0.055 0.055 0.055 0.055
0.8 -0.4 1.00 0.056 0.056 0.057 0.057 0.057 0.057 0.057 0.059 0.060 0.057 0.056 0.057 0.057 0.056
0.8 0.0 1.00 0.056 0.056 0.057 0.057 0.057 0.057 0.057 0.056 0.073 0.057 0.057 0.057 0.057 0.057
0.8 0.4 1.00 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.060 0.128 0.056 0.056 0.056 0.056 0.056
0.8 0.8 1.00 0.055 0.056 0.055 0.056 0.056 0.055 0.056 0.094 0.272 0.055 0.056 0.056 0.056 0.056
0.8 0.9 1.00 0.055 0.057 0.057 0.059 0.061 0.061 0.061 0.160 0.302 0.056 0.059 0.058 0.059 0.060
0.9 -0.9 0.50 0.038 0.039 0.039 0.038 0.038 0.038 0.038 0.047 0.047 0.039 0.038 0.038 0.038 0.038
0.9 -0.8 0.50 0.038 0.039 0.039 0.039 0.039 0.039 0.039 0.046 0.045 0.039 0.038 0.039 0.038 0.039
0.9 -0.4 0.50 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.042 0.042 0.040 0.040 0.040 0.040 0.040
0.9 0 0.50 0.040 0.040 0.040 0.040 0.040 0.041 0.041 0.040 0.047 0.040 0.040 0.040 0.041 0.041
0.9 0.4 0.50 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.043 0.074 0.040 0.040 0.040 0.040 0.040
0.9 0.8 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.067 0.217 0.039 0.039 0.039 0.039 0.039
0.9 0.9 0.50 0.039 0.040 0.039 0.040 0.040 0.040 0.040 0.111 0.280 0.039 0.040 0.039 0.039 0.040

Column Average 0.042 0.042 0.043 0.043 0.043 0.043 0.043 0.062 0.090 0.043 0.043 0.043 0.043 0.043
Col.Av.w/o |λ|,|ρ|=0.9 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.052 0.077 0.043 0.043 0.043 0.043 0.043
Col. Av. w/o ρ=0.9 0.041 0.042 0.042 0.042 0.042 0.042 0.042 0.050 0.071 0.042 0.042 0.042 0.042 0.042



Table 4.  Root mean square error of the estimators of B2 , N=400
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3 TSLS OLS IF ILEE ISER1 ISER2 ISER3

-0.9 -0.9 0.50 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.043 0.055 0.036 0.036 0.036 0.036 0.037
-0.9 -0.8 0.50 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.042 0.053 0.036 0.036 0.036 0.036 0.037
-0.9 -0.4 0.50 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.039 0.045 0.037 0.037 0.037 0.037 0.037
-0.9 0 0.50 0.039 0.039 0.039 0.039 0.040 0.040 0.040 0.039 0.041 0.039 0.040 0.040 0.040 0.040
-0.9 0.4 0.50 0.041 0.042 0.042 0.042 0.042 0.042 0.042 0.044 0.043 0.041 0.041 0.042 0.042 0.042
-0.9 0.8 0.50 0.043 0.046 0.046 0.047 0.046 0.046 0.049 0.084 0.084 0.046 0.045 0.045 0.045 0.046
-0.9 0.9 0.50 0.043 0.046 0.049 0.049 0.049 0.049 0.052 0.143 0.122 0.047 0.046 0.046 0.046 0.047
-0.8 -0.9 0.50 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.043 0.051 0.036 0.036 0.036 0.036 0.036
-0.8 -0.8 0.50 0.036 0.036 0.037 0.036 0.036 0.037 0.037 0.042 0.049 0.036 0.036 0.036 0.036 0.036
-0.8 -0.4 0.50 0.037 0.037 0.037 0.037 0.037 0.038 0.037 0.039 0.043 0.037 0.038 0.038 0.037 0.037
-0.8 0.0 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.040 0.039 0.039 0.039 0.039 0.039
-0.8 0.4 0.50 0.041 0.041 0.041 0.041 0.042 0.041 0.041 0.043 0.043 0.041 0.041 0.042 0.041 0.042
-0.8 0.8 0.50 0.043 0.046 0.046 0.046 0.046 0.046 0.047 0.083 0.077 0.046 0.045 0.045 0.045 0.046
-0.8 0.9 0.50 0.043 0.047 0.049 0.050 0.050 0.049 0.050 0.140 0.106 0.047 0.046 0.047 0.047 0.047
-0.4 -0.9 1.00 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.063 0.057 0.052 0.052 0.052 0.052 0.052
-0.4 -0.8 1.00 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.060 0.056 0.052 0.052 0.052 0.052 0.052
-0.4 -0.4 1.00 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.056 0.055 0.053 0.053 0.053 0.053 0.053
-0.4 0.0 1.00 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055
-0.4 0.4 1.00 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.060 0.058 0.057 0.057 0.057 0.057 0.057
-0.4 0.8 1.00 0.059 0.064 0.064 0.064 0.064 0.064 0.064 0.107 0.066 0.064 0.063 0.063 0.063 0.063
-0.4 0.9 1.00 0.058 0.065 0.073 0.074 0.074 0.074 0.074 0.157 0.066 0.069 0.068 0.067 0.068 0.068
0.0 -0.9 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.032 0.032 0.027 0.027 0.027 0.027 0.027
0.0 -0.8 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.031 0.031 0.027 0.027 0.027 0.027 0.027
0.0 -0.4 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.028 0.028 0.027 0.027 0.027 0.027 0.027
0.0 0.0 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 0.4 0.25 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.029 0.029 0.028 0.028 0.028 0.028 0.028
0.0 0.8 0.25 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.051 0.042 0.030 0.030 0.030 0.030 0.030
0.0 0.9 0.25 0.031 0.032 0.033 0.033 0.033 0.033 0.033 0.086 0.048 0.032 0.032 0.032 0.032 0.032
0.4 -0.9 0.50 0.038 0.039 0.039 0.039 0.039 0.039 0.039 0.046 0.047 0.039 0.039 0.039 0.039 0.039
0.4 -0.8 0.50 0.038 0.038 0.039 0.039 0.039 0.039 0.039 0.045 0.045 0.039 0.039 0.039 0.039 0.039
0.4 -0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.041 0.041 0.039 0.039 0.039 0.039 0.039
0.4 0.0 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.4 0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.041 0.044 0.039 0.039 0.039 0.039 0.039
0.4 0.8 0.50 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.068 0.076 0.040 0.041 0.041 0.041 0.041
0.4 0.9 0.50 0.040 0.043 0.044 0.045 0.044 0.045 0.044 0.106 0.091 0.043 0.043 0.042 0.043 0.043
0.8 -0.9 1.00 0.054 0.055 0.056 0.055 0.055 0.055 0.055 0.066 0.066 0.055 0.055 0.055 0.055 0.055
0.8 -0.8 1.00 0.055 0.055 0.056 0.055 0.055 0.055 0.055 0.064 0.064 0.056 0.055 0.055 0.055 0.055
0.8 -0.4 1.00 0.055 0.056 0.055 0.055 0.055 0.055 0.055 0.058 0.058 0.055 0.055 0.055 0.055 0.055
0.8 0.0 1.00 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.059 0.056 0.056 0.056 0.056 0.056
0.8 0.4 1.00 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.057 0.074 0.055 0.055 0.055 0.055 0.055
0.8 0.8 1.00 0.054 0.054 0.053 0.054 0.054 0.054 0.054 0.089 0.127 0.054 0.055 0.054 0.055 0.054
0.8 0.9 1.00 0.054 0.055 0.054 0.058 0.060 0.060 0.059 0.122 0.140 0.054 0.058 0.057 0.058 0.058
0.9 -0.9 0.50 0.038 0.039 0.039 0.038 0.038 0.038 0.038 0.047 0.046 0.039 0.038 0.038 0.038 0.038
0.9 -0.8 0.50 0.038 0.039 0.039 0.038 0.039 0.038 0.038 0.045 0.045 0.039 0.038 0.039 0.038 0.038
0.9 -0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.041 0.041 0.039 0.039 0.039 0.039 0.039
0.9 0 0.50 0.040 0.040 0.040 0.040 0.039 0.039 0.039 0.040 0.041 0.040 0.040 0.039 0.039 0.039
0.9 0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.041 0.048 0.039 0.039 0.039 0.039 0.039
0.9 0.8 0.50 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.065 0.104 0.038 0.038 0.038 0.038 0.038
0.9 0.9 0.50 0.038 0.038 0.038 0.039 0.039 0.039 0.039 0.098 0.131 0.038 0.039 0.038 0.039 0.039

Column Average 0.042 0.043 0.043 0.043 0.043 0.043 0.043 0.061 0.060 0.043 0.043 0.043 0.043 0.043
Col.Av.w/o |λ|,|ρ|=0.9 0.043 0.044 0.044 0.044 0.044 0.044 0.044 0.052 0.053 0.044 0.044 0.044 0.044 0.044
Col. Av. w/o ρ=0.9 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.051 0.053 0.042 0.042 0.042 0.042 0.042



Table 5.  Root mean square error of the estimators of ρ , N=400
λ ρ σ2 ML TSLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 0.114 0.123 0.124 0.124 0.124 0.124 0.125
-0.9 -0.8 0.50 0.115 0.123 0.124 0.124 0.124 0.124 0.125
-0.9 -0.4 0.50 0.114 0.115 0.118 0.117 0.117 0.117 0.118
-0.9 0 0.50 0.101 0.101 0.103 0.102 0.103 0.103 0.102
-0.9 0.4 0.50 0.075 0.080 0.077 0.077 0.078 0.078 0.076
-0.9 0.8 0.50 0.034 0.064 0.041 0.040 0.040 0.040 0.043
-0.9 0.9 0.50 0.020 0.075 0.027 0.026 0.026 0.026 0.029
-0.8 -0.9 0.50 0.113 0.123 0.123 0.124 0.124 0.124 0.124
-0.8 -0.8 0.50 0.115 0.123 0.123 0.123 0.123 0.123 0.124
-0.8 -0.4 0.50 0.114 0.115 0.117 0.117 0.116 0.117 0.117
-0.8 0.0 0.50 0.101 0.101 0.103 0.103 0.103 0.103 0.103
-0.8 0.4 0.50 0.076 0.080 0.077 0.077 0.078 0.078 0.077
-0.8 0.8 0.50 0.035 0.065 0.042 0.041 0.041 0.041 0.042
-0.8 0.9 0.50 0.020 0.076 0.028 0.028 0.027 0.027 0.028
-0.4 -0.9 1.00 0.119 0.133 0.134 0.133 0.133 0.133 0.133
-0.4 -0.8 1.00 0.122 0.132 0.133 0.133 0.132 0.133 0.133
-0.4 -0.4 1.00 0.122 0.124 0.128 0.127 0.127 0.127 0.127
-0.4 0.0 1.00 0.111 0.112 0.113 0.112 0.112 0.112 0.112
-0.4 0.4 1.00 0.086 0.094 0.090 0.089 0.089 0.089 0.089
-0.4 0.8 1.00 0.041 0.093 0.060 0.058 0.058 0.058 0.058
-0.4 0.9 1.00 0.022 0.125 0.053 0.046 0.046 0.046 0.046
0.0 -0.9 0.25 0.103 0.113 0.115 0.115 0.115 0.115 0.115
0.0 -0.8 0.25 0.104 0.113 0.116 0.115 0.115 0.115 0.115
0.0 -0.4 0.25 0.104 0.108 0.110 0.110 0.110 0.110 0.110
0.0 0.0 0.25 0.093 0.095 0.096 0.096 0.096 0.096 0.096
0.0 0.4 0.25 0.073 0.073 0.073 0.073 0.073 0.073 0.073
0.0 0.8 0.25 0.036 0.054 0.041 0.040 0.040 0.040 0.040
0.0 0.9 0.25 0.022 0.060 0.030 0.029 0.029 0.029 0.029
0.4 -0.9 0.50 0.104 0.116 0.118 0.117 0.117 0.117 0.117
0.4 -0.8 0.50 0.106 0.116 0.118 0.117 0.117 0.117 0.117
0.4 -0.4 0.50 0.106 0.111 0.112 0.112 0.112 0.112 0.112
0.4 0.0 0.50 0.097 0.098 0.099 0.099 0.099 0.099 0.099
0.4 0.4 0.50 0.078 0.079 0.079 0.079 0.079 0.079 0.079
0.4 0.8 0.50 0.047 0.068 0.055 0.053 0.053 0.053 0.053
0.4 0.9 0.50 0.029 0.081 0.053 0.047 0.046 0.047 0.047
0.8 -0.9 1.00 0.102 0.118 0.120 0.118 0.119 0.118 0.118
0.8 -0.8 1.00 0.105 0.117 0.119 0.118 0.119 0.118 0.118
0.8 -0.4 1.00 0.107 0.111 0.114 0.113 0.113 0.113 0.113
0.8 0.0 1.00 0.099 0.101 0.102 0.102 0.102 0.102 0.102
0.8 0.4 1.00 0.082 0.084 0.083 0.083 0.083 0.083 0.084
0.8 0.8 1.00 0.066 0.078 0.069 0.065 0.067 0.065 0.065
0.8 0.9 1.00 0.053 0.104 0.093 0.074 0.075 0.074 0.073
0.9 -0.9 0.50 0.099 0.111 0.113 0.113 0.113 0.113 0.113
0.9 -0.8 0.50 0.101 0.111 0.113 0.113 0.113 0.113 0.113
0.9 -0.4 0.50 0.101 0.107 0.108 0.108 0.108 0.108 0.108
0.9 0 0.50 0.090 0.093 0.094 0.093 0.093 0.093 0.093
0.9 0.4 0.50 0.071 0.073 0.072 0.072 0.072 0.072 0.072
0.9 0.8 0.50 0.049 0.052 0.048 0.048 0.049 0.048 0.048
0.9 0.9 0.50 0.044 0.059 0.052 0.047 0.051 0.049 0.048

Column Average 0.082 0.098 0.091 0.090 0.090 0.090 0.090
Col.Av.w/o |λ|,|ρ|=0.9 0.089 0.098 0.095 0.094 0.094 0.094 0.094
Col. Av. w/o ρ=0.9 0.091 0.100 0.098 0.097 0.098 0.098 0.098


