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ABSTRACT 
 
This paper estimates the relationship between temperature and residential electricity 
consumption by exploiting variation in weather conditions across 13 Building Climate Zones in 
California. Cross-sectional household data and daily weather data are obtained from the Energy 
Information Administration’s 2005 Residential Electricity Consumption Survey and the National 
Oceanic and Atmospheric Administration’s Global Summary of the Day dataset respectively. For 
each climate zone, daily mean temperatures are sorted into seven equidistant bins based on the 
state’s temperature distribution in 2005. The estimated temperature bin coefficients along with 
two 21st-century climate forecasts are used to simulate changes in per-household consumption 
for a selected group of counties. The simulation results suggest that households located in 
regions that are expected to experience the largest transfer of days from lower to higher 
temperature bins may increase their consumption of electricity by more than 15% over the course 
of the century.  
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I. INTRODUCTION 

In recent years, atmospheric scientists have confirmed that the pace of climate change, which is 

characterized by increasing global surface temperatures, melting of the polar icecaps and rising 

sea levels, has accelerated as a consequence of simultaneous increases in greenhouse gas (GHG) 

emissions. According to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change (IPCC 2007), the 50-year linear warming trend between 1956 and 2005 (0.13°C 

per decade) was nearly twice that for the 100 years between 1906 and 2005. In addition, GHG 

emissions have increased by 70% between 1970 and 2004, with carbon dioxide (CO2) emissions 

rising by about 80% (21 to 38 billion metric tons). To put this in perspective, CO2 represented 

77% of total anthropogenic GHG emissions in 2004. If the trend persists, the IPCC projects that 

worldwide losses due to climate change will reach $150 billion over this decade.  

 The Climate Framework for Uncertainty, Negotiation and Distribution (FUND), which 

was first developed by Nobel Prize-winning economist Richard S. Tol, is an integrated 

assessment model linking projections of populations, economic activity and emissions to a 

simple carbon cycle and climate model, and to a model predicting and monetizing welfare 

impacts. Monetized in 1995 dollars, modeled welfare impacts include agriculture, forestry, 

tropical storms, sea level rise, biodiversity loss, vector-borne and cardiovascular diseases, and 

energy consumption. FUND runs in time-steps of one year from 1950 to 2300, and distinguishes 

16 major world regions. It was used by the U.S. government's Interagency Working Group on 

the Social Cost of Carbon in 2009, which estimated the cost of incremental damages from 

greenhouse gas emissions to be $21 per ton of CO2. In the absence of any policy-induced energy 

efficiency improvement, the model predicts that the highest costs of adaptation will be increased 

electricity consumption. This makes it essential for utility companies and policymakers to have 
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accurate models to estimate the relationship between climate change and growth in electricity 

consumption so as to effectively plan future investments in new infrastructure for generation and 

transmission and determine optimal levels of environmental regulation.  

 Between 1960 and 2005, total electricity consumption in California rose by 472%, with 

the share of the residential sector growing from 26% to 34% (EIA SEDS 2008). The state 

initiated aggressive energy efficiency programs beginning in the 1970s, as a result of which 

annual per-capita consumption growth slowed down from 7% in 1960-1973 to 0.29% from 1974-

1995. In 2000-2001, California suffered an energy crisis characterized by electricity price 

instability and four major blackouts affecting millions of customers. This prompted the 

imposition of a five-tier block pricing schedule for electricity, which was aimed at discouraging 

high consumption and promoting energy conservation. However, given high population growth, 

uncertain environmental regulation and the occurrence of climate change, the state still faces 

numerous pressures in meeting future electricity demand. While commercial electricity usage is 

likely to be responsive to price, there is empirical evidence to suggest that residential customers 

do not perfectly optimize in response to price changes (Ito 2010). Thus, variation in residential 

consumption can only be explained using a wider range of factors, one of which is temperature.  

 Using household survey data gathered by the Energy Information Administration (EIA) 

and daily weather observations compiled by the National Climatic Data Center, this study aims 

to estimate the effect of temperature on residential electricity consumption by exploiting random 

variation in weather conditions across 13 Building Climate Zones in California in 2005. Here, 

Building Climate Zones refer to geographic regions that are subject to different minimum 

efficiency building standards under the energy code of the state. For each climate zone, the days 

in 2005 are sorted into seven equidistant temperature bins. The variation in electricity 
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consumption is explained as a function of temperature, while controlling for a set of observable 

household characteristics. The temperature response coefficients are then used to simulate per-

household electricity consumption growth under different scenarios of climate change.  

 Whether policymakers choose to target electricity consumption using an incentive-based 

means, such as increasing-block pricing, or a non-incentive-based means, such as energy 

efficiency programs or public education campaigns, it is important to consider the nature of end-

use consumption. In addition to simulating the effect of temperature changes on household 

consumption, this study further estimates the short-run marginal effects of appliance ownership 

on consumption conditional on temperature. Here, “short-run” refers to the period during which 

each household’s appliance stock is fixed.  

 The study proceeds as follows: Section II reviews the literature on this topic. Section III 

describes the data. Section IV presents the econometric model and estimation results. Section V 

discusses the basic framework and results of the simulation exercise and Section VI concludes 

the paper.  

 

II. LITERATURE REVIEW 

Within the economics discipline, there are two noteworthy studies conducted prior to the turn of 

the century that lay the groundwork for research in this field. In The Economics of Climate 

Change (1992), William Cline uses a utility planning model to simulate the impact of projected 

climate scenarios on electric utilities in the United States. Using data published by the U.S. 

Environmental Protection Agency in 1989, he finds that an annual temperature increase of 1°C-

1.4°C (1.8°F-.5°F) in 2010 would raise demand 9% to 19% above peak load capacity 

requirements. In a similar study, Baxter and Calandri (1992) use a detailed electricity demand 
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forecasting model to estimate total consumption and peak demand in the residential, commercial, 

agricultural and water-pumping sectors in California. Their results indicate that under a 1.9ºC 

(3.4ºF) increase in mean statewide temperature, electricity requirements would increase from 

2.6% and 3.7% in 2010, relative to a stationary climate scenario.  

 Within the last decade, a wide range of econometric approaches that model electricity 

demand in the presence of climate change have been adopted. Using survey data and a discrete-

continuous choice model, Mendelsohn (2003) and Mansur et al. (2005) measure the impact of 

climate change on demand and fuel consumption choices. By reducing heating needs and 

increasing cooling needs, they establish that warming will result in fuel switching from natural 

gas to electricity. Cross-sectional analyses like these most likely yield biased estimators since 

they do not control for unobservable confounding factors that vary across households and are 

correlated with climate. Using time-series variation in hourly electricity load, Franco and Sanstad 

(2008) regress electricity demand data reported by the California Independent System Operator 

in 2004 on average daily temperature and consumption. They find that peak demand varies 

linearly with maximum temperature, whereas electricity load varies nonlinearly with average 

temperature. Further, they model three IPCC scenarios (A1FI, A2 and B1) to simulate the annual 

increase in peak load and electricity demand from 2005-2099. Relative to the 30-year base 

period between 1961 and 1990, the former increases by 1.0%-19.3% and the latter increases by 

0.9%-20.3% respectively. Crowley and Joutz (2003) conduct a similar analysis using hourly data 

in the Pennsylvania, New Jersey and Maryland Interconnection. After controlling for time fixed 

effects, their simulation results indicate that a 2°C (3.6°F) increase in temperature would result in 

energy consumption of 3.8%.  
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  Deschênes and Greenstone (2007) conduct the first panel-data regression to explain 

variation in state-level residential electricity consumption using flexible functional forms of daily 

mean temperatures. This model relies on random variation in temperature, includes state-level 

fixed effects, census division-by-year fixed effects and controls for precipitation, population and 

income. By 2099, the impact of climate change on annual electricity consumption will be in the 

range of 15%-30% of the baseline estimation or $15 to $30 billion (measured in 2006 USD). 

Similarly, Aroonruengsawat and Auffhammer (2009) use a panel of household-level billing data 

from 2003 to 2006, which they obtain through the University of California Energy Institute’s 

agreement with the state’s three largest investor-owned utilities. Controlling for household fixed 

effects, month fixed effects and year fixed effects, they exploit within household variation in 

temperature. Moreover, they measure the effect of temperature on electricity consumption for 

each of the 16 climate zones. Their results suggest that total household electricity consumption 

could increase by up to 55% by the end of the century.  

 Relying on a similar identification strategy, this study draws on random fluctuations in 

daily temperature to estimate the effect on household electricity consumption, but controls for 

more descriptive household characteristics such as annual household income, number of 

residents, total house size and appliance ownership. In addition, the study tests whether the effect 

of appliance ownership on electricity consumption is sensitive to temperature. Finally, the 

simulation exercise uses the same combination of climate forecasting models and greenhouse gas 

emissions scenarios as those used in Deschênes and Greenstone (2007), but applies them to 

estimate future electricity consumption at the household level rather than at the aggregate level.  

 

 



6 
 

III. DATA 

i. Household Survey Data 

Every four years, the Energy Information Administration, which operates within the U.S. 

Department of Energy, conducts the Residential Energy Consumption Surveys (RECS) in order 

to obtain information on energy consumption, energy expenditures, household and housing-unit 

characteristics and appliance ownership. The survey gathers data from a nationally representative 

probability sample of households, with representative samples for several large states. This study 

uses the 2005 California subsample, which consists of 468 households. Since the results for the 

2009 RECS were not available at the time of this study, temperature response functions could not 

be constructed separately for each climate zone in order to test the assumption that differences in 

building efficiency standards reflect differences in temperature sensitivity.  

 The quality of the consumption data and appliance information make the RECS a 

particularly valuable data source. However, it suffers from three major weaknesses. First, 

according to the U.S. Census, the average number of households in California was 12,392,852 

between 2006 and 2010. Since the survey sample size is substantially smaller, the predicting 

power of the model could be low despite the random variation in the sample. Second, price and 

consumption are measured as annual averages. Since electricity charges are usually levied on a 

monthly basis, there is strong evidence to suggest that households do not respond to this measure 

of price. Third, even though the surveys are conducted in person, the EIA does not reveal the 

location of the households in order to protect their confidentiality. Nonetheless, it does disclose 

the climate zones that the households are located in upon personal request. Figure 1 presents a 

map of the climate zones in California. Due to the absence or insufficient number of sample 

households in zones 1, 2 and 15, these zones will not be considered in the analysis here.  
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ii. Weather Data 

To obtain daily mean temperature and dew point temperature observations, I use the Global 

Summary of the Day Dataset published by the National Oceanic and Atmospheric 

Administration’s (NOAA) National Climatic Data Center (NCDC). The dataset contains daily 

observations from 115 weather stations in California. Data coverage varies by station and over 

time. The weather variables chosen from the dataset are daily average temperature and daily 

average dew point temperature.1 Since the narrowest geographic identifier of the sample 

households is their climate zone, I obtain the climate zones that each of the weather stations are 

located in from the California Energy Commission. Then, I exclude weather stations that report 

fewer than 300 observations over the course of the year. This leaves 78 weather stations. Next, I 

calculate daily averages for the temperature observations across all weather stations in each 

climate zone. There are some plausible complications that could arise when doing this. First, the 

number of weather stations differs considerably across zones. This is partially corrected by the 

fact that climate zones differ in size, and the zones that cover larger areas have more weather 

stations. Second, depending on how far apart the weather stations are located within each zone, 

the temperature observations could exhibit large variations. However, comparing annual 

averages of temperature observations reported by each weather station shows that this is not the 

case. Third, the daily averages for the temperature observations in each zone should ideally be 

weighted by population. Unfortunately, the population data for each climate zone is not readily 

available. Nonetheless, from the population density map in Figure 2, it appears that the zones 

also vary in size based on their population. While the weather data from the NCDC dataset are 

                                                           
1
 Dew point temperature refers to the temperature at which the air becomes saturated given current levels of 

moisture. In order words, it is the temperature at which the water vapor in the air begins to condense.   
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used in the main sections of this study, the values for heating and cooling degree days2, which 

are specified for each household in the RECS survey, are also used to study the marginal effects 

of appliance ownership on electricity consumption conditional on temperature.   

 

IV. ECONOMETRIC ESTIMATION 

Equation (1) displays the initial regression model. Similar to the aggregate electricity demand 

estimation used in Deschênes and Greenstone (2007), it uses a log-linear estimation: 

log���� � 	
��
��
�

� ������
�

� 	���	�	�� 

 log(��� is the natural logarithm of the annual electricity consumed by household �, 
measured in kilowatt-hours. The main variables of interest in this paper are those concerning 

temperature. To capture some significant nonlinearities of electricity consumption in weather, 

daily mean temperatures experienced by household � are sorted into one of  � temperature bins. 

This has traditionally been achieved using one of two techniques. The first technique involves 

creating specific equidistant temperature cutoffs. The second involves splitting the distribution 

into a set of percentiles, which does allow for more precisely-estimated coefficients. While the 

former technique runs the risk of splitting the days unevenly across the bins, it also standardizes 

the temperature thresholds across all zones allowing for easier interpretation of the results. This 

study exclusively uses the equidistant bin approach. The temperature distribution consists of 

seven bins, which are split at 10°F intervals. Daily mean humidity observations are obtained 

                                                           
2
 Heating degree days are the number of degrees the daily mean temperature is below the base temperature 

(65°F). Cooling degree days are the number of degrees the daily mean temperature is above the base temperature. 

The EIA adds a random error to both heating and cooling degree days to mask the location of the weather station 

from which the data was obtained. 
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using the temperature and dew point temperature observations.3 Using a similar equidistant bin 

approach, they are sorted into10 bins, split at 10 percent intervals. Running F-tests on the 

temperature and humidity variables confirms that they are both jointly significant.   

Table A1 displays the number of households, annual mean electricity consumption, 

standard deviation of electricity consumption and number of days that fall into each temperature 

bin for each of the 13 climate zones. Similarly, Table A2 displays the number of days that falls 

into each humidity bin by zone. To adjust for the lack of days with temperatures below 40°F or 

above 90°F, both these bins are combined with their adjacent bins in the final estimation. Also, 

the bins in the middle of the distribution cannot be split because they must match the distribution 

format of the temperature forecasts (see Section V). Table A3 provides a description of all the 

independent variables in this model and Table A4 illustrates the correlation coefficients between 

the temperature and humidity variables.  

 For each household, the number of days when daily mean temperature falls into each bin 

is defined as	
��. The main coefficients of interest are the	
�’s, which measure the percentage 

change in electricity consumption caused by one additional day with mean temperature falling 

into bin	�. In the estimation model, � represents each humidity bin and 	��� denotes the number 

of days when daily mean humidity falls into each bin. �� is a vector of observable confounding 

factors that vary across households.  

 Given the nature of the survey dataset, the annual average electricity price for a 

household can best be computed as the household’s annual electricity expenditures divided by its 

annual consumption. This measure of price could potentially cause a division bias. Moreover, 

since marginal price depends on consumption under the increasing-block pricing structure, there 

                                                           

3
 Humidity is measured as follows: 

������	��� !	"!#$$�!#
%���!��� �	��� !	"!#$$�!# �

&.((∗(*.*
+.,∗-./	01234	5.67.894:8.

;<+.+=-./	01234	5.67.894:8.

&.((∗(*.*
+.,∗5.67.894:8.

;<+.+=5.67.894:8.
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is a strong reason to believe that price is endogenous. Unfortunately, the RECS dataset does not 

contain an exogenous variable that is correlated with price, which could have been used as an 

instrument to formally test for endogeneity. Estimating the price elasticity of demand under these 

circumstances is difficult, but some techniques have been proposed. Reiss and White (2005) use 

a computationally-intensive maximum likelihood approach to estimate household electricity 

demand, concluding that the price elasticity of demand for electricity is -0.39. Aroonruengsawat 

and Auffhammer (2009) attempt to address this problem by including price directly, 

instrumenting for it using lagged prices and omitting it from the estimation. In all three cases, 

they obtain identical results and decide to omit price from their model. For the reasons 

mentioned above, price is omitted from the regressions in this study as well.  

Other confounding variables included in the model are the natural logarithm of household 

income, the number of household residents and the natural logarithm of total square footage. The 

appliances that enter the model have at least a 10% sample saturation rate, and annually consume 

at least 240 KwH of electricity on average (see Table A5). The correlation coefficients for each 

appliance are displayed in Table A6.  �� accounts for all unobservable household characteristics.  

The temperature bin coefficients from four robust OLS regressions are plotted in Figure 3 

to examine the shapes of the temperature response functions under different assumptions. In 

particular, it is essential to observe the effects of combining the less than 40°F and 40°F to 50°F 

bins when the humidity bins are retained in the model versus when they are dropped. Since the 

days in both the temperature and humidity bins sum to 365, the above 90°F temperature bin and 

the 0% to 20% humidity bin are normalized to avoid multicollinearity. The temperature bin 

coefficients are interpreted as the effect of removing one day from the highest temperature bin 

and adding it in succession to each lower temperature bin. In Figures 3(a), (b) and (c), the higher 
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absolute value of the coefficients on the bins in the middle of the temperature distribution (50°F 

to 60°F and 60°F to 70°F) imply that an additional day in those bins would decrease electricity 

consumption by a higher percentage than at the extreme bins (below 40°F and above 80°F). With 

the exception of Figure 3(d), the illustrations are generally consistent with the U-shaped 

temperature response function found in previous studies. However, the marginal difference 

between the 70°F to 80°F and the above 80° F bin coefficients in Figure 3(c) is substantially 

lower than the marginal difference between the 60°F to 70°F and the 70°F to 80°F bin 

coefficients. Moreover, the slope of the line connecting the 70°F to 80°F and the above 80° F bin 

coefficients in Figures 3(a) and (b) is negative. These problems could have been corrected to a 

certain extent had survey results from one or more additional year(s) been available. An 

independently pooled cross-section would create a larger sample and possibly allow for the 

response of household electricity consumption to be estimated separated for each climate zone. 

Aggregating data over the entire state often ignores important nonlinearities, which combined 

with random weather changes across the state, could lead to underestimates of future electricity 

consumption (Aroonruengsawat and Auffhammer, 2009). Also, as mentioned earlier, creating 

equidistant bins for temperature splits the days unevenly across the temperature bins, resulting in 

a concentration of days in the milder temperature bins and fewer days in the extreme 

temperatures bins (see Table A1). The weather data from the additional survey periods would 

compensate for the resulting loss in precision by contributing to the variation in the number of 

days in the higher temperature bins within each climate zone.  

The effect of controlling for humidity explicitly is seen by contrasting the difference 

between Figures 3(a) and (b) to the difference between Figures 3(c) and (d). In addition to 

altering the magnitudes and signs of the temperature bin coefficients, controlling for humidity 
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seems to make the temperature bin coefficients highly unstable. This is most likely to be a 

consequence of the significant negative correlation between the days in the temperature and 

humidity bins, as indicated in Table A4. To overcome this problem, I let the temperature 

variables capture the effect of humidity in the final estimation. Table A7 presents the results of a 

set of robust OLS regressions where the constant term is suppressed. The appliances added in the 

second output column are those that are relatively more sensitive to temperature. The appliances 

in the remaining output columns are added based on increasing annual average electricity 

consumption thresholds. The adjusted R-squared values4, which range from 39.1% to 59.2% 

across the output columns, indicate that controlling for appliance ownership helps explain more 

of the variation in residential electricity consumption. The shape of the temperature response 

function, constructed using the coefficients from column (5), is identical to that in Figure 3(b).  

In order to test the hypothesis that the marginal effect of owning a central air-conditioner or 

an electric space heater on total electricity consumption varies with temperature, the dummy 

variables representing ownership of these appliances are interacted with the number of heating 

and cooling degree days for each household in the sample. The log of household electricity 

consumption is regressed on these interaction terms, while controlling for the observable 

household characteristics in �� and zone fixed effects. Since heating and cooling degree days are 

continuous variables, the marginal effects are computed for two distinct values of heating and 

cooling degree days. The first value is the mean and the second value is 1,000 degrees above the 

mean, which is chosen arbitrarily for comparison. Since the interactions between the appliance 

dummy variables and household income, number of residents and house size do not yield 

                                                           
4
 The adjusted R-squared values are based on the robust OLS regression where the highest temperature bin is 

normalized. The F-statistics and adjusted R-squared values are not reported in Table A8 because the sum of 

squares of the dependent variable, accounted for by the intercept, are not included in the total sum of squares 

when the constant term is suppressed. Therefore, the goodness-of-fit estimates reported by such regressions are 

usually invalid.  
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statistically significant estimators, they do not enter this model. As presented in Table A8, the 

estimated marginal effect of electric space heater ownership on annual household electricity 

consumption increases by 9.63% as the number of heating degree days rises from 1,687 to 2,687.   

 

V. SIMULATIONS 

As is customary in the climate change literature, the impact of temperature on per-household 

residential electricity consumption is simulated for every ten-year period until the end of the 

century. This process involves using the temperature response coefficients generated in Section 

IV as well as a set of climate forecasts. There are some important assumptions regarding the 

simulation exercise that must be discussed. First, using the 
� estimated parameters implies that 

households’ consumption behavior in response to temperature will remain constant throughout 

the century. In making this assumption, I am ruling out the possibility that households will 

engage in a wider range of adaptation strategies to mitigate their energy costs. For instance, as 

the climate becomes warmer, households that currently do not require air conditioners may 

invest in them in the future. Also, with policies that require higher appliance efficiency standards 

for air conditioners, the electricity required for each cooling unit may decline causing the 

temperature response curve to be lower at the higher bins.  

 The climate forecasts are generated using General Circulation Models (GCMs). These 

simulation models generate forecasts for past and future climate under different scenarios of 

greenhouse gas concentrations in the atmosphere. The two GCMs used in this study are the 

Hadley Centre’s third Coupled Ocean-Atmosphere General Circulation Model and the National 

Center for Atmospheric Research’s (NCAR) Community Climate System Model (CCSM) 3. 

Both models were used in the Fourth Assessment Report by the IPCC (IPCC 2007). Climate 



14 
 

predictions generated by these models are available for several emissions scenarios. The two 

scenarios applied in this study are the A1FI and the A2, which are driven by two sets of 

projections for twenty-first century social and economic development that are described in the 

Special Report on Emissions Scenarios (SRES) (IPCC 2000). The SRES study was conducted as 

part of the IPCC’s Third Assessment Report. As illustrated in Figure 4, the A1FI and A2 

scenarios are evidently the more pessimistic scenarios, predicting the highest increases in CO2 

and N2O emissions. The AIF1 scenario is characterized by income convergence and rapid 

economic growth driven by fossil fuel-intensive technology. Under these conditions, the scenario 

predicts that global population will reach 9 billion in 2050 and will gradually decline thereafter. 

The A2 scenario is characterized by a world of independently operating, self-reliant nations and 

regionally-oriented economic development. Furthermore, it predicts that global population will 

rise continuously. Under both scenarios, annual CO2 emissions will reach 30 billion metric tons 

of carbon by 2100. Since these are considered to be the so-called “business as usual” scenarios, 

they are the proper scenarios to consider when judging policies targeted towards greenhouse gas 

abatement. 

 Deschênes and Greenstone (2007) use the same combination of GCMs and emissions 

scenarios to project changes in the number of days spent in each 10°F temperature bin by county-

year for the 2010-2099 period relative to the 1968-2002 period. Therefore, this study uses their 

forecasts, which have been made publicly available by the American Economic Association. The 

temperature projections under the Hadley 3 A1FI scenarios are adjusted for model error by 

comparing the model’s predictions for the 1990–2002 period with the actual realizations from 

the weather station data. For example, in the case of temperature, the Hadley 3 model errors are 

calculated separately for each of the 365 days in a year for each county as the average difference 
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between county by day of year-specific average temperature from the weather station data and 

the Hadley 3 A1FI predictions during the 1990–2002 period. This county by day of year-specific 

error is then added to the Hadley 3 A1FI predictions to obtain an error-corrected climate change 

prediction. 

In order to obtain estimates of a percent change in residential electricity consumption for 

a representative household in county > and period ? � @, the following relation is commonly used 

in the climate impacts literature:  

�A,�CD
�A,� �	exp	�∑ 
I�A
�A,�CDJ� �

exp�∑ 
I�A
�A,�J� �  

Given the assumption that the remaining independent variables will remain frozen at their 

2005 levels both in period ? and period ? � @, these terms cancel out when the exponential 

functions are distributed. The 
I� parameters are obtained from the robust OLS regression where 

the constant term is suppressed that the predicted changes in the number of days in each 

temperature bin are weighted by non-zero parameters. The coefficients are obtained specifically 

from the output column farthest to the right in Table A8. Figure 5 shows the change in the 

number of days spent in each 10°F bin of the temperature distribution from 1968-2002 to 2090-

2099 using the Hadley 3 and CCSM models forced by scenarios A1FI and A2 for six California 

counties. There is a noticeable transfer of days from the lower temperature bins to the higher 

temperature bins for all counties. Figure 6 shows the corresponding changes when the below 

40°F bin is combined with 40°F to 50°F bin and the 80°F to 90°F bin is combined with the above 

90°F bin as specified in the estimation in Table A7. While the two extreme bins are combined 

with their adjacent bins to compensate for the scarcity of days in those bins, there are important 

consequences of reformatting the temperature variables that must be addressed.  
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The Hadley A1FI model predicts that Fresno and Imperial counties, which are located in 

the Central Valley and the south-eastern desert respectively, will experience large increases in 

the number of days in the above 90°F bin and slight decreases in the number of days in the 80°F 

to 90°F bin. In contrast, counties on the coast, such as Los Angeles and San Diego, are likely to 

experience larger increases in the 80°F to 90°F and substantially smaller increases in the above 

90°F bins. However, when these bins are combined, the net change in the number of days in the 

above 80°F bin is higher for Los Angeles and San Diego than it is for Fresno and Imperial. 

Under these circumstances, the increase in household electricity consumption for days when 

temperature is predicted to be above 80°F will naturally be larger for coastal counties than for 

counties located in the Central Valley or the desert. Therefore, forecasting changes in household 

electricity consumption for counties in the latter category will yield inaccurate results. Therefore, 

the simulation exercise is only performed for counties where the difference in the predicted 

number of days in the 80°F to 90°F bin and the above 90° bin is at least 10. Since a larger 

number of counties experience a significant increase in the number of days in the above 90°F bin 

under the Hadley A1FI model, the region for which household electricity consumption is 

simulated will be more expansive under the CCSM A2 model. Given this reasoning, the counties 

for which consumption growth forecasts do not exist are likely to experience higher percent 

increases in consumption than counties for which growth forecasts do exist. 

 Figures 7 and 8 display a spatial distribution of the predicted changes in per-household 

electricity consumption in periods 2050-2059, 2070-2079 and 2090-2099 relative to 

consumption over the 1968-2002 base period. Changes in consumption are driven by two 

specific factors: the shape of the state-wide temperature-response function and the change in 

projected climate. As the maps indicate, electricity consumption will rise for almost all counties. 
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The simulation results for the Hadley A1FI model suggest that, among the selected regions, the 

south-eastern coast will experience the largest increase in consumption by the end of the century. 

While the spatial patterns for the 2090-2099 period looks similar under the “high-emissions” 

A1FI and “medium-high emissions” A2 scenarios, the growth patterns are strikingly different. 

This difference corresponds to the fact that the Hadley 3 model predicts that the number of days 

in each temperature bin will change substantially after the 2060-2069 period. On the other hand, 

the CCSM model predicts more profound changes in the earlier decades followed by a seemingly 

constant growth pattern in the latter half of the century. Lastly, the projections displayed here 

rule out the possibility of increased ownership of cooling appliances or efficiency improvements 

in counties where the penetration rates are currently low. The projected reductions in electricity 

consumption predicted for some counties could be a result of a drop in the demand for 

electricity, and possibly natural gas, for heating purposes.  

 

VI. CONCLUSION 

This study uses random fluctuations on exogenous shocks in weather to estimate the effect of 

temperature on residential electricity consumption. The estimated temperature response function, 

along with two sets of temperature forecasts generated by forcing two IPCC emissions scenarios 

on two distinct General Circulation Models, are used to simulate per-household electricity 

consumption for a selected group of counties in California.  

  The simulation results affirm that households located in regions that are expected to 

experience the largest transfer of days from lower to higher temperature bins are likely to 

increase their demand for electricity by more than 15% over the course of the century.  It is 

important to note that the results presented here are likely to be understated given that the data 
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does not allow for the estimation of geographically-differentiated responses of consumption to 

changing temperatures, which would capture sharper nonlinearities in the relationship. 

Nonetheless, the study sheds light on the consequences of delaying or refraining from 

implementing policies that target electricity consumption and specifically end-use consumption 

from appliances that are energy-intensive and more sensitive to temperature.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

REFERENCES  
 
Aroonruengsawat, A., and M. Auffhammer, 2009. “Impacts of Climate Change on Residential 

Electricity Consumption: Evidence from Billing Data.” California Energy Commission 

CEC-500-2009-018-D.  

Baxter, L. W., and K. Calandri. 1992. “Global warming and electricity demand: A study of 

California.” Energy Policy 20(3): 233–244. 

Cline, W. R. 1992. The economics of global warming. Washington: Institute for International 

Economics. 

Crowley, C., and F. Joutz. 2003. “Hourly electricity loads: Temperature elasticities and climate 

change.” In 23rd U.S. Association of Energy Economics North American Conference. 

Deschênes, O., and M. Greenstone. 2007. “Climate Change, Mortality and Adaptation: Evidence 

from annual fluctuations in weather in the U.S.” MIT Department of Economics Working 

Paper No. 07-19. 

Energy Information Administration (EIA). 2008. State Energy Data System. Washington, D.C. 

www.eia.doe.gov/emeu/states/_seds.html. 

Franco, G., and A. Sanstad. 2008. “Climate change and electricity demand in California.” 

Climatic Change 87:139–151. 

Intergovernmental Panel on Climate Change (IPCC). 2000. Emissions Scenarios. Cambridge, 

 UK: Cambridge University Press. 

IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and 

III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 

[Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, 

Switzerland, 104 pp. 



20 
 

Ito, K. 2010. “Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear 

Electricity Pricing.” University of California Energy Institute at Haas WP-210  

Markandya, A., and R. Ortiz. 2009. “Integrated Impact Assessment Models of Climate Change 

with an Emphasis on Damage Functions: a Literature Review.” Basque Centre for 

Climate Change BC3 Working Paper Series 2009-06 

Mansur, E., R. Mendelsohn, and W. Morrison. 2008. “Climate change adaptation: A study of 

fuel choice and consumption in the U.S. energy sector.” Journal of Environmental 

Economics and Management 55(2): 175–193. 

Mendelsohn, R. 2003. “The Impact of Climate Change on Energy Expenditures in California.” 

Appendix XI in Wilson, Tom, and Larry Williams, Joel Smith, Robert Mendelsohn. 

Global Climate Change and California: Potential Implications for Ecosystems, Health, 

and the Economy. Consultant report 500-03-058CF to the Public Interest Energy 

Research Program, California Energy Commission. 

Reiss, P. C., and M. W. White. 2005. “Household Electricity Demand Revisited.” The Review of 

Economic Studies 72:853–883 

 

 

 

 

 

 

 

 



21 
 

APPENDIX 
 
Figure 1: California Energy Commission Building Climate Zones 

 

Source: California Energy Commission 
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Figure 2: Population Density in California 

 

Source: U.S. Census Bureau, Census 2000 Summary File 1 
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Figure 3: Temperature response functions from robust OLS regressions with (a) the below 40°F and 40°F to 50°F temperature bins 
defined separately, (b) the below 40°F and 40°F to 50°F temperature bins combined, (c) the humidity bins present and the below 40°F 
and 40°F to 50°F temperature bins defined separately, and (d) the humidity bins present and the below 40°F and 40°F to 50°F 
temperature bins combined. The above 80°F temperature bin and 0% to 20% humidity bin are normalized.  
 
(a) 

 
 
(b) 

 

(c)  

  
 
(d)  

 

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

<40 40-50 50-60 60-70 70-80 >80

T
e

m
p

e
ra

tu
re

 R
e

sp
o

n
se

 

C
o

e
ff

ic
ie

n
ts

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

<50 50-60 60-70 70-80 >80

T
e

m
p

e
ra

tu
re

 R
e

sp
o

n
se

 

C
o

e
ff

ic
ie

n
ts

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

<40 40-50 50-60 60-70 70-80 >80

T
e

m
p

e
ra

tu
re

 R
e

sp
o

n
se

 

C
o

e
ff

ic
ie

n
ts

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

<50 50-60 60-70 70-80 >80

T
e

m
p

e
ra

tu
re

 R
e

sp
o

n
se

 

C
o

e
ff

ic
ie

n
ts



24 
 

Figure 4: Emissions Projections under six SRES Scenarios 

 

Source: Special Report on Emissions Scenarios (IPCC 2000) 
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Figure 5: Average number of days in each 10°F temperature bin for 1968-2002 (Blue) and change in number of days in each bin for 
2090-2099 relative to 1968-2002 for six California counties using the Hadley 3 A1FI (Red) and the CCSM A2 (Green).  
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Figure 6: Average number of days in each 10°F temperature bin for 1968-2002 (Blue) and change in number of days in each bin for 
2090-2099 relative to 1968-2002 for six California counties using the Hadley 3 A1FI (Red) and the CCSM A2 (Green). The days in 
the below 40° bin are combined with the days in the 40° to 50° bin and the days in the 80° to 90° bin are combined with the days in 
the above 90° bin.  
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Figure 7: Simulated percent increase in per-household electricity consumption by county for the 
periods (a) 2050-2059, (c) 2070-2079, and (d) 2090-2099 relative to simulated consumption over 
1968-2002. Model Hadley 3 forced by IPCC SRES A1FI.  
 
(a) 

 
(b) 

 
(c) 
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Figure 8: Simulated percent increase in per-household electricity consumption by county for the 
periods (a) 2050-2059, (c) 2070-2079, and (d) 2090-2099 relative to simulated consumption over 
1968-2002. Model CCSM 3 forced by IPCC SRES A2. 
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Table A1: Electricity Consumption and Temperature Statistics by Zone 

    
  Annual Usage (KwH) Daily Mean Temperature Distribution in 2005 (°F) 

Zone No. of 
HH 

Mean Standard 
Deviation 

<40 40-50 50-60 60-70 70-80 80-90 >90 

3 64 5451.766 3470.707 0 31 160 170 4 0 0 

4 17 6195 3229.878 0 34 153 163 15 0 0 

5 17 5266.882 1881.35 0 17 262 86 0 0 0 

6 31 7172.291 5566.194 0 2 132 215 16 0 0 
7 34 6419.029 4291.748 0 5 141 187 32 0 0 

8 51 5304 2947.423 0 2 76 205 77 5 0 

9 67 5643.746 3982.458 0 9 117 144 82 13 0 

10 50 7774.58 3931.049 0 9 98 112 92 52 2 

11 21 12059.05 7194.698 9 58 144 72 61 47 4 
12 67 9762.283 5342.956 1 58 132 103 65 6 0 

13 22 7535.909 3288.259 1 48 117 81 65 50 3 

14 11 5114.455 3598.935 3 52 104 65 56 68 17 

16 15 7866.8 4257.137 24 129 110 74 28 0 0 

 
 
Table A2: Humidity Statistics by Zone  

 
 Daily Mean Humidity Distribution in 2005 (%) 

Zone 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 

3 0 0 0 8 36 84 139 73 23 2 

4 0 0 2 14 44 109 120 58 18 0 

5 0 0 5 15 24 27 92 152 49 1 

6 0 10 12 16 23 36 102 139 35 2 

7 0 4 17 18 19 36 147 102 20 2 

8 2 14 16 22 45 80 130 47 7 2 

9 4 28 37 42 43 89 71 32 16 3 

10 3 33 53 77 61 78 33 15 9 3 

11 2 46 63 56 44 40 37 38 28 11 

12 0 0 10 50 72 75 53 50 39 16 

13 0 0 61 83 52 45 36 53 27 8 

14 18 97 84 60 34 27 24 14 7 0 

16 0 0 16 80 111 60 48 32 16 2 
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Table A3: Description of Variables 

 

Variable Description 

lnkwh log of annual average consumption in kilowatt-hours 
price annual average price, in 1995 dollars per kilowatt-hour 

lnhhincome log of household income 
nhsldmem  number of residents 
lntotsqft log of total square footage 
daysbelow40 number of days when daily mean temperature falls below 40°F 

days40to50 number of days when daily mean temperature falls between 40°F and 50°F 
days50to60 number of days when daily mean temperature falls between 50°F and 60°F 
days60to70 number of days when daily mean temperature falls between 60°F and 70°F 

days70to80 number of days when daily mean temperature falls between 70°F and 80°F 
days80to90 number of days when daily mean temperature falls between 80°F and 90°F 
daysabove90 number of days when daily mean temperature falls above 90°F 
dh0to10 number of days when daily mean humidity falls between 0% and 10%  

dh10to20 number of days when daily mean humidity falls between 10% and 20% 
dh20to30 number of days when daily mean humidity falls between 20% and 30% 
dh30to40 number of days when daily mean humidity falls between 30% and 40%  

dh40to50 number of days when daily mean humidity falls between 40% and 50% 
dh50to60 number of days when daily mean humidity falls between 50% and 60% 
dh60to70 number of days when daily mean humidity falls between 60% and 70% 
dh70to80 number of days when daily mean humidity falls between 70% and 80% 

dh80to90 number of days when daily mean humidity falls between 80% and 90% 
dh90to100 number of days when daily mean humidity falls between 90% and 100% 
spaceheating 1 if household owns an electric space heating system 
centralac 1 if household owns a central air-conditioner 

roomac 1 if household owns a room air-conditioner 
waterheating 1 if household owns an electric water heating system 
secondfridge 1 if household owns a second refrigerator 

separatefreezer 1 if household owns a separate freezer  
washer 1 if household owns a washer 
elecdryer 1 if household owns an electric dryer 
dishwasher 1 if household owns a dishwasher 

hottub 1 if household owns a hot tub 
elecoven 1 if household owns an electric oven 
elecstove 1 if household owns an electric stove 
microwave 1 if household owns a microwave 

tvcolor number of television sets owned by household 
personalcomputer 1 if household owns a personal computer 
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Table A4: 
�and �� Correlation Coefficients    
 

 

No.  Variable 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 

1. daysbelow40 1           

2. days40to50 0.7691 1          

3. days50to60 -0.1238 0.0905 1         

4. days60to70 -0.4423 -0.6672 -0.1191 1        

5. days70to80 -0.083 -0.1588 -0.7396 -0.2628 1       

6. days80to90 0.0602 0.043 -0.3992 -0.5859 0.5538 1      

7. daysabove90 0.1304 0.1839 -0.1976 -0.451 0.1586 0.7068 1     

8. dh0to10 -0.0191 -0.1106 -0.3517 -0.2314 0.406 0.5546 0.8202 1    

9. dh10to20 0.0553 -0.1582 -0.4307 -0.2761 0.4941 0.7118 0.7748 0.9032 1   

10. dh20to30 0.1261 -0.0176 -0.4748 -0.5201 0.6338 0.93 0.6894 0.6503 0.8013 1  

11. dh30to40 0.3911 0.4109 -0.4449 -0.7584 0.6649 0.7693 0.3828 0.2843 0.389 0.7446 1 

12. dh40to50 0.5595 0.7074 -0.3308 -0.6028 0.4269 0.2 -0.0262 -0.0497 -0.0701 0.1153 0.685 

13. dh50to60 -0.2108 -0.0786 -0.2541 0.1734 0.2776 -0.1741 -0.3778 -0.0444 -0.1222 -0.2326 -0.0595 

14. dh60to70 -0.3116 -0.4174 0.2604 0.8349 -0.5937 -0.7317 -0.4443 -0.3621 -0.4742 -0.7108 -0.9141 

15. dh70to80 -0.2007 -0.2256 0.6739 0.4214 -0.7531 -0.5722 -0.3148 -0.4803 -0.5052 -0.5648 -0.6586 

16. dh80to90 -0.0164 0.3448 0.6823 -0.2727 -0.4379 -0.3297 -0.2241 -0.4886 -0.4878 -0.3898 -0.1448 

17. dh90to100 0.077 0.5103 -0.0484 -0.5031 0.2888 0.0742 -0.0521 -0.2418 -0.1889 0.0065 0.3796 

 

 12. 13. 14. 15. 16. 17. 

12. 1      

13. 0.3572 1     

14. -0.593 0.0961 1    

15. -0.652 -0.5513 0.5508 1   

16. -0.0332 -0.3773 -0.0979 0.5906 1  

17. 0.5213 -0.0074 -0.4895 -0.1942 0.05868 1 
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Table A5: Appliance Ownership and Consumption 

 

Appliance Number Percent Consumptiona 

Electric Space Heating 108 23.13 1,131 
Central Air Conditioning 198 42.40 1,270 
Room Air Conditioning 74 15.85 619 
Electric Water Heating 52 11.13 2,389 
Second Refrigerator 96 20.56 1,231 
Separate Freezer 81 17.34 582 
Washer 352 75.37 223 
Electric Dryer 158 33.83 795 
Dishwasher 253 54.18 241 
Hot Tub 27 5.78 1,288 
Electric Oven 190 40.69 N/A 
Electric Stove 167 35.76 258 
Microwave 400 85.65 388 
Televisions 462 98.93 482 
Computers 347 74.30 N/Ab 

                                                           
a
  Annual consumption estimates are based on 1997 household data from Reiss and White (2005). While these 

figures are not used in this study, they are used to identify the appliances that consume relatively high amounts of 

electricity.  
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Table A6: � Correlation Coefficients  

 

No. Variable 1. 2. 3. 4. 5. 6. 7. 8. 9.  10. 11. 

1. lnhhincome 1           

2. nhsldmem 0.1703 1          

3. lntotsqft 0.4851 0.1838 1         

4. waterheating -0.0279 -0.1328 -0.1786 1        

5. centralac 0.1607 0.0871 0.2494 -0.0971 1       

6. roomac -0.0456 -0.0806 -0.1969 0.126 -0.3723 1      

7. spaceheating -0.1021 -0.0223 -0.1266 0.4678 0.0433 0.0958 1     

8. washer 0.403 0.1858 0.5962 -0.2085 0.1786 -0.2147 -0.217 1    

9. elecdryer 0.1689 0.0743 0.2108 0.0634 0.1192 -0.0872 0.0371 0.3982 1   

10. hottub 0.142 0.0057 0.1669 -0.0002 0.1402 -0.0572 -0.0706 0.1416 0.0168 1  

11. elecstove 0.1044 -0.0594 -0.024 0.375 0.0018 0.1045 0.3113 -0.1232 0.2219 0.0257 1 

12. elecoven 0.2034 -0.046 0.0761 0.3443 0.0392 0.0823 0.2901 -0.0426 0.2093 0.0937 0.8827 

13. microwave 0.2426 -0.0225 0.1206 0.0866 0.0174 -0.0231 -0.0363 0.1347 0.1506 0.0752 0.0759 

14. dishwasher 0.4031 -0.0579 0.3893 0.107 0.276 -0.0834 0.0356 0.2923 0.2217 0.1358 0.211 

15. secondfridge 0.2472 0.1591 0.3193 -0.1295 0.1426 -0.0756 -0.0402 0.2416 0.0842 0.1691 -0.0147 

16. separatefreezer 0.0839 0.0774 0.2729 -0.1082 0.1448 -0.1059 -0.0903 0.2356 0.1266 0.0561 0.0948 

17. tvcolor 0.2441 0.3706 0.3535 -0.0988 0.1207 -0.0599 -0.0388 0.3257 0.1252 0.1406 -0.0429 

18. computer 0.4239 0.1077 0.3638 -0.0099 0.1277 -0.0669 -0.0378 0.2667 0.1512 0.1247 0.04 

 

 12. 13. 14. 15. 16. 17. 18. 

12. 1       

13. 0.0903 1      

14. 0.263 0.1508 1     

15. 0.0533 0.1024 0.1275 1    

16. 0.1387 0.0907 0.1943 0.1728 1   

17. 0.0185 0.0922 0.1543 0.3094 0.1473 1  

18. 0.1179 0.2206 0.3148 0.1536 0.0752 0.2146 1 
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Table A7: Estimated Coefficients (Robust OLS with suppressed constant term) 

  
Effect on log of annual household electricity consumption: 

Explanatory 
Variable 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

      
lnhhincome 0.134***  0.120*** 0.0790* 0.0790* 0.0237 
 (0.0348)   (0.0343) (0.0307) (0.0310) (0.0302) 
      
nhsldmem 0.0930*** 0.0940*** 0.0930*** 0.0934*** 0.0813*** 
 (0.0148)   (0.0151) (0.0140) (0.0132) (0.0120) 
      
lntotsqft 0.332***         0.331***         0.308***         0.269***         0.206*** 
 (0.0405)         (0.0393)         (0.0385)         (0.0375)         (0.0388)    
      
daysbelow50 0.0149***       0.0143***       0.0146***       0.0152***       0.0171*** 
 (0.00133)        (0.00128)        (0.00118)        (0.00114)        (0.00122)    
      
days50to60 0.0126***       0.0130***       0.0143***       0.0148***       0.0165*** 
 (0.00108)        (0.00106)        (0.00103)        (0.00103)        (0.00102)    
      
days60to70 0.0111***       0.0112***       0.0126***       0.0133***       0.0149*** 
 (0.00104)        (0.00105)        (0.00102)       (0.000996)       (0.00104)    
      
days70to80 0.0146***       0.0134***       0.0151***       0.0158***       0.0173*** 
 (0.00132)        (0.00128)        (0.00123)        (0.00121)        (0.00116)    
      
daysabove80 0.0125***       0.0129***       0.0145***       0.0151***       0.0170*** 
 (0.00158)        (0.00159)        (0.00148)        (0.00143)        (0.00140)    
      
spaceheating  0.201***        0.0291           0.0211           0.0311    
  (0.0547)         (0.0551)         (0.0533)         (0.0472)    
      
centralac  0.219***         0.222***         0.199***         0.180*** 
  (0.0579)         (0.0559)         (0.0536)         (0.0498)    
      
roomac  0.121            0.117            0.106           0.0998    
  (0.0635)         (0.0598)         (0.0597)         (0.0571)    
      
waterheating   0.458***         0.424***         0.374*** 
   (0.0773)         (0.0766)         (0.0712)    
      
secondfridge   0.268***         0.239***         0.182*** 
   (0.0561)         (0.0550)         (0.0541)    
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elecdryer   0.191***         0.158***         0.117** 
   (0.0447)         (0.0432)         (0.0414)  

   
separatefreezer    0.285***         0.254*** 
    (0.0503)         (0.0487)    
      
elecoven    0.109*           0.102*   
    (0.0433)         (0.0407)    
      
dishwasher     0.0965*   
     (0.0441)    
      
microwave     0.194*** 
     (0.0555)    
      
tvcolor     0.0823*** 
     (0.0147)    
      
personalcomputer     0.111*   
     (0.0476)    

N 467 467 467 467 467 

Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
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Table A8: Estimated Marginal Effects 

 
        Effect on log of annual household electricity consumption conditional on:  

Explanatory  
Variable 

 
1687 HDD 

 
2687 HDD 

 
1044 CDD 

 
2044 CDD 

 
spaceheating 

 
.1928*** 

 
.2891** 

  

 .0543 .1016   

     

centralac   .1604** .0226 

   .0559 .115 

     
roomac   .1117 -.1015 

   .0699 .1413 

Standard Errors in Parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
  
 


